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Abstract.  In this paper the hygro-thermo-mechanical vibration and buckling behavior of embedded FG nano-
plates are investigated. The Eringen’s and Gurtin-Murdoch theories are applied to study the small scale and surface 
effects on frequencies and critical buckling loads. The effective material properties are modeled using Mori-Tanaka 
homogenization scheme. On the base of RPT and HSDPT plate theories, the Hamilton’s principle is employed to 
derive governing equations. Using iterative and GDQ methods the governing equations are solved and the influence 
of different parameters on natural frequencies and critical buckling loads are studied. 
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1. Introduction 
 

Nano-material have recently attracted a lot of attention Because of superior mechanical, 
thermal and electrical properties; considering these properties, different field of studies have been 
developed; for example, some studies focus on mechanical properties (Bellifa, Benrahou, and 
Bousahala 2017, Karami, Janghorban and Tounsi 2018a, Bouafia et al. 2017, Youcef et al. 2018, 
Ahouel et al. 2016, Mokhtar et al. 2018, Karami, Janghorban and Tounsi 2018b, Chaht et al. 
2015); in addition to mechanical properties some studies consider thermal properties (Khetir et al. 
2017, Ebrahimi and Barati 2016a, b, 2018a, Ebrahimi and Salari 2015); electrical and mechanical 
properties are another subject that has attracted the attention of researchers (Shen, Wang and 
Zheng 2018, Ebrahimi and Barati 2016c, d, 2017c, 2018b). There are specified methods for 
modeling these structures and driving related equations which are solved by analytical or 
numerical methods (Akgöz and Civalek 2016, 2011, Civalek and Demir 2016, Chen and Li 2013, 
Mercan and Civalek 2016, Gürses et al. 2009, Civalek 2013, Ebrahimi and Shafiei 2017). Nano-
plates, as one of the nano-structures, are used a lot in nano/micro-electromechanical systems 
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(NEMS/MEMS) (Gholami, Ansari and Gholami 2017) and there are many researches which study 
nano-plates for situations that are applicable for these systems (Yazid et al. 2018, Bounouara et al. 
2016, Besseghier et al. 2017, Ebrahimi, Hamed and Hosseini 2016, 2017d, Ebrahimi and Hosseini 
2016b). The buckling behavior of nano-plates with nonlocal elasticity and surface stress theories 
have been studied by Karimi and Shahidi (2015) using finite difference method. Foroushani and 
Azhari (2016) investigated the buckling and vibration behavior of thick rectangular nano-plates 
based on Reddy’s plate theory; using finite strip method they concluded that for thick plates, the 
critical buckling load and natural frequency are intensely dependent on the nonlocal parameter, 
whereas the effect of the effect of geometrical parameters are more important when the plate is 
thin. Ebrahimi and Barati (2017a) studied damping vibration of smart piezoelectric nano-plates 
using strain gradient theory. Based on classical plate theory and first order shear deformation 
theory Habibi et al. (2016) investigated the characteristic of the vibration of the nano-plate which 
is placed on elastic foundation in thermal environment. Ansari and Gholami (2017) used Mindlin 
plate theory to examine the buckling and post-buckling of MEE nano-plates subjected to thermal 
loading. Karimi et al. (2015) combined nonlocal refined plate theory and surface energy effects on 
the vibration and buckling of rectangular nano-plates using DQ method. They concluded that the 
nonlocal effects on vibration and shear buckling are more noticeable than that of vibration and 
biaxial buckling. Ansari et al. (2015) studied the nonlinear vibration of First shear deformation 
nano-plate by employing DQ method and considering surface elasticity theory. They showed that 
surface stress and surface elastic modulus have decreasing effect on dimensionless frequency and 
dimensionless amplitude; on the other hand they observed that the effect of geometrical parameters 
is dependent on the type of edge supports. In other work, Ansari and Gholami (2016) investigated 
the vibration and post-buckling behavior of third order shear deformation nano-plates considering 
surface elasticity theory and von Karman nonlinearity.  

Functionally graded materials are novel generation of composites in which the compositions of 
different materials gradually change in one or multiple direction to achieve tailored properties. In 
most recent years, the employments of them in NEMS/MEMS have been increased (Lu, Lim and 
Chen 2009). Several researchers have been studied FG nano-plates subjected to mechanical and 
thermal loading. Zare et al. (2015) utilized linear methods to study the vibration response of FG 
nano-plates under different boundary condition based on Kirchhoff’s plate theory. Using third 
order shear deformation plate theory, Daneshmehr et al. (2015) investigated the vibration behavior 
of embedded FG nano-plate with linear strain-displacement relations consideration. Hosseini and 
Jamalpoor (2017) developed a study of free vibration and buckling characteristic of FG nano-plate 
which is placed on visco-Pasternak foundation and found that the effect of surface layer on 
damped natural frequency and buckling load is dependent on the mode’s degree. The effect of 
thermal and moisture loading on structures and nano-structures has been one of interesting 
subjects for many researchers (Bousahla et al. 2016, Bouderba et al. 2016, Beldjelili, Tounsi and 
Mahmoud 2016, El-Haina, Bousahla, Tounsi and Mahmoud 2017, Menasria, Bouhadra, Tounsi, 
Bousahla and Mahmoud 2017, Attia et al. 2018, Bouderba, Houari and Tounsi 2013, Zidi et al. 
2014, Hamidi et al. 2015). In his comprehensive research, Sobhy (2015) examined bending, free 
vibration, mechanical and thermal buckling of FG nano-plates lying on elastic foundation; using 
linear strain-displacement relations, he discovered that nonlocal parameter has significant role on 
the variation of the stiffness of the FG nano-plates. Free vibration analysis of embedded second 
order FG nano-plate was presented by Panyatong et al. (2016), in which the nano-plate is under 
uniform thermal loading and simply supported boundary condition. Recently, on the basis of linear 
assumptions and refined plate theory, Ebrahimi and Barati (2017b) examined the influence of 
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environment effects (such as moisture, temperature), electric voltage and magnetic fields on 
vibration and buckling behavior of FG nano-plates. Inverse cotangential plate theory is employed 
by Barati et al. (2016) to study the effect of thermal loading on the buckling behavior of FG nano-
plates resting on elastic foundation; they concluded that the rigidity of the plate and critical 
buckling temperature of the nano-plate are reduced when nonlocal parameter diminishes, however 
elastic foundation parameters have contrary effects on them. Nguyen et al. (2015) analyzed linear 
free vibration and buckling behavior of simply and clamped supported FG nano-plate based on 
Mori-Tanaka homogenization scheme and refined plate theory. Ansari et al. (2015) used classical 
plate theory to study thermal buckling and free vibration of FG nano-plate considering surface 
stress theory under linear temperature rise assumption. In a collaborative effort, Barati and 
Shahverdi (2016, 2017) investigated the thermal buckling and post-buckling and vibration 
responses of FG nano-plates based on refined plate theory subjected to hygro-thermal loading and 
different boundary conditions; in their research the linear strain-displacement relations are 
considered and the surface stresses are neglected. 

In this research, the free vibration and buckling behavior of embedded rectangular FG nano-
plates with different boundary conditions subjected to nonlinear thermal and linear moisture 
loading based on physical neutral surface position are studied. The material’s distribution through 
the thickness of the plate varies as power-law function and the temperature dependent effective 
material properties are modeled based on Mori-Tanaka homogenization scheme. The Hamilton’s 
principle in conjunction with Eringen nonlocal elasticity and surface elasticity theories are used to 
obtain governing Equations. The displacement field is based on Reddy’s plate theory and nonlinear 
strain-displacement relations are regarded according to von Karman theory. With these 
assumptions the governing equations shall be solved for 5 unknowns. It can be remarked that there 
have been some methods which involve fewer unknowns (Belabed et al. 2018, Mokhtar et al. 
2018, Houari et al. 2016, Hachemi et al. 2017, Mouffoki et al. 2017), but they often comprise 
assumptions that make them appropriate for linear approaches. GDQ method, as an efficient 
numerical method to solve complicated partial and ordinary differential equations (Shu 2012), in 
conjunction with Iterative method is used to solve the governing equations. Finally, the effect of 
nonlocal parameter, volume fraction exponent, geometrical parameters, elastic foundation 
parameters, surface parameters, thermal and moisture loading on natural frequencies and critical 
buckling load are depicted. A comparison study with the results of hyperbolic shear deformation 
plate theory is available in this article.   

  
 
2. Theory 
 

Consider a rectangular ceramic- metal FG nano-plate of thickness h, length a and width b 
resting on a Pasternak elastic foundation with Winkler (Kw) and Pasternak (Kp) modulus as shown 
in Fig. 1. Noting that the material at the top surface ( = 	) is ceramic-rich and the bottom 

surface ( = − 	) is metal-rich the following theories are simultaneously remarked. 
 

2.1 Nonlocal constitutive formulation 
 

In contrast to the classical elasticity theory, the stress at a specified point like x is supposed to 
be a function of the strain components at all other points of the body (Eringen 1983, 1972).  
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Fig. 1 Geometry of a rectangular FG nano-plate resting on Pasternak elastic foundation (Sobhy 2015). 

 
 
According to nonlocal elasticity theory, the constitutive relation can be stated as: () = ∫ (| − |, ) ()()	 , (1.1) () =  () (1.2)

where () is nonlocal stress at the point ,  () is the classical stress at any point  in 
the body with volume function (), (| − |, ) is nonlocal modulus and also Green’s 
function, () and   are strain and the fourth-order elasticity tensor respectively. By 
neglecting the effects of strains at points other than reference point , one can obtains classical 
elasticity theory. From Green’s function theory (Duffy 2015), Eq. (1.1) can be rewritten as: (1 − μ∇) =  , (2)

where  

L = 1 − μ∇, (3)

is the corresponding differential operator for two-dimensional nonlocal modulus, μ is nonlocal 
parameter and ∇ is the Laplacian operator. 
 

