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Abstract.  In this manuscript, buckling response of the functionally graded material (FGM) nanoplate is 
investigated. Two opposite edges of nanoplate is under linear and nonlinear varying normal stresses. The small-scale 
effect is considered by Eringen’s nonlocal theory. Governing equation are derived by nonlocal theory and Hamilton’s 
principle. Navier’s method is used to solve governing equation in simply boundary conditions. The obtained results 
exactly match the available results in the literature. The results of this research show the important role of nonlocal 
effect in buckling and stability behavior of nanoplates. In order to study the FG-index effect and different loading 
condition effects on buckling of rectangular nanoplate, Navier’s method is applied and results are presented in 
various figures and tables. 
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1. Introduction 
 

Nanoplates and their variations offer unprecedented opportunities for incorporating physics-

based concepts for controlling the physical and chemical properties for developing novel devices 

and sensors. The structures at nanoscale such as nanobeam, nanoplate and nanotube can be 

identified as the consequences of molecular manipulation that are recognized as the main parts of 

various nanosystems and nanodevices. Because of their shape nanoplates have unique electrical, 

magnetic, thermal and mechanical properties. Nanoplates can be fabricated in such a way as to 

exploit the mechanical and electronic properties of hybrid structures (metal-metal, metal-

semiconductor and metal-oxide); Layer-by-Layer deposition with soft materials for enhanced 

mechanical properties and are used in uncooled infrared sensors, photovoltaic, meta-materials, 

chem/bio sensors and receptor-free detection. 

FG materials are advanced composites, which have continuously varying material composition 

and properties through certain dimension in the structure to achieve the desire goals. Because the 

fiber-reinforced composites have a mismatch in material properties across an interface of two 

discrete materials bonded together, there could be the severe thermal stress concentration 

phenomena at the interface of them. However, by gradually varying the material properties in 

FGMs, this problem can be avoided or reduced. Therefore, FGMs with a mixture of the ceramic 
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and metal are applied to the thermal barrier structures for the space shuttles, combustion chambers 

and nuclear planets, etc. (Park and Kim 2006). Classical plate theory and first-order shear 

deformation plate theory of plates are reformulated based on nonlocal elasticity theory by Pradhan 

et al. (2011). Cheng et al. (2015) presented a theoretical study for the resonance frequency and 

buckling load of nanoplates with high-order surface stress model. The length scale effect on 

buckling response of a single-layer graphene sheet embedded in a Pasternak medium is 

investigated by Samaei et al. (2011). In another work, Wang and Wang (2011) extracted governing 

equations for the nanoscale plates with consideration of both surface effects and non-local 

elasticity. Thermal postbuckling and vibration response of the FG plates are investigated by Park et 

al. (2006). Pradhan and Kumar (2011) studied the size-dependent effect on the buckling response 

of biaxially compressed single-layered graphene sheets. Farajpour et al. (2011) studied the 

nanoscale buckling features of the rectangular plates under axial pressure due to non-uniformity in 

thickness. More advanced research, including buckling of plates in the different scale had been 

proposed by other researchers (Analooei et al. 2013, Naderi and Saidi 2013, Pradhan 2012). The 

buckling response of orthotropic graphene sheets subjected to the various linearly varying normal 

in-plane forces studied by Farajpour et al. (2012). The analytical solutions of natural frequencies 

in FGM nanoplate for different boundary conditions are presented by Zare et al. (2015). 

Salehipour et al. (2015a, b) developed a static and vibration model for the FG small-scale plates 

based on modified couple stress and 3-D elasticity theories and presented the closed form solutions 

for in-plane and out-of-plane vibration behavior of FGM rectangular small-scale plates. A 

computational method based on refined plate theory involving the effect of thickness stretching is 

proposed for the size-dependent bending, free vibration and buckling analysis of FGM nanoplate 

(Nguyen et al. 2015). Also thermal buckling of FGM nanoplates via nonlocal third order shear 

deformation theory is studied by Nami et al. (2015). Then Daneshmehr et al. (2015) explored the 

vibration behavior of size-dependent FG nanoplates with higher-order theories. Geometrical 

condition effect such as axisymmetric and asymmetric on buckling of FGM circular/annular plates 

are studied by Bedroud et al. (2015). Next the 3-D nonlocal bending and vibration behavior of 

FGM nanoplates are studied by Ansari et al. (2015b). In another work Ansari et al. (2015a) 

presented buckling and vibration behavior of FGM nanoplates under thermal loading in the pre-

buckling domain with considering the surface stress effect. Recently, it was shown that the 

Young’s modulus of the FG structures can vary along both the length and thickness directions. For 

instance, Li and Hu (2017) investigated torsional vibration of bi-directional FG nanotubes based 

on nonlocal elasticity theory. They (Li et al. 2018) also presented the nonlinear bending of a two-

dimensionally FG beam. 