2.2 Surface elasticity model 
 

When sizes of structures are greater than 50 nm, usually, the surface- to-volume ration is 
negligible and classical constitutive relations dominate the deformation behavior of the structure 
(Shahram, Ganti, Ardebili and Alizadeh, 2004). However, for smaller sizes the role of surface 
increases and classical constitutive relations shall be replaced with appropriate equations. 
Meanwhile, one deals with terminologies such as “surface energy” and “surface stress”; but, it 
should be noted that the concepts of these terminologies can be very different, specially, about 
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solids. The surface energy is defined as a reversible work per unit area to form a surface. This 
quantity is always positive and then unstable; this means the solid would lose energy upon 
fragmentation. On the other hand, the surface stress is defined as a reversible work per area to 
stretch a surface elastically. Unlike the surface energy, surface stress can be positive or negative. 
For a liquid, the surface stress and surface energy are equal they are frequently referred to by the 
common name “surface tension”. Mathematically, the surface stress is defined as (Ibach 1997):  = ∫  () −  , (4)

where   is the component of the surface stress tensor,  () considered as bulk stress tensor 
components and   is the residual surface stress tensor component. 

The constitutive relation regarding surface stress is obtained by Gurtin and Murdoch (Gurtin 
and Murdoch 1975, Gurtin and Murdoch 1978) as:  =   + ̈																			,  = , , , (5.1)

 =  + 2( − ) + ( + ) +   + () (5.2)

 =   																					,  = ,  (5.3)

the above relations are valid where , ,  and  represent mass density, residual stress and 
Lame moduli of the surface,  denotes normal to surface,  and  are displacement and 
coordinate in the i and j directions and   is bulk stress tensor; all nonlinear components are 
considered in (). 

Herein, Eqs. (5.1)-(5.3) will be used to calculate strain energy due to surface stresses but it 
shouldn’t be neglected that surface stresses alter the distribution of stresses in the z direction (); however, this distribution is such that the average of distribution function (̅()) is 
vanished : 

0 = ∫ ̅()  , 
(6)

where ℎ is the thickness of the plate.  
Using distribution function (̅()), and considering nonlocal elasticity theory, one can write 

the nonlocal stress in z direction as:  = ̅()( + ), +, − ( + )̈ +  ( − ), +, + ( − )̈, (7)

where  denotes the displacement in  direction. 
Eq. (7) is used in classical constitutive relation:  = 1 +   + 1 −    + 1 −     (8)
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after applying the nonlocal differential operator (Eq. 3). In this equation E is Young’s modulus, and 
ν Poisson’s ratio. 

In this article we assume: ̅() = ℎ (9)

 
2.3 Higher order shear deformation plate theory 
 
The displacement field for a plate in HSDT can be described in a general form by (Gholami, 

Ansari and Gholami 2017): (, , , ) = (, , ) − ()(, , ) + (() − ),(, , ) (10.1)(, , , ) = (, , ) − ()(, , ) + (() − ),(, , ) (10.2)(, , , ) = (, , ) (10.3)

In the above equations (, , ) are displacements of any point of the nano-plate in (, , ) 
directions; (, , ) are the displacement components of the mid-plane at time t.  and  
denotes the rotation of a transverse normal about the y and x axis. () is the unified kinematic 
function which characterizes the transverse shear deformation and stress distribution through the 
thickness of the nano-plate. In terms of () there are different plate theories, for example if () = 0 we have Krichhoff plate theory or if () =  the plate theory is Mindlin plate theory. 
In the present research the Reddy and Hyperbolic shear deformation plate theory are studied 
where: () = 	(1 − 43ℎ)  	 	 	ℎ  (11.1)

() = ℎ sinh ℎ − 	cosh(12)  	 	ℎ 	 	 	ℎ  (11.2)

 
2.4 Mori-Tanaka FGM plate model considering the physical neutral surface 

 
Consider the distribution of material in the FG nano-plate changes through the thickness as 

power-law function:  = 12 + ℎ (12.1) +  = 1 (12.2)

where 0 ≤  ,  ≤ 1 are respectively the volume fraction of ceramic and metal at point (, , ) 
and p is the volume fraction exponent. 

The effective material properties can be calculated using Mori-Tanaka homogenization scheme 
(Shen 2016): (, ) − ()() − () = 1 + (1 − )(3(() − ()) (3() + 4())⁄ ) (13.1)
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(, ) − ()() − () = 1 + (1 − )((() − ()) (() + )⁄ ) (13.2)

(, ) − ()() − () = 1(, ) − 1()1() − 1()  (13.3)

(, ) − ()() − () = 1 + (1 − )((() − ()) 3()⁄ ) (13.4)

 = ()(9() + 8())6(() + 2())  (13.5)

in above relations K is effective bulk modulus, G is effective shear modulus, α is considered as 
effective thermal expansion coefficient and κ regarded as effective thermal conductivity; all 
material properties are temperature () dependent and the subscripts “m”, “c” and “f” are metal, 
ceramic and effective property. 

The effective density of material is obtained based on the rule of mixture relation (Qian, Batra 
and Chen 2004):  +  =  (14)

Since in FG plates there is no mid-plane symmetry condition, the stretching equation is coupled 
with bending equation, while kinematic relations are symmetric; to solve this discrepancy the 
neutral surface of the plate is selected as the origin of the coordinate system and the variable  
changes to ( − ) where  is the elevation of neutral surface and is calculated as (Zhang and 
Zhou 2008): 

 = ∫ 	()∫ ()
 (15)

 
 2.5 Thermal effect 
 
At first glance, temperature rising affects the properties of material. In cases where there is no 

explicit relation for temperature dependent material properties, the curve fitting methods (Ahn 
2004) and data from tables can be used to model aforesaid effect as polynomial (Reddy J. N. 
2011):  = ( + 1 +  +  + ) (16)

where  is typical material property, , , ,  and  are the coefficients of temperature. 
Temperature variation can also expand or contract the material and in the result thermal stresses 

are developed. If  and  are Poisson’s ratio and coefficient of thermal expansion (CTE), the 
classical thermal constitutive equation for an isotropic material in two-dimensional space can be 
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written as (Shen 2016, Bloom and Coffin 2000, Reddy J. N. 2006):  =  = 1 −  		  = 0 (17)

where , and   are thermal stresses in the material. 
  
2.6 Moisture effect 
 
The moisture absorption has analogous effect to temperature on developed stresses in material 

(Marie 2012); the stresses due to moisture variation are calculated as:  =  = 1 −  		  = 0 (18)

For a material of mass "", C (the relative mass moisture concentration) can be calculated as 
(Vasiliev and Morozov 2013):  =   (19)

where  is mass increase after moisture absorption. 
In Eq. (18),  is coefficient of moisture expansion (CME) and considered to be constant 

through the thickness. 
The moisture absorption by metal is neglected in the present paper and it is assumed that the 

amount of  and  are around the ceramic tiles values (Link International 2016):  = 60	 ⁄   = 3~6% (20)
 

2.7 Temperature and moisture field 
 
The temperature and moisture field is assumed to be constant in the XY plane of the plate. Eqs. 

(21)-(22) is used to calculate temperature and moisture field (Vasiliev and Morozov 2013, Javaheri 
and Eslami 2002): ddz (, )   = 0 (21)ddz (, )   = 0 (22)

where (, ) is diffusion coefficient. 
Using Eq. (21) the nonlinear temperature rise can be calculated as: 

 = () −  = ( − ) +  ∫ (, )∫ (, )/
 ℎ 											 =  −  (23)

For linear moisture concentration rise from Eq. (22) we have:  = () −  = ( − ) +  ( + ℎ 2⁄ )ℎ  ℎ 										 =  −  (24)
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where  and  are initial temperature and initial moisture concentration. 
 
 
3. Free vibration Analysis 
 

For a system at dynamic equilibrium the governing equation can be driven using Hamilton’s 
principle (Reddy J. N. 2006): 0 =  ( +  − )	  (25)

The variation of strain energy in Hamilton’s principle () can be written as:  =  +  (26)

where (Reddy J. N. 2011, Ansari et al. 2014): 

 =    +  + 2 + 2 + 2	 	
	
  (27.1)

 =  + =   +  +  +  +  + 	
+  +  + 2 +  + 2 + 	  

(27.2)

where “+” ,“-”, b and s denote top surface, bottom surface, body and surface of the nano-plate; Ω 
and Λ are the undeformed middle plane of the plate and the undeformed surface layer of the plate. 

To calculate the variation of work due to external forces and environment interactions ( ) in 
Eq. (25) we have (Reddy J. N. 2006, Praveen and Reddy 1998):  =  +  +  (28)

where: 

 = − , 	 	


	
 = − , + ,		 	


	

  (29.1)

 = − , 	 	


	
 = − , + ,			


	

  (29.2)
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 = − −  + ∇			
 −  + − 43ℎ  + +	

− 43ℎ  +  	 

(29.3)

where,  ,  and  are, respectively, work due to thermal stresses, due to moisture stresses 
and external forces; (, ) is resultant of distributed transverse loads applied at the upper and 
lower surface of the nano-plate; ,  and  are stresses acting on the portion  of the 
boundary of the plate; the effect of foundation can be found by changing Winkler modulus () 
and Pasternak modulus () parameters (Jung, Park and Han 2014); for resultant stresses in Eq. 
(29.3) we have: 

  =    1 	   =     =    (30)

The strains are related to displacement variables according to von Karman’s theory: 

 =  + 	() − ()																				,  = , 									 =  + ()																																			 = , 	;  =  (31)

where:  = 12   +   () =   () = 43ℎ  +   

(32)

 = 12   +   () =   () = 43ℎ  +   

 = 12  +  +    () = 12 +   
() = 23ℎ  +  + 43ℎ   

 = 12  +   () = − 2ℎ  +    

 = 12  +   () = − 2ℎ  +    

The variation of the kinetic energy ( ) in Hamilton’s principle Eq. (25) can be derived as 
(Reddy J. N. 2006): 
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 =  ̇ + ̇ − 43ℎ ̇̇ + ̇ + ̇ − 43ℎ ̇ ̇	
 + ̇ + ̇ − 43ℎ ̇ ̇ + − 43ℎ ̇ − 43ℎ ̇ + 169ℎ ̇ ̇+ ̇ + ̇ − 43ℎ ̇ ̇ + − 43ℎ ̇ − 43ℎ ̇ + 169ℎ ̇ ̇+ ̇̇ 		  