Most recently, it has been shown that nonlocal differential elasticity based model maybe ill-

posed. Of course, due to the simplification of the nonlocal differential elasticity, many works have 

been focused on the size-dependent behaviors based on the nonlocal differential models. More 

recently, it is shown that the nonlocal differential and integral elasticity based models may be not 

equivalent to each other and the nonlocal differential model is an approximate model (Zhu and Li 

2017a, b, c). 

In this manuscript, the buckling of FGM nanoplates subjected various linearly and non-linearly 

varying normal stresses for simply supported boundary condition are investigated. Different 

loading conditions are presented for the first time. Nonlocal theory and Hamilton’s principle are 

used to extracting governing equations and Navier’s method is applied to solving governing 

equation. The obtained results by the Navier’s method have successfully agreement with 

researches has done in the past. The small-scale effect on the buckling loads of the FG rectangular 
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Fig. 1 Schematic view of functionally graded nanoplate 

 

 

nanoplates are presented through considering various parameters such as FG-index, the length of 

nanoplate, numerical loading factor, nonlocal parameter, aspect ratio and mode number. 
 

 

2. Formulation 
 

2.1 Nonlocal theory 
 

The constitutive equation of classical elasticity is an algebraic relationship between the stress 

and strain tensors while that of Eringen’s nonlocal elasticity involves spatial integrals which 

represent weighted averages of the contributions of strain tensors of all points in the body to the 

stress tensor at the given point (1). Though it is difficult mathematically to obtain the solution of 

nonlocal elasticity problems due to the spatial integrals in constitutive equations, these integro-

partial constitutive differential equations can be converted to equivalent differential constitutive 

equations under certain conditions. So nonlocal theory is an approximate theory (Zhu and Li 

2017a, b, c). 

The theory of nonlocal elasticity, developed (2) states that the nonlocal stress-tensor 

components σij at any point x in a body can be expressed as 

( )( )( ) , ( ) ( )ij ijx x x t x d x  


  = − 
 

(1) 

where tij (x′) are the components of the classical local stress tensor at point x, which are related to 

the components of the linear strain tensor εkl by the conventional constitutive relations for a 

Hookean material, i.e., 

 (2) 

The meaning of Eq. (1) is that the nonlocal stress at point x is the weighted average of the local 

stress of all points in the neighborhood of x, the size of which is related to the nonlocal Kernel 

α(|x′−x|, τ). Here |x′−x| is the Euclidean distance and τ is a constant given by 

l

ae0=
 

(3) 
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which represents the ratio between a characteristic internal length, a (such as lattice parameter, C-

C bond length and granular distance) and a characteristic external one, l (e.g. crack length, 

wavelength) through an adjusting constant, e0, dependent on each material. The magnitude of e0 is 

determined experimentally or approximated by matching the dispersion curves of plane waves 

with those of atomic lattice dynamics. According to (2) for a class of physically admissible kernel 

α(|x′−x|, τ) it is possible to represent the integral constitutive relations given by Eq. (1) in an 

equivalent differential form as 

klkl tae =− ))(1( 2

0  
(4) 

where 2 is the Laplacian operator. Thus, the scale length e0a takes into account the size effect on 

the response of nanostructures. For an elastic material in the one dimensional case, the nonlocal 

constitutive relations may be simplified as (3) 

2

2

xx
xx xxE

x


  


− =

  
(5) 

where σ and ɛ are the nonlocal stress and strain respectively, μ=(e0a)2 is nonlocal parameter, E is 

the elasticity modulus. 
 

2.2 Functionally graded nanoplate 
 

As depicted in Fig. 1, an FGM nanoplate of length 𝑙𝑥, width 𝑙𝑦 and thickness h that is made of 

a mixture of ceramics and metals is considered. It is assumed that the materials at bottom surface 

(𝑍 = −ℎ 2) ⁄ and top surface (𝑍 = ℎ 2) ⁄ of the nanoplate are metals and ceramics, respectively. 

The local effective material properties of an FGM nanoplate can be calculated using 

homogenization method that is based on the Mori-Tanaka scheme. According to the Mori-Tanaka’s 

homogenization technique, the effective material properties of the FGM nanoplate such as Young’s 

modulus(𝐸), Poisson’s ratio(𝜈), mass density (𝜌) and thermal extension coefficient (𝛼) can be 

determined as follows (4) 

( ) ( )c c m mE z E V z E V= +  (6a) 

( ) ( )c c m mz V z V  = +
 

(6b) 

( ) ( )c c m mz V z V  = +
 

(6c) 

( ) ( )c c m mz V z V  = +
 

(6d) 

Here, the subscripts m and c refer to metal and ceramic phases. The volume fraction of the 

ceramic and metal phases can be defined by the power-law function as 

( )
1

2

k

f

z
V z

h

 
= + 
   

(7) 

where k represents the power-law index. Additionally, the neutral axis of FGM nanoplate and the 

end supports are located on, can be determined by the following relation 
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( )