(33)

where: 

 =     =  −     =  −    (34)

Using Eqs. (25)-(34), the governing equations can be obtained as: : ,	 +,	 = L̈ − L̈ − 43ℎ L̈, (35.1)

: ,	 +,	 = L̈ − L̈ − 43ℎ L̈, (35.2)

: −,	 −,	 + 43ℎ ,	 + ,	  + ′ 	 = L̈ + L̈ + L̈, (35.3)

: −,	 −,	 + 43ℎ ,	 + ,	  + ′ 	 = L̈ +  L̈ + L̈, (35.4)

: 
− 43ℎ ,	 + ,	 + 2,	  − L N(, , ) − ′ ,	 − ′ ,	− L∇ + L= −L̈ − 43ℎ L̈, + L̈, − L̈, + L̈,+ 169ℎ L∇̈ 

(35.5)

with boundary condition as:  = 0 or 	 =  (36.1) = 0 or 	 =  (36.2) = 0 or 	 =  (36.3) = 0 or 	 − 43ℎ 	 =  − 43ℎ  (36.4)
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 = 0 or 	 − 43ℎ 	 =  − 43ℎ  (36.5) = 0 or 	 =  (36.6)

where: 

N(, , ) = , +,, + , +,, (37.1)̅ =  +  −  −  																		 = ,, 					 = ,  (37.2)

 ,  ,   =   [1, , ]  																																 = ,  (37.3)

 ,  ,  =   [1, , ]  																															 = ,  (37.4)

̅ =  + 														 = ,  ′ 	 =  − 4ℎ 							 = ,  (37.5)

[, ] =   [1, ]  																																													 = ,  (37.6)

  =
⎩⎪⎪⎨
⎪⎪⎧ +  +  + 	2 									 +  −  − 	ℎ4						 +  −  − 2 ℎ2⎭⎪⎪⎬

⎪⎪⎫
  =   +  												( + ) ℎ2 (37.7)

 =  + 43ℎ    =    (37.8)

	 = L	 (37.9)

 = P(, , ) + 43ℎ , + ,  + 43ℎ , + ,  +  + −  ̈ − 169ℎ ̈, − ̈ − 169ℎ ̈, − 43ℎ ̈− 43ℎ ̈ + 43ℎ   

(37.10)
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 = 43ℎ −   = − + 83ℎ − 169ℎ   = 43ℎ − 169ℎ  (37.11)

Linearizing of Eq. (37.1) gives (Reddy J. N. 2010): 

N(, , ) ≈ , + 2, +, (38)

In the result we can write: 

L N(, , ) ≈ 	 , + 2	 , +	 , (39)

Since all non-homogeneous parts are negligible the governing Equations (Eqs. (35.1)-(35.5)) 
can be solve with following change of variables: 

⎩⎪⎨
⎪⎧(, , )(, , )(, , )(, , )(, , )⎭⎪⎬

⎪⎫ = ⎩⎪⎨
⎪⎧(, )(, )(, )(, )(, )⎭⎪⎬

⎪⎫ (40)

 
 
4. Buckling Analysis 
 

The governing buckling equations are obtained from (Jones 2006): |( 	 ) = 0 (41)

where Π is the total potential energy:  =  +  − (42)

From strain-stress relations we have( = 0): 
 =   {[−, −,  + −, −,  + (−, −,

	
 +	

+ 43ℎ , + ,  + ′)	 + (−, −, + 43ℎ , + ,  +	+	′ ) + (− 43ℎ , + , + 2,  −	−	, +,, − , +,, −′ , − ′ , − ∇ +	+)	 +	, + 2	 	,, +, ] +	+[−, − ,  + −, − ,  + (−, − , +	+ 43ℎ , + ,  + ′ ) + (−, − , + 43ℎ (, +	+, ) + ) + (− 43ℎ , + , + 2	,  − 

(43)
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−, + ,, − , + ,, − ∇ + + − ′, − ′ , ]}			 +	+{[ +  	 +  +  + ( − 43ℎ  +	
 	

+ − 43ℎ ) +  − 43ℎ  +  − 43ℎ  +	
+( 43ℎ , + ,  + 43ℎ , + ,  + ′  + ′  +	+, +, + , +,)	 − 43ℎ ( +	+	)	, − 43ℎ  	 +  	,] +	+[ +  		 +  + 	 +	+ − 43ℎ  +  − 4	3ℎ  + ( − 43ℎ  +	
+ − 43ℎ )	 + ( 43ℎ , + ,  + 43ℎ , + ,  +	+′  + ′  + , + , + , + ,)	 −	− 43ℎ  + 	, − 43ℎ  	 +  		,]}	  

Substituting  = 0	(Hamilton’s principle) and initially perfectly flat plates conditions(, =, = 0), Eq. (43) turns into: 

 =   {[ 	, + 2	 	,, +, ] +	
  

+	[−, − ,  + −, − ,  + (−, − , +	+ 43ℎ , + ,  + ′ ) + (−, − , + 43ℎ (, +	+, ) + ′ ) + (− 43ℎ , + , + 2	,  −	−∇ +  − ′ , − ′ , )	]}		 +	+{[	  +  		 +  + 	 +	
(44)
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+ − 43ℎ  +  − 4	3ℎ  + ( − 43ℎ  +	
+ − 43ℎ )	 + ( 43ℎ , + ,  +	
+ 43ℎ , + ,  + ′  + ′ ) −	− 43ℎ  + 	, − 43ℎ  	 +  	,]}  

We also can write: 

  	, + 2	 	,, +, 
	
 	 =	
−  	, + 	,, + , + 	,, 		

	
 + 

+(	, + 	, +	
 (, + 	,))  

(45)

From Eqs. (41), (44) and (45) the governing buckling equations are: : ,	 + ,	 = 0 (46.1): ,	 + ,	 = 0 (46.2)

: −,	 − ,	 + 43ℎ ,	 + ,	  + ′ 	 = 0 (46.3)

: −,	 − ,	 + 43ℎ ,	 + ,	  + ′ 	 = 0 (46.4)

: − 43ℎ ,	 + ,	 + 2	,	  − L∇ + L − ′ ,	 −	−′ ,	 +	 , + 2	 , +	 , = 0 
(46.5)

It can be shown that boundary condition can be written as (Reddy J. N. 2006):  = 0 or 	 = 0 (47.1) = 0 or 	 = 0 (47.2) = 0 or ′ 	 = 0 (47.3) = 0 or 	 − 43ℎ 	 = 0 (47.4)

705



 
 
 
 
 
 

Farzad Ebrahimi and Ebrahim Heidari 

 = 0 or 	 − 43ℎ 	 = 0 (47.5) = 0 or 	 = 0 (47.6)

where 	 =  43ℎ , + ,  +  +  	, + 	,  +	+  43ℎ , + ,  +  + , + 	,   
(48)

Since the boundary conditions are homogenous we use following change of variables to solve 
linear Eqs. (46.1)-(46.5): 

⎩⎪⎨
⎪⎧(, , )(, , )(, , )(, , )(, , )⎭⎪⎬

⎪⎫ = ⎩⎪⎨
⎪⎧(, )(, )(, )(, )(, )⎭⎪⎬

⎪⎫ (49)

It can be seen from Eqs. (46.1)-(46.5) that governing equations for buckling and vibration 
analysis are analogous, however in buckling equations we deal with the variations of resultant 
stresses and  displacement. For biaxial compression loading (in the present research) we change 
the sign of 	  and 	  to minus and set: 	 = 0 	 = 	 =    = 1 (50)
 
 

5. Results and discussion 
 

The numerical results presented in this section are devoted to illustrate the natural frequency 
and buckling responses of FG nano-plates under three cases of boundary conditions, including 
SSSS, CCCC, CSCS as: 

a) SSSS (all edges are under movable simply-supported boundary condition):  =  =  =  =  =  = 0								 	 	 = 0,1	 =  =  =  =  =  = 0									 	 	 = 0,1 (51)

b) CCCC (all edges are under clamped boundary conditions):  =  =  =  =  =  = 0															 	 	 = 0,1	 =  =  =  =  =  = 0															 	 	 = 0,1 
(52)

c) CSCS (Two opposite edges are under clamped boundary conditions and the other edges are 
under movable simply-supported boundary conditions):  =  =  =  =  =  = 0															 	 	 = 0,1	 =  =  =  =  =  = 0									 	 	 = 0,1 

(53)
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Table 1 Temperature dependent material properties 
Property Material      criteria ( ) , 0 82.1091 -4.4838E-04 5.8961E-08 -2.4700E-10 0 ≤ () ≤ 900 

   0 127.5 -4.9412E-05 -3.4510E-08 0  
        
υ  0 0.35     
   0 0.24     
        ( ⁄ ) , 0 2727.2075 -3.2641E-05 1.6233E-08 -6.1935E-11 0 ≤ () ≤ 922 
  	(Hull	1999) 0.28451034	 − 	0.1690		 − 	0.1750 − 3(	 − 	0.16874)  
        	(10 ⁄ ) , 0 -2.1855 -7.0705E-02 

 
1.2740E-04 

 -7.9704E-08 25 ≤  ≤ 900 

  	(Hull	1999) 0.3725 − 5	 − 	0.3725 −5	 (−0.588 − 2	 + 	0.72912) + 	0.5548 − 9	  

        ( 	⁄ ) , 0 203.1537 1.0696E-03 -1.8995E-06 8.3775E-10 0 ≤  ≤ 933.52 
 	(Hull	1999) 0 412.0898 -2.5104E-03 2.1914E-06 -6.1993E-10 200 ≤  ≤ 1681 
        ( ⁄ )  0 1.0098 -1.5052E-04 - -  
  	(Hull	1999) 0 1.2461 -1.7655E-04 - -  
        ( ⁄ )  0 6.842 0 0 0  
   0 -4.488 0 0 0  
        ( ⁄ )  0 -0.376 0 0 0  
   0 -2.774 0 0 0  
        ( ⁄ )  0 5.46E-7 0 0 0  
   0 3.17E-7 0 0 0  

1 The material property is obtained by the use of curve fitting method 
2 (Swarnakar, Biest, and Vanhellemont 2014) 
3 (Mondolfo 2013) 
4 (Aluminum Association 1984) 
5 (Shaat, Mahmoud, Alshorbagy and Alieldin 2013) 
6 (Ansari, Ashrafi, Pourashraf and Sahmani 2015) 
 
 
the terms used in Eqs. (51)-(53) are defined in Eqs. (30) and (40). 

The FG nano-plate studied in this section has the ceramic (silicon) at the top surface of the 
plate ( = 	) and the metal (Al) at the bottom( = − 	). It is supposed that material distribution 
changes as power-law (Eq. (12.1)) function continuously in the thickness direction of the nano-
plate. The FG nano-plate is subjected to a thermal loading process where the bottom plane is held 
at  =  = 300		( = 0), while the temperature of the upper plane of the plate is risen  
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Fig. 2 Influence of nonlocal parameter on dimensionless fundamental natural frequencies of square ( ⁄ )	FG Reddy nano-plate with respect to various dimensionless thickness for different boundary 
conditions, considering surface stresses effect (  = 100,  = 30,  = 3,  = 200	,  =450	,  =  = 0,  = 1) 

 
 

from  = 300	 to  +  (unless otherwise specified, the temperature rise for upper plane 
of the plate is  = 450); the midpoints experience the nonlinear temperature rise as illustrated 
in Eq. (23). Under temperature lower than boiling point, the effect of moisture concentration will 
be studied in this section where the moisture concentration and temperature are risen 
simultaneously; it is assumed the moisture absorption is elated to ceramic and is linear as 
explained in Eq. (24). 

The results are gained using DQ (Shu 2012) and iterative method (Ebrahimi and Hosseini 

2016a, Malekzadeh 2007). To study dimensionless frequency  = (, ⁄ )(, ⁄ )  and 

dimensionless buckling load ( = (, ⁄ )	)  the material properties are taken into 
consideration as given in Table 1. 

Fig. 2 shows the dimensionless frequency variation versus dimensionless thickness considering 
nonlocal parameter’s variation in thermal environment; beyond the absolute minimum point (at 
around  = 0.02 ), dimensionless thickness rising has increasing effect on dimensionless 
frequency, however the influence of nonlocal parameter on frequency is dependent to boundary 
condition status; for full simply supported boundary condition rising nonlocal parameter decreases 
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the dimensionless frequency but for other boundary condition there is an intersect point; before the 
intersect point rising of nonlocal parameter decreases the frequency however after the intersect 
point the effect is vice versa. To show the effect of nonlocal parameter on dimensionless critical 
buckling load (Fig. 3) we set the dimensionless elastic foundation as:  = 100,  = 30 (54)

where 

 = 	   = 	   =  ℎ2 , 	ℎ12	(1 −  ℎ2 , ) (55)

From Fig. 3 one can conclude that rising the nonlocal parameter and dimensionless thickness 
increases buckling load and in the result the plate will be more stable. The numerical results for 
these figures and for hyperbolic shear deformation plate theory are available in Table 2. A 
comparison study between different boundary condition shows that values that are related to 
CCCC boundary condition are higher than other boundary condition while SSSS boundary 
condition appropriates minimum values. 
 
 

 
Fig. 3 Influence of nonlocal parameter on dimensionless critical buckling load of square ( ⁄ )	FG 
Reddy nano-plate with respect to various dimensionless thickness for different boundary conditions, 
considering surface stresses effect ( = 100,  = 30,  = 3,  = 200	,  = 450	,  =  =0,  = 1) 
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Table 2 Influence of nonlocal parameter on dimensionless fundamental natural frequency and dimensionless 
critical buckling load of ( ⁄ )	FG Reddy and Hyperbolic shear deformation square nano-plate with 
respect to various dimensionless thickness for different boundary conditions, considering surface stresses 
effect ( = 100,  = 30,  = 3,  = 200	,  = 450	,  =  = 0,  = 1) 

   SSSS  CCCC  CSCS ̅ ℎ ⁄     ⁄       ⁄       ⁄    

0 0.01 RPT 0.3261 1.0002 5.7940E-07  0.3479 1.0003 5.9699E-07  0.3372 1.0002 5.8917E-07 
  HSDPT 0.3261 1.0002 5.7940E-07  0.3479 1.0003 5.9699E-07  0.3372 1.0002 5.8917E-07 
 0.05 RPT 0.4178 1.0014 2.3811E-05  0.5573 1.0028 3.4671E-05  0.4922 1.0020 2.9877E-05 
  HSDPT 0.4177 1.0014 2.3811E-05  0.5567 1.0026 3.4672E-05  0.4919 1.0019 2.9877E-05 
 0.1 RPT 0.8545 1.0012 4.0280E-04  1.0838 1.0023 5.4684E-04  0.9757 1.0016 4.8406E-04 
  HSDPT 0.8511 1.0010 4.0280E-04  1.0724 1.0010 5.4685E-04  0.9686 1.0009 4.8407E-04 
              

0.4 0.01 RPT 0.3260 1.0002 5.7942E-07  0.3478 1.0003 5.9705E-07  0.3370 1.0002 5.8922E-07 
  HSDPT 0.3260 1.0002 5.7942E-07  0.3478 1.0003 5.9705E-07  0.3370 1.0002 5.8922E-07 
 0.05 RPT 0.4170 1.0014 2.4194E-05  0.5588 1.0027 3.5596E-05  0.4928 1.0019 3.0559E-05 
  HSDPT 0.4169 1.0014 2.4194E-05  0.5581 1.0025 3.5596E-05  0.4925 1.0018 3.0559E-05 
 0.1 RPT 0.8472 1.0011 4.2728E-04  1.1019 1.0022 6.0615E-04  0.9833 1.0016 5.2776E-04 
  HSDPT 0.8438 1.0009 4.2728E-04  1.0888 1.0011 6.0615E-04  0.9755 1.0010 5.2776E-04 
              

0.8 0.01 RPT 0.3258 1.0002 5.7945E-07  0.3477 1.0003 5.9711E-07  0.3369 1.0002 5.8926E-07 
  HSDPT 0.3258 1.0002 5.7945E-07  0.3477 1.0003 5.9711E-07  0.3369 1.0002 5.8926E-07 
 0.05 RPT 0.4163 1.0014 2.4576E-05  0.5600 1.0027 3.6521E-05  0.4933 1.0019 3.1241E-05 
  HSDPT 0.4162 1.0014 2.4576E-05  0.5594 1.0025 3.6521E-05  0.4930 1.0018 3.1241E-05 
 0.1 RPT 0.8409 1.0011 4.5176E-04  1.1117 1.0022 6.6531E-04  0.9868 1.0015 5.7142E-04 
  HSDPT 0.8375 1.0009 4.5176E-04  1.0975 1.0011 6.6531E-04  0.9786 1.0009 5.7142E-04 
              

1.2 0.01 RPT 0.3257 1.0002 5.7947E-07  0.3476 1.0003 5.9717E-07  0.3368 1.0002 5.8930E-07 
  HSDPT 0.3257 1.0002 5.7947E-07  0.3476 1.0003 5.9717E-07  0.3368 1.0002 5.8930E-07 
 0.05 RPT 0.4156 1.0014 2.4959E-05  0.5611 1.0027 3.7445E-05  0.4938 1.0019 3.1923E-05 
  HSDPT 0.4155 1.0014 2.4959E-05  0.5605 1.0025 3.7445E-05  0.4934 1.0018 3.1923E-05 
 0.1 RPT 0.8353 1.0010 4.7625E-04  1.1184 1.0021 7.2443E-04  0.9891 1.0014 6.1507E-04 
  HSDPT 0.8320 1.0008 4.7625E-04  1.1023 1.0000 7.2444E-04  0.9805 1.0009 6.1507E-04 
              

1.6 0.01 RPT 0.3256 1.0002 5.7949E-07  0.3474 1.0003 5.9723E-07  0.3367 1.0002 5.8935E-07 
  HSDPT 0.3256 1.0002 5.7949E-07  0.3474 1.0003 5.9723E-07  0.3367 1.0002 5.8935E-07 
 0.05 RPT 0.4149 1.0014 2.5341E-05  0.5622 1.0026 3.8369E-05  0.4942 1.0018 3.2605E-05 
  HSDPT 0.4148 1.0013 2.5341E-05  0.5615 1.0024 3.8369E-05  0.4938 1.0018 3.2605E-05 
 0.1 RPT 0.8304 1.0010 5.0073E-04  1.1233 1.0020 7.8354E-04  0.9906 1.0014 6.5872E-04 
  HSDPT 0.8262 0.9997 5.0073E-04  1.1068 1.0000 7.8355E-04  0.9818 1.0009 6.5872E-04 
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Fig. 4 Influence of surface elastic modulus differential on dimensionless fundamental natural frequencies 
of square ( ⁄ )	FG Reddy nano-plate with respect to various dimensionless thickness for different 
boundary conditions, considering surface stresses effect (  =  = 0,  = 3, ̅ = 0.2,  =200	,  = 450	,  =  = 0) 

 

 
Fig. 5 Influence of surface elastic modulus differential on dimensionless critical buckling load of square ( ⁄ )	FG Reddy nano-plate with respect to various dimensionless thickness for different boundary 
conditions, considering surface stresses effect (  =  = 0,  = 3, ̅ = 0.2,  = 200	,  =450	,  =  = 0) 
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Table 3 Influence of surface elastic modulus differential on dimensionless fundamental natural frequency 
and dimensionless buckling load of ( ⁄ )	FG Reddy and Hyperbolic shear deformation square nano-plate 
with respect to various dimensionless thickness for different boundary conditions, considering surface 
stresses effect ( =  = 0,  = 3, ̅ = 0.2,  = 200	,  = 450	,  =  = 0) 