( )

( /2)

( /2)

0 ( /2)

( /2)

h

h

h

h

zE z dz
z

E z dz

−

−

=



 

(8) 

 

2.3 Governing equation 
 

u, v and w are displacements component of an arbitrary point in the mid-plane along the x, y 

and z directions, respectively. According to the classical theory of plate (CPT), the displacement 

field can be presented as 

 
(9) 

U, V and W are the displacement components of an arbitrary point (x, y, z) at a distance z from 

the middle of the plane thickness in the x, y and z directions, respectively. The strain-displacement 

relationships are presented following strain field. These equations are independent from 

constitutive equations. The tensorial strain field can be written as 

 

(10) 

It is important that the transverse shear deformation is negligible in the classical theory of 

plates. Force and moment of nonlocal elasticity are used in the obtained formulation can be 

presented as 

{𝑁𝑥𝑥, 𝑁𝑦𝑦 , 𝑁𝑥𝑦}
𝑇

= ∫ {𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑥𝑦}
𝑇
𝑑𝑧

(ℎ 2⁄ )

−(ℎ 2⁄ )

 

{𝑀𝑥𝑥,𝑀𝑦𝑦,𝑀𝑥𝑦}
𝑇

= ∫ {𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑥𝑦}
𝑇
𝑧𝑑𝑧

(ℎ 2⁄ )

−(ℎ 2⁄ )

 

(11) 

The strain energy of the nanoplate in the presence of surface stress on the basis of the 

continuum surface elasticity theory can be introduced as 

𝑈 =
1

2
∫ ∫ 𝜎𝑖𝑗𝜀𝑖𝑗𝑑𝑧𝑑𝐴

(ℎ 2⁄ )

−(ℎ 2⁄ )

 

𝐴

 (12) 

The work done by the external force can be represented as follows 

𝑊𝑒𝑥𝑡 = ∫ 𝑞𝑤𝑑𝑧
−(ℎ 2⁄ )

−(ℎ 2⁄ )

 (13) 

Now, by using Hamilton’s principle 

∫ (𝛿𝑈 − 𝛿𝑊𝑒𝑥𝑡)
𝑡2

𝑡1

𝑑𝑡 = 0 (14) 
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And taking the variation of w and integrating by parts as follows  

𝛿𝑈 = ∫𝜎𝑥𝑥𝛿𝜀𝑥𝑥𝑑𝑣
 

𝑉

+ ∫𝜎𝑦𝑦𝛿𝜀𝑦𝑦𝑑𝑣
 

𝑉

+ ∫𝜎𝑥𝑦𝛿𝜀𝑥𝑦𝑑𝑣
 

𝑉

= ∫ 𝜎𝑥𝑥𝛿 (
𝜕𝑢

𝜕𝑥
− 𝑧

𝜕2𝑊

𝜕𝑥2 )𝑑𝑣
 

𝑉

+ ∫ 𝜎𝑦𝑦𝛿 (
𝜕𝑣

𝜕𝑦
− 𝑧

𝜕2𝑊

𝜕𝑦2 )𝑑𝑣
 

𝑉

+ ∫ 𝜎𝑥𝑦𝛿 (
1

2
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) − 𝑧

𝜕2𝑊

𝜕𝑥𝜕𝑦
)𝑑𝑣

 

𝑉

 

(15) 

And for external work can be revealed 

𝛿𝑊𝑒𝑥𝑡 = ∫𝑞𝛿𝑤𝑑𝐴
 

𝐴

 (16) 

in which q is the transverse force per unit area. 

The motion equation and the boundary conditions will be obtained by setting the coefficients of 

δw equal to zero as, motion equation obtained from the above relationships are as follows 

𝜕(𝑁𝑥𝑥)

𝜕𝑥
+

𝜕(𝑁𝑥𝑦)

𝜕𝑦
= 0 (17a) 

𝜕(𝑁𝑥𝑦)

𝜕𝑥
+

𝜕(𝑁𝑦𝑦)

𝜕𝑦
= 0 (17b) 

( ) ( ) ( )2 22

2 2
2 0

xy yyxx

xx xy yy xy

M MM w w w w
q N N N N

x x y y x x y y y x

          
+ + + + + + + =   

              
(17c) 

And the relevant boundary condition can be related to the following formulation 

𝛿𝑢 = 0      or    𝑁𝑥𝑥𝑛𝑥 + 𝑁𝑥𝑦𝑛𝑦 = 0 (18a) 

𝛿𝑣 = 0      or    𝑁𝑥𝑦𝑛𝑥 + 𝑁𝑦𝑦𝑛𝑦 = 0 (18b) 