   SSSS  CCCC  CSCS  ℎ ⁄     ⁄       ⁄       ⁄    
-3 0.01 RPT 0.3199 1.0001 5.5805E-07  0.3508 1.0003 5.9259E-07  0.3357 1.0002 5.7719E-07 
  HSDPT 0.3199 1.0001 5.5805E-07  0.3508 1.0003 5.9259E-07  0.3357 1.0002 5.7719E-07 
 0.05 RPT 0.2046 1.0049 5.7281E-06  0.4175 1.0052 1.9203E-05  0.3282 1.0042 1.3226E-05 
  HSDPT 0.2045 1.0048 5.7281E-06  0.4169 1.0048 1.9203E-05  0.3279 1.0040 1.3226E-05 
 0.1 RPT 0.4238 1.0039 1.0246E-04  0.7548 1.0050 2.6877E-04  0.6124 1.0039 1.9542E-04 
  HSDPT 0.4216 1.0029 1.0246E-04  0.7444 1.0022 2.6877E-04  0.6066 1.0022 1.9542E-04 
              

-2 0.01 RPT 0.3194 1.0001 5.5617E-07  0.3487 1.0003 5.8763E-07  0.3343 1.0002 5.7360E-07 
  HSDPT 0.3194 1.0001 5.5617E-07  0.3487 1.0003 5.8763E-07  0.3343 1.0002 5.7360E-07 
 0.05 RPT 0.1992 1.0054 5.4216E-06  0.4093 1.0055 1.8436E-05  0.3213 1.0045 1.2662E-05 
  HSDPT 0.1991 1.0053 5.4216E-06  0.4087 1.0051 1.8436E-05  0.3210 1.0043 1.2662E-05 
 0.1 RPT 0.4190 1.0041 1.0010E-04  0.7476 1.0051 2.6358E-04  0.6063 1.0040 1.9147E-04 
  HSDPT 0.4168 1.0031 1.0010E-04  0.7374 1.0023 2.6358E-04  0.6006 1.0023 1.9147E-04 
              

-1 0.01 RPT 0.3188 1.0001 5.5400E-07  0.3462 1.0003 5.8188E-07  0.3327 1.0002 5.6944E-07 
  HSDPT 0.3188 1.0001 5.5400E-07  0.3462 1.0003 5.8188E-07  0.3327 1.0002 5.6944E-07 
 0.05 RPT 0.1934 1.0060 5.1037E-06  0.4006 1.0059 1.7639E-05  0.3139 1.0049 1.2077E-05 
  HSDPT 0.1933 1.0059 5.1037E-06  0.4000 1.0054 1.7639E-05  0.3137 1.0046 1.2077E-05 
 0.1 RPT 0.4140 1.0043 9.7691E-05  0.7403 1.0053 2.5826E-04  0.6000 1.0041 1.8743E-04 
  HSDPT 0.4119 1.0033 9.7692E-05  0.7302 1.0024 2.5826E-04  0.5945 1.0024 1.8743E-04 
              

2 0.01 RPT 0.3161 1.0001 5.4469E-07  0.3339 1.0003 5.5726E-07  0.3251 1.0002 5.5166E-07 
  HSDPT 0.3161 1.0001 5.4469E-07  0.3339 1.0003 5.5726E-07  0.3251 1.0002 5.5166E-07 
 0.05 RPT 0.1732 1.0086 4.0749E-06  0.3708 1.0073 1.5051E-05  0.2887 1.0063 1.0179E-05 
  HSDPT 0.1731 1.0084 4.0749E-06  0.3704 1.0068 1.5051E-05  0.2885 1.0060 1.0179E-05 
 0.1 RPT 0.3980 1.0049 9.0157E-05  0.7166 1.0057 2.4154E-04  0.5798 1.0046 1.7476E-04 
  HSDPT 0.3960 1.0038 9.0158E-05  0.7070 1.0027 2.4154E-04  0.5746 1.0028 1.7476E-04 
              

3 0.01 RPT 0.3148 1.0002 5.4012E-07  0.3257 1.0003 5.4515E-07  0.3203 1.0002 5.4291E-07 
  HSDPT 0.3148 1.0002 5.4012E-07  0.3257 1.0003 5.4515E-07  0.3203 1.0002 5.4291E-07 
 0.05 RPT 0.1654 1.0099 3.7044E-06  0.3595 1.0079 1.4115E-05  0.2791 1.0069 9.4933E-06 
  HSDPT 0.1653 1.0097 3.7044E-06  0.3590 1.0074 1.4115E-05  0.2789 1.0067 9.4934E-06 
 0.1 RPT 0.3923 1.0051 8.7539E-05  0.7081 1.0059 2.3569E-04  0.5726 1.0048 1.7033E-04 
  HSDPT 0.3903 1.0040 8.7540E-05  0.6987 1.0029 2.3570E-04  0.5675 1.0029 1.7034E-04 

1 =    
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In Fig. 4 and Fig. 5, influence of the surface elastic modulus differential ( =   	 ,  =2 + ) on the dimensionless fundamental frequency and the dimensionless critical buckling 
load of FG nano-plate is investigated (the surface residual stress () is considered temperature 
dependent). The frequency and buckling load are plotted versus dimensionless thickness when the 
surface elastic modulus differential varies. Like the previous case for dimensionless thickness 
variation the dimensionless frequency has an absolute minimum value whereupon the results 
increase by increasing the dimensionless thickness; however the dimensionless buckling load 
strictly increases by rising dimensionless thickness. It is observed that by increasing  the 
dimensionless frequency and buckling load reduce however during increasing of dimensionless 
thickness the constant elastic modulus differential curves ( =  ) converge with each 
other; this means by increasing the dimensionless thickness the effect of surface will be weakened. 
The corresponding results are listed in Table 3; the numerical results for hyperbolic shear 
deformation plate theory are also available in this table. 

Fig. 6 and Fig. 7 depict the effect of the volume fraction exponent on the natural frequency and 
critical buckling load of FG nano-plate, respectively. It is clear that with increasing in volume 
fraction exponent value the frequency and buckling load decreases. Under CCCC boundary 
condition the related values are higher than other boundary condition. Table 4 presents the related 
results which can be compared with the results of hyperbolic shear deformation plate theory. 
 
 

 
Fig. 6. Influence of volume fraction exponent on dimensionless fundamental natural frequencies of square ( ⁄ )	FG Reddy nano-plate with respect to various dimensionless thickness for different boundary 
conditions, considering surface stresses effect ( =  = 0, ̅ = 0.2,  = 200	,  = 450	,  = = 0,  = 1) 
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Fig. 7. Influence of volume fraction exponent on dimensionless critical buckling load of square ( ⁄ )	FG Reddy nano-plate with respect to various dimensionless thickness for different boundary 
conditions, considering surface stresses effect (  =  = 0, ̅ = 0.2,  = 200	,  =450	,  =  = 0,  = 1) 

 
 

Table 4 Influence of volume fraction exponent on dimensionless fundamental natural frequency and 
dimensionless critical buckling load of ( ⁄ )	FG Reddy and Hyperbolic shear deformation square nano-
plate with respect to various dimensionless thickness for different boundary conditions, considering surface 
stresses effect ( =  = 0, ̅ = 0.2,  = 200	,  = 450	,  =  = 0,  = 1) 

   SSSS  CCCC  CSCS  ℎ ⁄     ⁄       ⁄       ⁄    
0 0.01 RPT 0.3819 1.0001 7.5678E-07  0.4088 1.0002 7.8325E-07  0.3955 1.0002 7.7144E-07 
  HSDPT 0.3819 1.0001 7.5678E-07  0.4088 1.0002 7.8325E-07  0.3955 1.0002 7.7144E-07 
 0.05 RPT 0.3107 1.0022 1.2637E-05  0.5259 1.0037 2.9211E-05  0.4313 1.0027 2.1849E-05 
  HSDPT 0.3106 1.0021 1.2637E-05  0.5254 1.0035 2.9211E-05  0.4311 1.0026 2.1849E-05 
 0.1 RPT 0.5460 1.0019 1.6253E-04  0.9348 1.0036 3.9271E-04  0.7659 1.0025 2.9110E-04 
  HSDPT 0.5440 1.0015 1.6253E-04  0.9246 1.0016 3.9271E-04  0.7603 1.0014 2.9110E-04 
              

1 0.01 RPT 0.3432 1.0002 6.3239E-07  0.3665 1.0003 6.5309E-07  0.3550 1.0002 6.4386E-07 
  HSDPT 0.3432 1.0002 6.3239E-07  0.3665 1.0003 6.5309E-07  0.3550 1.0002 6.4386E-07 
 0.05 RPT 0.2317 1.0055 7.2256E-06  0.4292 1.0062 1.9966E-05  0.3442 1.0051 1.4308E-05 
  HSDPT 0.2316 1.0054 7.2256E-06  0.4287 1.0058 1.9966E-05  0.3440 1.0049 1.4308E-05 
 0.1 RPT 0.4482 1.0046 1.1277E-04  0.7876 1.0056 2.8733E-04  0.6410 1.0045 2.1029E-04 
  HSDPT 0.4462 1.0037 1.1277E-04  0.7779 1.0029 2.8733E-04  0.6357 1.0028 2.1029E-04 
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Table 4 (continued) 
2 0.01 RPT 0.3272 1.0002 5.8104E-07  0.3497 1.0003 6.0043E-07  0.3386 1.0002 5.9178E-07 
  HSDPT 0.3272 1.0002 5.8104E-07  0.3497 1.0003 6.0043E-07  0.3386 1.0002 5.9178E-07 
 0.05 RPT 0.2009 1.0067 5.4766E-06  0.3990 1.0066 1.7401E-05  0.3153 1.0055 1.2108E-05 
  HSDPT 0.2008 1.0065 5.4766E-06  0.3985 1.0062 1.7401E-05  0.3150 1.0053 1.2108E-05 
 0.1 RPT 0.4196 1.0048 9.9822E-05  0.7466 1.0057 2.6103E-04  0.6059 1.0046 1.8991E-04 
  HSDPT 0.4176 1.0037 9.9823E-05  0.7369 1.0028 2.6103E-04  0.6005 1.0028 1.8991E-04 
              