𝛿𝑤 = 0 or 

(18c) 
(𝑁𝑥𝑥

𝜕𝑤

𝜕𝑥
+ 𝑁𝑥𝑦

𝜕𝑤

𝜕𝑦
+

𝜕(𝑀𝑥𝑥)

𝜕𝑥
+

𝜕(𝑀𝑥𝑦)

𝜕𝑦
)𝑛𝑥 + (𝑁𝑥𝑦

𝜕𝑤

𝜕𝑥
+ 𝑁𝑦𝑦

𝜕𝑤

𝜕𝑦
+

𝜕(𝑀𝑥𝑦)

𝜕𝑥
+

𝜕(𝑀𝑦𝑦)

𝜕𝑦
) 𝑛𝑦 = 0 

𝛿 (
𝜕𝑤

𝜕𝑥
) = 0  or    𝑀𝑥𝑥𝑛𝑥 + 𝑀𝑥𝑦𝑛𝑦 = 0 (18d) 

𝛿 (
𝜕𝑤

𝜕𝑦
) = 0  or    𝑀𝑥𝑦𝑛𝑥 + 𝑀𝑦𝑦𝑛𝑦 = 0 (18e) 

where (𝑛𝑥, 𝑛𝑦) denotes the direction cosines of the outward unit normal to the boundary of the 

mid-plane. To obtain the equation of motion should be nonlocal effect must give effect to the 

above equation. 

According to the generalized Hook’s law 

[

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

] = [𝑄] [

𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑥𝑦

] (19) 

520



 

 

 

 

 

 

Nonlocal buckling characteristics of heterogeneous plates subjected to various loadings 

where [𝜎] and [𝜀] are stress and strain matrix and [𝑄] represent fourth order elasticity matrix as 

follows 

[𝑄] =

[
 
 
 
 
 
 

𝐸(𝑧)

1 − 𝜈2

𝐸(𝑧)𝜈

1 − 𝜈2
0

𝐸(𝑧)𝜈

1 − 𝜈2

𝐸(𝑧)

1 − 𝜈2
0

0 0
𝐸(𝑧)

2(1 + 𝜈)]
 
 
 
 
 
 

 (20) 

  By definition that we had in the previous section article, should we change the equation above 

as follows 

[

𝑁𝑥𝑥

𝑁𝑦𝑦

𝑁𝑥𝑦

] = [𝐶]

[
 
 
 
 
 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥]
 
 
 
 
 
 

 (21) 

[

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

] = [𝐷]

[
 
 
 
 
 
 

𝜕2𝑊

𝜕𝑥2

𝜕2𝑊

𝜕𝑦2

2
𝜕2𝑊

𝜕𝑥𝜕𝑦]
 
 
 
 
 
 

 (22) 

  The matrix of [𝐶] and [𝐷]’s component in the above equations are defined as follows 

𝐶𝑖𝑗 = ∫ 𝑄𝑖𝑗𝑑𝑧
(ℎ 2⁄ )

−(ℎ 2⁄ )

 (23) 

𝐷𝑖𝑗 = −∫ 𝑄𝑖𝑗𝑧𝑑𝑧
(ℎ 2⁄ )

−(ℎ 2⁄ )

 (24) 

  Eringen’s equations as follows spread 

        𝑁𝑥𝑥 − 𝜇 (
𝜕2𝑁𝑥𝑥

𝜕𝑥2
+

𝜕2𝑁𝑥𝑥

𝜕𝑦2 ) = 𝐶11

𝜕𝑢

𝜕𝑥
+ 𝐶12

𝜕𝑣

𝜕𝑦
 (25a) 

         𝑁𝑦𝑦 − 𝜇 (
𝜕2𝑁𝑦𝑦

𝜕𝑥2
+

𝜕2𝑁𝑦𝑦

𝜕𝑦2 ) = 𝐶21

𝜕𝑢

𝜕𝑥
+ 𝐶22

𝜕𝑣

𝜕𝑦
 (25b) 

𝑁𝑥𝑦 − 𝜇 (
𝜕2𝑁𝑥𝑦

𝜕𝑥2
+

𝜕2𝑁𝑥𝑦

𝜕𝑦2 ) = 𝐶33 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) (25c) 
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𝑃0 0.5𝑃0 0 −0.5𝑃0 −𝑃0 0 𝑃0 

       

−𝑃0 −𝑃0 −𝑃0 −𝑃0 −𝑃0 −𝑃0 −𝑃0 

𝜒 = 2 𝜒 = 1.5 𝜒 = 1 𝜒 = 0.5 𝜒 = 0 𝜒 = 1 𝜒 = 2 

Linear load factor Nonlinear load factor 

Fig. 2 Different load factor 
 

 

𝑀𝑥𝑥 − 𝜇 (
𝜕2𝑀𝑥𝑥

𝜕𝑥2
+

𝜕2𝑀𝑥𝑥

𝜕𝑦2 ) = −𝐷11

𝜕2𝑊

𝜕𝑥2
+ 𝐷12

𝜕2𝑊

𝜕𝑦2
 (25d) 