4 0.01 RPT 0.3099 1.0002 5.2496E-07  0.3315 1.0003 5.4305E-07  0.3209 1.0002 5.3498E-07 
  HSDPT 0.3099 1.0002 5.2496E-07  0.3315 1.0003 5.4305E-07  0.3209 1.0002 5.3498E-07 
 0.05 RPT 0.1644 1.0084 3.6809E-06  0.3686 1.0068 1.4912E-05  0.2847 1.0059 9.9281E-06 
  HSDPT 0.1643 1.0083 3.6810E-06  0.3681 1.0063 1.4912E-05  0.2845 1.0056 9.9281E-06 
 0.1 RPT 0.3919 1.0045 8.7699E-05  0.7099 1.0054 2.3782E-04  0.5736 1.0043 1.7160E-04 
  HSDPT 0.3899 1.0035 8.7700E-05  0.7002 1.0025 2.3783E-04  0.5683 1.0025 1.7161E-04 
              

5 0.01 RPT 0.3044 1.0002 5.0708E-07  0.3257 1.0003 5.2470E-07  0.3152 1.0002 5.1684E-07 
  HSDPT 0.3044 1.0002 5.0708E-07  0.3257 1.0003 5.2470E-07  0.3152 1.0002 5.1684E-07 
 0.05 RPT 0.1509 1.0094 3.0999E-06  0.3584 1.0069 1.4103E-05  0.2743 1.0060 9.2205E-06 
  HSDPT 0.1508 1.0092 3.0999E-06  0.3579 1.0064 1.4103E-05  0.2740 1.0057 9.2206E-06 
 0.1 RPT 0.3827 1.0044 8.3784E-05  0.6986 1.0053 2.3065E-04  0.5635 1.0042 1.6587E-04 
  HSDPT 0.3808 1.0034 8.3785E-05  0.6890 1.0024 2.3066E-04  0.5582 1.0024 1.6587E-04 

 

 
Fig. 8. Influence of aspect ratio on dimensionless fundamental natural frequencies of ( ⁄ )	FG Reddy 
nano-plate with respect to various dimensionless thickness for different boundary conditions, considering 
surface stresses effect ( =  = 0,  = 3, ̅ = 0.2,  = 200	,  = 450	,  =  = 0,  = 0) 
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Fig. 8 and Fig. 9 demonstrate the influence of aspect ratio on the natural frequency and critical 
buckling load of the FG nano-plate in thermal environment and under different boundary 
conditions; it can also be seen with the increase in aspect ratio the natural frequency and critical 
buckling load will enhance. For SSSS boundary condition the effect of aspect ratio is more 
sensible than other boundary condition whereas the higher values are related to CCCC boundary 
condition. The numerical results for this case and hyperbolic shear deformation plate theory are 
available in Table 5.  
 
 

 
Fig. 9 Influence of aspect ratio on dimensionless critical buckling load of ( ⁄ )	FG Reddy nano-plate 
with respect to various dimensionless thickness for different boundary conditions, considering surface 
stresses effect  =  = 0,  = 3, ̅ = 0.2,  = 200	,  = 450	,  =  = 0,  = 1) 

 

Table 5 Influence of aspect ratio on dimensionless fundamental natural frequency and dimensionless critical 
buckling load of ( ⁄ )	FG Reddy and hyperbolic shear deformation nano-plate with respect to various 
dimensionless thickness for different boundary conditions, considering surface stresses effect ( =  =0,  = 3, ̅ = 0.2,  = 200	,  = 450	,  =  = 0,  = 0) 

   SSSS  CCCC  CSCS  ⁄  ℎ ⁄     ⁄       ⁄       ⁄    

0.4 0.01 RPT 0.2405 1.0001 5.4364E-07  0.2558 1.0001 5.5909E-07  0.2549 1.0001 5.5832E-07 

  HSDPT 0.2405 1.0001 5.4364E-07  0.2558 1.0001 5.5909E-07  0.2549 1.0001 5.5832E-07 

 0.05 RPT 0.0767 1.0056 1.3773E-06  0.2457 1.0056 1.1125E-05  0.2412 1.0046 1.0608E-05 

  HSDPT 0.0767 1.0055 1.3773E-06  0.2455 1.0054 1.1125E-05  0.2411 1.0044 1.0608E-05 

 0.1 RPT 0.2210 1.0022 4.7177E-05  0.4889 1.0047 1.8518E-04  0.4810 1.0039 1.7663E-04 
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Table 5 (continued) 
  HSDPT 0.2207 1.0020 4.7177E-05  0.4856 1.0029 1.8518E-04  0.4779 1.0024 1.7663E-04 

              

0.8 0.01 RPT 0.2867 1.0001 5.4635E-07  0.3049 1.0002 5.6227E-07  0.2989 1.0002 5.5832E-07 

  HSDPT 0.2867 1.0001 5.4635E-07  0.3049 1.0002 5.6227E-07  0.2989 1.0002 5.5832E-07 

 0.05 RPT 0.1375 1.0083 3.1274E-06  0.3136 1.0068 1.3055E-05  0.2711 1.0055 1.0608E-05 

  HSDPT 0.1375 1.0082 3.1274E-06  0.3133 1.0065 1.3056E-05  0.2709 1.0053 1.0608E-05 

 0.1 RPT 0.3268 1.0046 7.3490E-05  0.6099 1.0055 2.1023E-04  0.5376 1.0044 1.7663E-04 

  HSDPT 0.3256 1.0038 7.3491E-05  0.6037 1.0031 2.1024E-04  0.5334 1.0027 1.7663E-04 

              

1.2 0.01 RPT 0.3511 1.0002 5.5088E-07  0.3785 1.0004 5.7423E-07  0.3613 1.0002 5.5978E-07 

  HSDPT 0.3511 1.0002 5.5088E-07  0.3785 1.0004 5.7423E-07  0.3613 1.0002 5.5978E-07 

 0.05 RPT 0.2316 1.0064 6.0144E-06  0.4729 1.0063 2.0227E-05  0.3338 1.0056 1.1477E-05 

  HSDPT 0.2315 1.0062 6.0145E-06  0.4720 1.0057 2.0228E-05  0.3335 1.0053 1.1478E-05 

 0.1 RPT 0.4948 1.0042 1.1566E-04  0.8737 1.0054 2.9945E-04  0.6520 1.0043 1.8736E-04 

  HSDPT 0.4914 1.0030 1.1566E-04  0.8580 1.0021 2.9945E-04  0.6450 1.0024 1.8736E-04 

              

1.6 0.01 RPT 0.4265 1.0002 5.5721E-07  0.4701 1.0005 5.9557E-07  0.4349 1.0003 5.6391E-07 

  HSDPT 0.4265 1.0002 5.5721E-07  0.4701 1.0005 5.9557E-07  0.4349 1.0003 5.6391E-07 

 0.05 RPT 0.3585 1.0043 9.9952E-06  0.7185 1.0055 3.2434E-05  0.4359 1.0047 1.4003E-05 

  HSDPT 0.3581 1.0041 9.9953E-06  0.7157 1.0043 3.2434E-05  0.4352 1.0044 1.4003E-05 

 0.1 RPT 0.7170 1.0031 1.7140E-04  1.2481 1.0053 4.3453E-04  0.8304 1.0036 2.2070E-04 

  HSDPT 0.7082 1.0018 1.7140E-04  1.2096 1.0012 4.3454E-04  0.8173 1.0018 2.2070E-04 

              

2 0.01 RPT 0.5090 1.0003 5.6534E-07  0.5763 1.0007 6.2544E-07  0.5162 1.0003 5.7054E-07 

  HSDPT 0.5090 1.0003 5.6534E-07  0.5763 1.0007 6.2544E-07  0.5162 1.0003 5.7054E-07 

 0.05 RPT 0.5175 1.0029 1.5011E-05  1.0327 1.0049 4.8414E-05  0.5770 1.0036 1.8028E-05 

  HSDPT 0.5165 1.0026 1.5011E-05  1.0251 1.0030 4.8415E-05  0.5756 1.0032 1.8028E-05 

 0.1 RPT 0.9840 1.0023 2.3796E-04  1.6851 1.0054 5.8671E-04  1.0657 1.0028 2.7231E-04 

  HSDPT 0.9639 1.0011 2.3797E-04  1.6031 1.0000 5.8672E-04  1.0409 1.0012 2.7232E-04 

 
Dimensionless fundamental frequency and dimensionless critical buckling load variations of 

the FG nano-plate is presented in Fig. 10 and Fig. 11 for various values of elastic foundation 
parameters and dimensionless thickness in thermal environment and under different boundary 
conditions. At first glance, it can be found that by changing Winkler modulus for a constant shear 
modulus there is miserly variation for fundamental frequency and critical buckling load which 
imply unimportant effect of Winkler parameter on frequency and critical buckling load than shear 
modulus; however, when the value of shear modulus has increasing variation, this results in the 
growth of the frequency and the critical buckling load. The numerical results for this case and 
hyperbolic shear deformation plate theory have been listed it tables Table 6.  
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Fig. 10 Influence of Pasternak and Winkler parameters on dimensionless fundamental natural frequencies 
of square ( ⁄ )	FG Reddy nano-plate with respect to various dimensionless thickness for different 
boundary conditions, considering surface stresses effect (  = 3, ̅ = 0.2,  = 200	,  =450	,  =  = 0,  = 1) 

 