𝑀𝑦𝑦 − 𝜇 (
𝜕2𝑀𝑦𝑦

𝜕𝑥2
+

𝜕2𝑀𝑦𝑦

𝜕𝑦2 ) = −𝐷21

𝜕2𝑊

𝜕𝑥2
+ 𝐷22

𝜕2𝑊

𝜕𝑦2
 (25e) 

𝑀𝑥𝑦 − 𝜇 (
𝜕2𝑀𝑥𝑦

𝜕𝑥2
+

𝜕2𝑀𝑥𝑦

𝜕𝑦2 ) = −2𝐷33

𝜕2𝑊

𝜕𝑥𝜕𝑦
 (25f) 

  By inserting motion equation in the nonlocal equation, the governing equation of the nonlocal 

theory of plate for buckling in terms of w can be obtained as follows 

D11

∂4w

∂x4
+ 2(D12 + D33)

∂4w

∂x2 ∂y2
+ D22

∂4w

∂y4

+ (μ∇2 − 1)(q + Nxx

∂2W

∂x2
+ 2Nxy

∂2W

∂x∂y
+ Nyy

∂2W

∂y2 ) = 0 
(26) 

  Now, we assume that the plate under the following linearly and non-linearly varying normal 

loads 

𝑁𝑥𝑥 = −𝑃0 (1 − 𝜒 (
𝑦

𝑙𝑦
)

1𝑜𝑟2

),         𝑁𝑦𝑦 = 0,          𝑁𝑥𝑦 = 0,           𝑞 = 0 (27) 

𝜒 specifies the amount of numerical loading factors, if y is of the first order loading factor is in 

linearly phase and if 𝑦 is of the second order loading factor is in non-linearly condition. 𝑃0 is the 

compressive force per unit length at y = 0. This in-plane force distribution is seen at the two 

nanoplates opposite edges (x = 0, x = 𝑙𝑥). 𝜒’s change shows the different form of in-plane 

loadings. If 𝜒 = 0, then the situation of uniform compressive force is investigated. If 𝜒 = 1, the 

force decreases from - 𝑃0 at y = 0, to zero at y = 𝑙𝑦 and if 𝜒= 2, we’ll see pure bending. These 

different situations of loadings condition are shown in Fig. 2. Substituting 𝑁𝑥𝑥  defined variables 
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into equation of motion yields the below fourth-order PDE of the nonlocal theory of the plate for 

buckling of functionally graded nanoplate. 

𝐷11

𝜕4𝑤

𝜕𝑥4
+ 2(𝐷12 + 𝐷33)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 𝐷22

𝜕4𝑤

𝜕𝑦4

− 𝑃0 (𝜇 [(1 − 𝜒
𝑦

𝑙𝑦
)

𝜕4𝑤

𝜕𝑥4
+ (1 − 𝜒

𝑦

𝑙𝑦
)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
] − (1 − 𝜒

𝑦

𝑙𝑦
)

𝜕2𝑤

𝜕𝑥2
) = 0 

(28) 

For create non-dimensional state of above equation, define the following parameters 

𝑊 =
𝑤

𝑙𝑥
 , 𝜉 =

𝑥

𝑙𝑥
, 𝜂 =

𝑦

𝑙𝑦
, 𝜓 =

𝐷12+𝐷33

𝐷11
, 𝜆 =

𝐷22

𝐷11
, 𝛾 =

𝜇

𝑙𝑥
, 𝛽 =

𝑙𝑥

𝑙𝑦
 (29) 

 

 

3. Solution procedure 
 

In order to predict solution of equation (28) analytical approach can be applied for simply 

support-Simply support boundary condition. In this paper, governing equation is solved by using 

the Navier’s approach. For the simply supported boundary condition, according to the article 

Aksencer and Aydogdu (2011) it can be shown that the shape function can be written in following 

statement double Fourier series. This approach is changing partial equation to numerical equation 

by inserting following shape function to governing equation. 

𝑤(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑚𝑛𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑙𝑥
) 𝑠𝑖𝑛 (

𝑚𝜋𝑦

𝑙𝑦
)𝑒𝑖𝜔𝑡

∞

𝑛=1

∞

𝑚=1

 (30) 

Because the subject matter is buckling article, time-dependent terms are deleted. And m and n 

are the half wave numbers. For this purpose, incorporating equation (30) into equation (28), will 

have 

𝐷11 (
𝑚𝜋

𝑙𝑥
)

4

+ 2(𝐷12 + 𝐷33) (
𝑚𝜋

𝑙𝑥
)

2

(
𝑛𝜋

𝑙𝑦
)

2

+ 𝐷22 (
𝑛𝜋
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)

4
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) (
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)
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)

2
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) (
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𝑙𝑥
)

2

)]) = 0 

(31) 

That 𝑃0 shows as follows 
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(32) 
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Fig. 3 Change of buckling load ratio with the nonlocal parameter for different load factors (lx  = 10 nm) 
 

 

It is assumed that simply supported boundary condition is in all directions. 
 