 
Fig. 11. Influence of Pasternak and Winkler parameters on dimensionless critical buckling load of square ( ⁄ )	FG Reddy nano-plate with respect to various dimensionless thickness for different boundary 
conditions, considering surface stresses effect ( = 3, ̅ = 0.2,  = 200	,  = 450	,  =  =0,  = 1) 
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Table 6 Influence of Pasternak and Winkler parameters on dimensionless fundamental natural frequency and 
dimensionless critical buckling load of ( ⁄ )	FG Reddy and hyperbolic shear deformation square nano-
plate with respect to various dimensionless thickness for different boundary conditions, considering surface 
stresses effect ( = 3, ̅ = 0.2,  = 200	,  = 450	,  =  = 0,  = 1) 

    SSSS  CCCC  CSCS   ℎ ⁄     ⁄       ⁄       ⁄    
100 0 0.01 RPT 0.3185 1.0002 5.5287E-07  0.3403 1.0003 5.7047E-07  0.3296 1.0002 5.6265E-07 

   HSDPT 0.3185 1.0002 5.5287E-07  0.3403 1.0003 5.7047E-07  0.3296 1.0002 5.6265E-07 
  0.05 RPT 0.2303 1.0046 7.2586E-06  0.4074 1.0059 1.8119E-05  0.3303 1.0047 1.3324E-05 
   HSDPT 0.2302 1.0045 7.2586E-06  0.4069 1.0055 1.8119E-05  0.3300 1.0045 1.3324E-05 
  0.1 RPT 0.4938 1.0032 1.3929E-04  0.7787 1.0048 2.8333E-04  0.6522 1.0036 2.2055E-04 
   HSDPT 0.4915 1.0025 1.3929E-04  0.7685 1.0023 2.8334E-04  0.6465 1.0022 2.2056E-04 
               

100 30 0.01 RPT 0.3260 1.0002 5.7941E-07  0.3479 1.0003 5.9702E-07  0.3371 1.0002 5.8919E-07 
   HSDPT 0.3260 1.0002 5.7941E-07  0.3479 1.0003 5.9702E-07  0.3371 1.0002 5.8919E-07 
  0.05 RPT 0.4174 1.0014 2.4002E-05  0.5581 1.0028 3.5134E-05  0.4926 1.0019 3.0218E-05 
   HSDPT 0.4173 1.0014 2.4002E-05  0.5575 1.0026 3.5134E-05  0.4922 1.0019 3.0218E-05 
  0.1 RPT 0.8507 1.0012 4.1504E-04  1.0950 1.0023 5.7654E-04  0.9805 1.0016 5.0592E-04 
   HSDPT 0.8473 1.0009 4.1504E-04  1.0825 1.0011 5.7654E-04  0.9731 1.0010 5.0593E-04 
               

100 60 0.01 RPT 0.3334 1.0002 6.0595E-07  0.3552 1.0003 6.2358E-07  0.3445 1.0002 6.1574E-07 
   HSDPT 0.3334 1.0002 6.0595E-07  0.3552 1.0003 6.2358E-07  0.3445 1.0002 6.1574E-07 
  0.05 RPT 0.5436 1.0009 4.0746E-05  0.6731 1.0018 5.2149E-05  0.6117 1.0012 4.7111E-05 
   HSDPT 0.5434 1.0008 4.0746E-05  0.6724 1.0016 5.2149E-05  0.6113 1.0011 4.7111E-05 
  0.1 RPT 1.0971 1.0008 6.9079E-04  1.3355 1.0015 8.6966E-04  1.2222 1.0010 7.9127E-04 
   HSDPT 1.0930 1.0006 6.9079E-04  1.3213 1.0007 8.6966E-04  1.2134 1.0006 7.9127E-04 
               

100 100 0.01 RPT 0.3430 1.0002 6.4133E-07  0.3647 1.0003 6.5899E-07  0.3540 1.0002 6.5114E-07 
   HSDPT 0.3430 1.0002 6.4133E-07  0.3647 1.0003 6.5899E-07  0.3540 1.0002 6.5114E-07 
  0.05 RPT 0.6761 1.0006 6.3071E-05  0.7992 1.0012 7.4835E-05  0.7401 1.0008 6.9636E-05 
   HSDPT 0.6759 1.0006 6.3071E-05  0.7983 1.0011 7.4835E-05  0.7396 1.0008 6.9636E-05 
  0.1 RPT 1.3577 1.0006 1.0585E-03  1.5997 1.0011 1.2605E-03  1.4464 1.0000 1.1717E-03 
   HSDPT 1.3531 1.0005 1.0585E-03  1.5835 1.0005 1.2605E-03  1.4466 1.0000 1.1717E-03 

 
 

Fig. 12 and Fig. 13 illustrate the variation of the dimensionless fundamental natural frequency 
and dimensionless critical buckling load of square FG nano-plates versus the dimensionless 
thickness for different value of temperature rise of the upper plane of the plate. From these figures 
it can be observed that dimensionless fundamental frequency and critical buckling load decrease 
by the increase in aforesaid temperature; we can also conclude that temperature variation effect on 
natural frequency and critical buckling load is more sensible under SSSS boundary condition than 
other boundary conditions, because of the large distance between curves. The numerical results for 
this figures and hyperbolic shear deformation plate theory are tabulated in Table 7.  
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Fig. 12 Influence of thermal loading on dimensionless fundamental natural frequencies of square ( ⁄ )	FG Reddy nano-plate with respect to various dimensionless thickness for different boundary 
conditions, considering surface stresses effect ( =  = 0,  = 3, ̅ = 0.2,  = 200	,  =  =0,  = 1) 

 

 
Fig. 13 Influence of thermal loading on dimensionless critical buckling load of square ( ⁄ )	FG Reddy 
nano-plate with respect to various dimensionless thickness for different boundary conditions, considering 
surface stresses effect ( =  = 0,  = 3, ̅ = 0.2,  = 200	,  =  = 0,  = 1) 
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Table 7 Influence of thermal loading on dimensionless fundamental natural frequency and dimensionless 
critical buckling load of ( ⁄ )	FG Reddy and hyperbolic shear deformation square nano-plate with 
respect to various dimensionless thickness for different boundary conditions, considering surface stresses 
effect ( =  = 0,  = 3, ̅ = 0.2,  = 200	,  =  = 0,  = 1) 

   SSSS  CCCC  CSCS () ℎ ⁄     ⁄       ⁄       ⁄    
300 0.01 RPT 0.3442 1.0002 6.4592E-07  0.3662 1.0003 6.6501E-07  0.3554 1.0002 6.5649E-07 

  HSDPT 0.3442 1.0002 6.4592E-07  0.3662 1.0003 6.6501E-07  0.3554 1.0002 6.5649E-07 
 0.05 RPT 0.2220 1.0051 6.7433E-06  0.4095 1.0058 1.8492E-05  0.3288 1.0047 1.3278E-05 
  HSDPT 0.2220 1.0050 6.7433E-06  0.4090 1.0054 1.8492E-05  0.3286 1.0045 1.3278E-05 
 0.1 RPT 0.4261 1.0043 1.0348E-04  0.7444 1.0054 2.6129E-04  0.6068 1.0042 1.9168E-04 
  HSDPT 0.4240 1.0033 1.0348E-04  0.7346 1.0025 2.6130E-04  0.6013 1.0025 1.9168E-04 
              

450 0.01 RPT 0.3172 1.0002 5.4839E-07  0.3391 1.0003 5.6704E-07  0.3283 1.0002 5.5872E-07 
  HSDPT 0.3172 1.0002 5.4839E-07  0.3391 1.0003 5.6704E-07  0.3283 1.0002 5.5872E-07 
 0.05 RPT 0.1804 1.0076 4.4311E-06  0.3814 1.0067 1.5949E-05  0.2977 1.0057 1.0837E-05 
  HSDPT 0.1804 1.0074 4.4311E-06  0.3809 1.0063 1.5949E-05  0.2975 1.0055 1.0837E-05 
 0.1 RPT 0.4035 1.0047 9.2720E-05  0.7248 1.0056 2.4724E-04  0.5868 1.0044 1.7908E-04 
  HSDPT 0.4015 1.0036 9.2721E-05  0.7150 1.0026 2.4725E-04  0.5815 1.0026 1.7908E-04 
              

600 0.01 RPT 0.2901 1.0002 4.5833E-07  0.3119 1.0004 4.7652E-07  0.3012 1.0003 4.6841E-07 
  HSDPT 0.2901 1.0002 4.5833E-07  0.3119 1.0004 4.7652E-07  0.3012 1.0003 4.6841E-07 
 0.05 RPT 0.1309 1.0143 2.2992E-06  0.3531 1.0079 1.3576E-05  0.2655 1.0072 8.5713E-06 
  HSDPT 0.1308 1.0140 2.2992E-06  0.3527 1.0073 1.3576E-05  0.2653 1.0069 8.5714E-06 
 0.1 RPT 0.3812 1.0051 8.2618E-05  0.7055 1.0058 2.3377E-04  0.5673 1.0046 1.6709E-04 
  HSDPT 0.3792 1.0039 8.2618E-05  0.6959 1.0027 2.3378E-04  0.5620 1.0028 1.6710E-04 

 
 

The influence of moisture concentration variation on dimensionless fundamental frequency and 
dimensionless critical buckling load can be seen in Fig. 14 and Fig. 15. Similar to thermal loading, 
moisture concentration variation has a contrary effect on the frequency and critical buckling load, 
meaning an increase in moisture concentration decreases the fundamental frequency and critical 
buckling load, however compared with temperature variation, moisture concentration has lower 
effect on the frequency and critical buckling load variation. The numerical results can be found 
and compared with the results of hyperbolic shear deformation plate theory in Table 8. 