 

4. Results and discussion 
 

According to the previous studies in buckling of size dependent plates we will define the 

following non-dimensional parameter 

𝐵𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑙𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑛𝑜𝑛𝑙𝑜𝑐𝑎𝑙 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑙𝑜𝑎𝑑

𝑙𝑜𝑐𝑎𝑙 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑙𝑜𝑎𝑑 
 (33) 

Above parameter is the name of the famous buckling load ratio and it has been used in many 

articles (Pradhan and Murmu 2009, 2010). The present results are collation with the buckling 

response of square single-layered grapheme sheet (SLGS) as presented (Pradhan and Murmu 

2010). This comparison can be seen in Figure 3. The nanoplate is under load by a uniformity 

distributed normal force from 𝑥 = 0 to 𝑥 = 𝑙𝑥. In this case, the numerical loading factor is equal 

to zero at (𝜒 = 0). The length of the model and y is considered 10 nm and 4 nm which boundary 

condition is assumed simply support. Easily visible that the results are consistent with the results 

Pradhan and Murmu (2010). 

The plates are rectangular with the simply supported boundary condition along four edges and 

made of aluminum (E=70 GPa) and alumina (E=380 Gpa). Effectiveness of different loading 

conditions on nanoplate’s buckling characteristics, changes non-dimensional buckling load with 

loading factor for simply supported boundary condition was shown in Figure 4. This figure shows, 

the buckling increases when the load factor increases from 0 to 2, especially for local model. 

Effects of various loading factor on buckling increases by decrease in amount of nonlocal 

parameters. For more descriptions, the nonlocal parameter effect on the buckling load is more 

important in the pure bending (𝜒 = 2). However, the difference between local and nonlocal 

buckling loads increases when the load factor increases. Change non-dimensional to nonlocal 
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Nonlocal buckling characteristics of heterogeneous plates subjected to various loadings 

 
Fig. 4 The effect of different loading condition on the non-dimensional buckling load for ssss nanoplates 

(𝛽=0.5 and 𝑙𝑥 = 10) 
 

 
Fig. 5 Change of buckling load ratio with mode number for different aspect ratio 

 

 

parameter in different loading factor can be seen in Table 1. In this table, the amount of nonlocal 

parameters change from 0 to 2. The table shows the non-dimensional buckling load calculated 

based on the nonlocal theory, are lesser than the non-dimensional buckling load calculated based 

on the local theory in various load factors and in all cases. In addition, non-dimensional buckling 

decreases as the nonlocal parameter increases and also it causes the stiffness of structure decreases 

in fixed side length. The non-dimensional buckling of functionally graded nanoplate when 𝜒 is 2 

is bigger than other states. In adition, the amount of buckling increases when loading factor 

increase from 0 to 2 especially in a constant. To illustrate the small scale effect on the results of 

nanoplate with larger length in sides, the variations of non-dimensional with nonlocal parameter in 

special case (𝑙𝑥 = 20 𝑛𝑚 ) are presented in Table 2. After that, different load factors are assumed 

for the rectangular functionally graded nanoplate. According to this table, it can be concluded that 
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Table 1 Change of non-dimensional buckling with nonlocal parameter for different load factor (𝑙𝑥 = 10) 

𝜒 
𝜇 

0 0.5 1 1.5 2 

0 32.9645 31.4142 27.5302 22.8265 18.4204 

0.5 41.2056 39.2678 34.4128 28.5331 23.0254 

1 54.9408 52.3571 45.8837 38.0442 30.7006 

1.5 82.4112 78.5356 68.8256 57.0662 46.0509 

2 164.822 157.071 137.651 114.132 92.1018 

 

Table 2 Change of non-dimensional buckling with nonlocal parameter for different load factor (𝑙𝑥 = 20) 

𝜇 

𝜒 0 0.5 1 1.5 2 

0 32.9645 32.5648 31.4142 29.6701 27.5302 

0.5 38.7817 38.3091 36.9579 34.9060 32.3885 

1 47.0921 46.5182 44.8775 42.3859 32.3989 

1.5 59.9354 59.2050 571168 53.9457 50.0550 

2 83.4112 81.4069 78.5356 74.1753 68.8256 

 

 

the scale effects are lost after a special length in all cases and for various load factors. This is 

predictable because with the increase of dimension, the effect of nonlocal parameters decreases. 

Furthermore, the gap between the amounts in different loading factor piecemeal reduces with 

increasing nanoplate’s dimension. Anyway, it is realized that the gap between pure bending with 

other states doesn’t disappear, even for 𝑙𝑥 = 20 𝑛𝑚. In other words, when 𝜒 = 2 then the effects 

of nonlocal parameters are more important than other states.  

Figure 5 shows the influence of small length scale on the higher buckling modes. The variation 

of buckling load ratio with different mode numbers (𝑚) and various aspect ratios (𝛽)  of 

functionally graded nanoplates can be seen in Figure 5. 𝜇 = 2, 𝑙𝑥 = 10 and 𝜒 = 1 are parameters 

that available in this graph. The figure shows that, the amount of load ratios reduced when the 

mode numbers become greater in various aspect ratios. By increase in the amount of mode 

number, the load ratio reduced in a smooth manner phase except for 𝛽 = 0.5. In other words, the 

size dependent effect is larger in higher modes. This event happens because in higher mode, small 

wavelength influence is large and important. At the small amount of wavelengths or higher mode 

numbers, the rate of interaction between atoms becomes larger and it causes; the size effect in fact 

becomes greater. It can be seen that, the difference between the curves (𝛽 = 1, 1.5, 2) in fact 

reduced when the mode number becomes greater. Furthermore, in Fig. 5 it can be found that the 

mode number becomes greater, the curves for different loading ratio gradually become flat after a 

special mode number. The response of this part must be expounded as the buckling mode number 

has not important effect in the buckling load ratio when mode numbers has steady growth (m ≥4). 

Also, it is true for large aspect ratios (𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 1). 

Table 3 Shows the effects of various FG Indexes and nonlocal parameter in dimensional 

buckling of functionally graded nanoplate. In this case same to all of other cases in this research, 

results are calculated for simply supported boundary condition at all edges of plate. This table 

includes both of linear and nonlinear various load factors. It is assumed in this table, the plate is 
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Nonlocal buckling characteristics of heterogeneous plates subjected to various loadings 

Table 3 Change of dimensional buckling in different linear and nonlinear loading factor, FG index and 

aspect ratio (𝜇) in 𝛽 = 1 , 𝑙𝑥 = 10 𝑛𝑚 

Nonlocal 

Parameter(𝜇) 
FG Index 

Linear Load Factor (𝜒) Nonlinear Load factor(𝜒) 

0 0.5 1 1.5 2 1 2 

0 

0 0.0893 0.1117 0.1489 0.2234 0.4469 0.1064 0.1314 

2 0.3269 0.4086 0.5448 0.8172 1.6346 0.3891 0.4807 

10 0.4077 0.5096 0.6795 1.0193 2.0387 0.4854 0.5996 

2 

0 0.0499 0.0624 0.0832 0.1248 0.2497 0.0594 0.9734 

2 0.1826 0.2283 0.3044 0.4567 0.9334 0.2174 0.2686 

10 0.2278 0.2848 0.3797 0.5696 1.1392 0.2712 0.3350 

5 

0 0.015 0.0188 0.0251 0.0376 0.0753 0.0179 0.0221 

2 0.055 0.0688 0.0918 0.1377 0.2754 0.0655 0.0810 

10 0.0687 0.0858 0.1145 0.1717 0.3435 0.0655 0.1010 

 

 
Fig. 6 The effect of different aspect ratio on the dimensional buckling load for ssss B.C in different linear 

load factor (𝜇 = 1 𝑛𝑚, 𝑙𝑥 = 10 𝑛𝑚 and 𝑘 = 2) 
 

 
Fig. 7 The effect of different nonlocal parameter on the dimensional buckling load for ssss B.C in 

different linear load factor (𝛽 = 1, 𝑙𝑥 = 10 𝑛𝑚 and 𝑘 = 2) 

527



 

 

 

 

 

 

Farzad Ebrahimi, Ramin Babaei and Gholam Reza Shaghaghi 

Table 4 Change of dimensional buckling in different linear and nonlinear loading factor, FG index and 

aspect ratio (𝛽) in 𝜇 = 1 𝑛𝑚, 𝑙𝑥 = 10 𝑛𝑚 

𝛽 FG Index 
Linear Load factor (𝜒) Nonlinear Load Factor (𝜒) 

0 0.5 1 1.5 2 1 2 

1 

0 0.0746 0.0933 0.1244 0.1866 0.3732 0.0888 0.1097 

2 0.273 0.3412 0.455 0.6825 1.3651 0.325 0.4015 

10 0.3405 0.4256 0.5675 0.8513 1.7026 0.4054 0.5007 

2 

0 0.0331 0.0368 0.0414 0.0473 0.0552 0.0345 0.036 

2 0.1211 0.1346 0.1514 0.1731 0.2019 0.1262 0.1317 

10 0.1511 0.1679 0.1889 0.2159 0.2519 0.1574 0.1642 

5 

0 0.0253 0.0264 0.0275 0.0288 0.0301 0.0255 0.0256 

2 0.0927 0.0965 0.1007 0.1053 0.1103 0.0932 0.0939 

10 0.1156 0.1204 0.1256 0.1313 0.1376 0.1163 0.1171 

 