To verify the solution for critical buckling load a comparison study has been done with the 
results published in Ref. (Reddy, Kumar, Reddy and Reddy 2013) in Table 9; this article consider a 
third order shear deformation / FG rectangular plate. Setting surface, nonlocal and 
elastic parameters to zero and neglecting the effect of temperature and moisture concentration and 
considering 	 = 0.5 it can be seen that there is a good agreement between the present buckling 
load and those of aforesaid reference. The material properties for this study are considered as:  = 70	,  = 2702	  ⁄ ,  = 0.3 For Aluminum 

(56) = 380	,  = 3800	  ⁄ ,  = 0,3 For Alumina 
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Fig. 14 Influence of moisture concentration variation on dimensionless fundamental natural frequencies of 
square ( ⁄ ) FG Reddy nano-plate with respect to various dimensionless thickness for different 
boundary conditions, considering surface stresses effect ( =  = 0,  = 3, ̅ = 0.2,  = 200	, = 70	,  = 1) 

 

 
Fig. 15 Influence of moisture concentration variation on dimensionless critical buckling load of square ( ⁄ ) FG Reddy nano-plate with respect to various dimensionless thickness for different boundary 
conditions, considering surface stresses effect ( =  = 0,  = 3, ̅ = 0.2,  = 200	,  =70	,  = 1) 
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Table 8 Influence of moisture concentration variation on dimensionless fundamental natural frequency and 
dimensionless critical buckling load of ( ⁄ ) FG Reddy and hyperbolic shear deformation square nano-
plate with respect to various dimensionless thickness for different boundary conditions, considering surface 
stresses effect ( =  = 0,  = 3, ̅ = 0.2,  = 200	,  = 70	,  = 1) 

    SSSS  CCCC  CSCS  =  ℎ ⁄     ⁄       ⁄       ⁄    
0.03 

 0.01 RPT 0.3633 1.0001 7.1872E-07  0.3856 1.0002 7.3844E-07  0.3746 1.0002 7.2964E-07 

   HSDPT 0.3633 1.0001 7.1872E-07  0.3856 1.0002 7.3844E-07  0.3746 1.0002 7.2964E-07 
  0.05 RPT 0.2472 1.0042 8.3628E-06  0.4303 1.0054 2.0456E-05  0.3504 1.0043 1.5088E-05 
   HSDPT 0.2471 1.0041 8.3628E-06  0.4298 1.0050 2.0456E-05  0.3501 1.0041 1.5088E-05 
  0.1 RPT 0.4439 1.0041 1.1221E-04  0.7639 1.0053 2.7500E-04  0.6249 1.0041 2.0318E-04 
   HSDPT 0.4417 1.0032 1.1221E-04  0.7539 1.0025 2.7500E-04  0.6195 1.0025 2.0319E-04 
               
0.04 0.01 RPT 0.3553 1.0002 6.8730E-07  0.3777 1.0002 7.0702E-07  0.3666 1.0002 6.9823E-07 

   HSDPT 0.3553 1.0002 6.8730E-07  0.3777 1.0002 7.0702E-07  0.3666 1.0002 6.9823E-07 
  0.05 RPT 0.2354 1.0046 7.5774E-06  0.4223 1.0056 1.9670E-05  0.3413 1.0045 1.4303E-05 
   HSDPT 0.2353 1.0045 7.5775E-06  0.4218 1.0052 1.9671E-05  0.3411 1.0043 1.4303E-05 
  0.1 RPT 0.4377 1.0042 1.0907E-04  0.7597 1.0053 2.7186E-04  0.6202 1.0042 2.0004E-04 
   HSDPT 0.4356 1.0033 1.0907E-04  0.7498 1.0026 2.7186E-04  0.6147 1.0025 2.0004E-04 
               
0.05 0.01 RPT 0.3470 1.0002 6.5589E-07  0.3695 1.0003 6.7561E-07  0.3584 1.0002 6.6681E-07 

   HSDPT 0.3470 1.0002 6.5589E-07  0.3695 1.0003 6.7561E-07  0.3584 1.0002 6.6681E-07 
  0.05 RPT 0.2230 1.0052 6.7921E-06  0.4142 1.0059 1.8885E-05  0.3320 1.0048 1.3518E-05 
   HSDPT 0.2229 1.0051 6.7921E-06  0.4137 1.0055 1.8885E-05  0.3318 1.0046 1.3518E-05 
  0.1 RPT 0.4314 1.0043 1.0593E-04  0.7556 1.0054 2.6872E-04  0.6154 1.0043 1.9690E-04 
   HSDPT 0.4293 1.0034 1.0593E-04  0.7457 1.0026 2.6872E-04  0.6100 1.0026 1.9690E-04 
               
0.06 0.01 RPT 0.3386 1.0002 6.2447E-07  0.3611 1.0003 6.4419E-07  0.3501 1.0002 6.3540E-07 

   HSDPT 0.3386 1.0002 6.2447E-07  0.3611 1.0003 6.4419E-07  0.3501 1.0002 6.3540E-07 
  0.05 RPT 0.2098 1.0058 6.0067E-06  0.4059 1.0062 1.8100E-05  0.3225 1.0051 1.2732E-05 
   HSDPT 0.2098 1.0057 6.0067E-06  0.4054 1.0058 1.8100E-05  0.3222 1.0049 1.2732E-05 
  0.1 RPT 0.4250 1.0044 1.0279E-04  0.7514 1.0055 2.6557E-04  0.6106 1.0043 1.9376E-04 
   HSDPT 0.4229 1.0035 1.0279E-04  0.7415 1.0026 2.6558E-04  0.6052 1.0026 1.9376E-04 

 
 

6. Conclusions 
 

In this work, the vibration and buckling behaviors of FG rectangular nano-plates subjected to 
hygro-thermal loading were investigated including the effect of surface stress. The governing 
equations were derived based on Reddy’s plate theory, hyperbolic shear deformation plate theory 
and von Karman’s nonlinearity assumption. DQ and iterative methods were applied to obtain 
solutions for fundamental frequency and critical buckling load. Knowing that obtained governing 
equations are dimensionless, to set logical values for dimensionless parameters the properties of 
Al/Si FGM were used. The numerical results show that: 

1. With the increase of dimensionless thickness ratio, before an absolute minimum value the 
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Table 9 Comparison of dimensionless critical buckling load ( = 	) of rectangular ( ⁄ ) FG 
plate ( =  = 0, ̅ = 0,  = 0.2,  =  = 0,  =  =  =  =  =  = 0).Material 
properties are according to Eq. (56) 

   Volume fraction exponent, p  ⁄  ℎ ⁄  source 0 0.5 1 2 5 10 20 100 
0.5 0.2 present 5.3762 3.5392 2.7331 2.1161 1.7187 1.5370 1.3692 1.0989 

  Ref (Reddy, Kumar, 
Reddy and Reddy 2013) 5.3710 3.5270 2.7150 2.0920 1.7000 1.5270 1.3640 1.0970 

  Error (%) 0.0977 0.3453 0.6661 1.1516 1.1026 0.6566 0.3827 0.1748 
           

0.5 0.1 present 5.9243 3.8569 2.9689 2.3117 1.9332 1.7517 1.5510 1.2200 

  Ref (Reddy, Kumar, 
Reddy and Reddy 2013) 5.9180 3.8500 2.9610 2.3020 1.9250 1.7470 1.5480 1.2180 

  Error (%) 0.1058 0.1803 0.2660 0.4226 0.4240 0.2679 0.1933 0.1644 
           

0.5 0.05 present 6.0794 3.9456 3.0344 2.3665 1.9955 1.8152 1.6044 1.2546 

  Ref (Reddy, Kumar, 
Reddy and Reddy 2013) 6.0720 3.9400 3.0290 2.3620 1.9910 1.8120 1.6020 1.2530 

  Error (%) 0.1223 0.1430 0.1791 0.1916 0.2281 0.1767 0.1471 0.1300 
           

0.5 0.02 present 6.1244 3.9712 3.0533 2.3823 2.0137 1.8338 1.6200 1.2647 

  Ref (Reddy, Kumar, 
Reddy and Reddy 2013) 6.1170 3.9660 3.0490 2.3790 2.0110 1.8310 1.6180 1.2630 

  Error (%) 0.1203 0.1314 0.1414 0.1406 0.1366 0.1547 0.1219 0.1334 
           

0.5 0.01 present 6.1308 3.9749 3.0560 2.3846 2.0164 1.8365 1.6222 1.2661 

  Ref (Reddy, Kumar, 
Reddy and Reddy 2013) 6.1230 3.9700 3.0520 2.3820 2.0140 1.8340 1.6200 1.2650 

  Error (%) 0.1280 0.1233 0.1319 0.1101 0.1179 0.1377 0.1375 0.0897 
 
 

frequency is decreasing however for higher value of the thickness ration with the increase of 
thickness ratio the fundamental frequency will increase. The critical buckling load will be 
enhanced when dimensionless thickness ration increases. 

2. With the increase in nonlocal parameter, the dimensionless critical buckling load increases, 
however such effect on fundamental frequency is dependent on type of boundary condition and 
dimensionless thickness ratio; under simply supported boundary condition the increase in nonlocal 
parameter, the fundamental frequency decreases; under other boundary condition situation, when 
the thickness ratio is small enough, the increase of nonlocal parameter decreases the frequency but 
for larger value of thickness ratio this is vice versa. 

3. Knowing that the residual surface stress () is temperature dependent, the rising of the 
surface parameters, decreases the fundamental frequency and critical buckling load of FG nano-
plate. It can be seen when the thickness ration increases the effect of surface parameters decreases. 

4. The increase of volume fraction exponent decreases the fundamental frequency and critical 
buckling load of FG nano-plate. 

5. With the increase in aspect ratio the natural frequency and critical buckling load will 
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enhance. 
6. The effect of shear modulus of the elastic foundation on the fundamental natural frequency 

and critical buckling load is more significant than Winkler parameter. With the increase in the 
shear modulus, the fundamental frequency and critical buckling load increases. 

7. With the increase in temperature and moisture concentration, the fundamental frequency and 
critical buckling load decrease.  

8. The value of fundamental frequency and critical buckling load under full clamp boundary 
condition is higher than other boundary conditions however the effect of aforesaid parameters on 
fundamental frequency and critical buckling load are more sensible under full simply supported 
boundary condition than other boundary conditions. 

9. Reddy’s plate theory and hyperbolic shear deformation plate theory provide accurate and 
approximately same results for the hygro-thermal vibrational and buckling behavior of FG nano-
plate. 
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