Table 5 Change of dimensional buckling load ratio in different load ratio and FG index in 𝛽 = 1, 𝑙𝑥 =
10 𝑛𝑚 and 𝜇 = 1 𝑛𝑚 

FG Index 
Linear load factor Nonlinear load factors 

0 0.5 1 1.5 2 1 2 

0 0.0746 0.0933 0.1244 0.1866 0.3732 0.0888 0.1097 

2 0.273 0.3412 0.455 0.6825 1.3651 0.325 0.4015 

4 0.3013 0.3767 0.5022 0.7534 1.5068 0.3587 0.4431 

6 0.3186 0.3983 0.5311 0.7967 1.5934 0.3793 0.4686 

8 0.3311 0.4139 0.5518 0.8278 1.6556 0.3942 0.4869 

10 0.3405 0.4256 0.5675 0.8513 1.7026 0.4054 0.5007 

 

 

square (𝛽 = 1) and the length of each edge is 10 𝑛𝑚. The results clearly show in each of loading 

factor, whether linear or nonlinear by increase in nonlocal parameter, the amount of buckling in 

same FG index reduced. This behavior was predictable because when nonlocal parameter becomes 

greater, the results are affected from all surrounding point behavior and with this increase, results 

will be more accurate. In addition, when FG index increases, in same case similar to above 

mentioned, the buckling come greater and the results are closer to real behavior. 

Table 4 shows the effect of various aspect ratio and FG index in dimensional buckling of 

functionally graded nanoplate. Assumed conditions are similar to previous table expecting that, in 

this table nonlocal parameter is 1 (𝜇 = 1 𝑛𝑚). The results show buckling decreases as the aspect 

ratio increases or the plate come thinner. This behavior is visible for all of cases. In this case, by 

increase in the FG index, the amount of buckling increases too. The important note in both tables 

is the gap between pure bending states buckling with other cases. This shows the designer could be 

cautious in design of structure under bending load. 

Figure 7 shows a schematic for the special cases of the results of Table 3 in which it is assumed 

that the FG index is 2 (𝑘 = 2) and shows the effect of nonlocal parameters on buckling load of the 

square nanoplate in different linear load factor. Similarly, Figure 6 shows a schematic for the 

results tabulated in Table 4 in which the nonlocal parameter is assumed to be 1 (𝜇 = 1 𝑛𝑚) 
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Nonlocal buckling characteristics of heterogeneous plates subjected to various loadings 

 
Fig. 8 Change of dimensional buckling versus FG material’s parameter in different linear load factor (𝜒) 

in 𝛽 = 1 , 𝑙𝑥 = 10 𝑛𝑚 and 𝜇 = 1 𝑛𝑚 
 

 
Fig. 9 Change of dimensional buckling versus FG material’s parameter in different nonlinear load factor 

(𝜒) in 𝛽 = 1 , 𝑙𝑥 = 10 𝑛𝑚 and 𝜇 = 1 𝑛𝑚 
 

 

and it shows the effect of different aspect ratios on buckling load of nanoplate in different linear 

load factors.  

  Table 5 shows the response of buckling in different linearly and nonlinearly loading factor. 

Figure 8 and Figure 9 is a schematic of Table 5. 

Figure 8 reveals the effect of FG index on the dimensional buckling load ratio of simply 

supported plate in different linear load factor. In this figure, it can be seen that dimensional 

bucking loading ratio in the FGM plate is higher than that of pure metallic plate and fundamental 

frequency and bucking loading increase significantly as the value of k increases. Those are because 

pure metallic plate has lower stiffness than FGM plate. Similarly, Figure 9 shows these details for 

nonlinear different load factor. 
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5. Conclusions 
 

A general view of the article contains a lot of content, including the importance of size 

dependent effect on the buckling response of FG nanoplates subjected to linear in-plane load based 

on nonlocal elasticity theory. The governing equation is computed using Navier’s method and 

related results are compared with the results of the differential quadrature method (DQM). 

Nonlocal buckling load are lesser than the local states for various loading conditions. In addition, 

buckling load ratio decreases as the nonlocal parameter increases and also the non-dimensional 

buckling load increases when the FG index increases. For the special case, with pure in-plane 

bending loading condition applied in the model, the effect of nonlocality is pronounced. It can be 

seen that, buckling load ratio decreases as aspect ratio increases. Further, it is visible that the effect 

of small scale parameter increases when the mode number increases. When the FG index increases 

in both of linear and nonlinear loading factors, the amount of plates buckling load increases. For 

more information, when the nonlocal parameter or aspect ratio increases, the amount of plate’s 

buckling load reduced whether in linear or nonlinear load factor. 
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