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Abstract.  The structural dynamics (SD) behavior of Elastic Flapping Wings (EFWs) is investigated 
analytically as a novel approach in EFWs analysis. In this regard an analytical SD solution of EFW 
undergoing a prescribed rigid body motion is initially derived, where the governing equations are expressed 
in modal space. The inertial forces are also analytically computed utilizing the actuator induced acceleration 
effects on the wing structure, while due to importance of analytical solution the linearity assumption is also 
considered. The formulated initial-value problem is solved analytically to study the EFW structural 
responses, where the effect of structure-actuator frequency ratio, structure-flapping frequency ratio as well as 
the structure damping ratio on the EFW pick amplitude is analyzed.  A case study is also simulated in 
which the wing is modeled as an elastic beam with shell elements undergoing a prescribed sinusoidal 
motion. The corresponding EFW transient and steady response in on-off servo behavior is investigated. This 
study provides a conceptual understanding for the overall EFW SD behavior in the presence of inertial 
forces plus the servo dynamics effects. In addition to the substantial analytical results, the study paves a new 
mathematical way to better understanding the complex role of SD in dynamic EFWs behavior. Specifically, 
similar mathematical formulations can be carried out to investigate the effect of aerodynamics and/or 
gravity. 
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1. Introduction 
 

Flapping aerial vehicles (FAVs) have attracted worldwide interest for their possible 

applications in a wide range of activities, such as monitoring and surveillance. FAVs use flapping 

wing mechanism to fly, while simultaneously producing thrust and lift. Both bird-like and insect-

like flyers utilize flexible flapping wings which have anisotropic flexibilities in chordwise and 

spanwise directions (Shyy et al. 1999). Based on their structures, flapping wings undergo 

moderate to large flexible deformation during flight (Wootton 1992). 

The flexibility has a significant effect on the FAVs aerodynamic loading (Smith 1995, Olivier 
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and Dumas 2016) which has frequently been validated, experimentally (Heathcote et al. 2008, 

Mazaheri and Ebrahimi 2010, Zhao et al. 2010). The importance of this phenomenon has led many 

researches to modeling the structural dynamics (SD) behavior of Elastic Flapping Wings (EFWs). 

Some researchers, have modeled EFW SD by direct time integration of full order models (FOM) 

(Larijani and DeLaurier 2001, Nakata and Liu 2012, Pourtakdoust and Aliabadi 2012, De Rosis et 

al. 2014) and some others, because of the expensive computational cost of previous approach, 

have employed the reduced order model (ROM) in which FOM are transformed into a reduced 

basis co-ordinate system e.g. modal coordinate transformation (Singh and Chopra 2007, Kim and 

Han 2008). 

With respect to the existence of several loads in flapping flight including aerodynamics, 

gravitation, structure and inertia, some researchers have compared the effect of these forces on 

flexibility, implicitly or explicitly. For instance, Combes and Daniel (2003) experimentally 

investigated the contributions of aerodynamic and inertial elastic forces for a specific wing. They 

compared wing bending results for normal air versus helium and showed that contribution of fluid-

dynamic forces to wing deformations is significantly reduced. This relatively huge reduction in air 

density produced only slight changes in the pattern of the wing deformations, suggesting that 

fluid-dynamic forces have minimal effect on the wing bending. However, they emphasized that 

this claim is reliable for certain combinations of wing stiffness, wing motions, and fluid density 

(Daniel and Combes 2002). This conclusion proposes that in some conditions, the inertial forces 

effect on EFW behavior is of premier importance. In this regard, some researchers focused on 

inertial forces. Barut, Das et al. (2006) utilized finite element model (FEM) concepts in 

conjunction with nonlinear theory of elasticity and rigid-body dynamics to investigate the effect of 

prescribed dynamic motion and flexibility on the EFW deformation in absence of aerodynamic 

loads.  Their study included the effect of inertial forces due to centrifugal and Coriolis 

accelerations caused by wing flapping and pitching motions as well as the stress-induced forces 

due to considerable stretching and bending deformations occurring in the wing. Wilson and 

Wereley (2007) experimentally investigated the performance of an insect-like EFW and quantified 

the lifting force in hover condition. They used an experimental test-stand to flap the wings with 

one and two degrees of freedom and measured the wing loadings. Additionally, to identify the 

non-aerodynamic forces, they performed their tests in a vacuum chamber as well. Yeo et al. (2013) 

also used a vacuum chamber to measure non-aerodynamic forces of an EFW. 

The current study is focused on derivation of an analytical solution for Structural Dynamic 

Equation (SDE) of EFW that has not yet been attempted in the literature. Due to importance of 

inertial forces (Combes and Daniel 2003) for bird like structures, only the inertial forces are 

considered. Further, the effect of servo dynamics for resonance behavior is also considered. For 

this purpose, the SDE governing an EFW is expressed in modal space that is widely used for 

elasticity analysis of various flying vehicles including EFWs (Isogai and Harino 2007, Kim and 

Han 2008), missiles (Platus 1992, Pourtakdoust and Assadian 2004), aircrafts (Meirovitch and 

Tuzcu 2003) and airships (Li et al. 2009). In all latter studies, deflections are expanded in terms of 

the normal structural modes where the final governing equations are derived using the 

orthogonality conditions. In this scheme, the EFW natural frequencies and mode shapes are 

obtained via Finite Element Method (FEM). To develop an analytical solution, it is assumed that 

the structure responses lie within the linear range. This is valid for a low flapping frequency range 

that in turn yields a low flapping to structure frequency ratio. Considering this assumption, the 

coupling effects between various structural modes can be ignored and the governing SD equations 

become linear and uncoupled. The resulting analytical solution enables one to assess and evaluate 
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the coupling between the imposed forcing, structure and the servo dynamics, thus providing a 

conceptual understanding for the overall EFW SD behavior in the presence of inertial forces plus 

the servo dynamics effects. The remainder of this paper is organized as follows. Section 2 

describes the formulation of the SDE, inertial forces and servo motor dynamics. Sections 3 and 4 

are devoted to the development of the analytical solution of rigid and elastic wing motion. Section 

5 delivers the verification and simulation results for a typical EFW under a various loading 

scenarios, followed by conclusions in Section 6. 
 

 

2. Formulation 
 

2.1 Structure model 
 

Accurate prediction of large amplitude structural deformations is feasible via nonlinear finite 

element models. However, representation of complex system equations of motion in finite element 

nodal space requires large degrees of freedom and computational cost that is impractical for design 

applications (Hollkamp and Gordon 2008). The governing structural equations of motion for a 

multiple degree-of-freedom (DOF), geometrically nonlinear system with viscous damping can be 

written as (Rizzi and Muravyov 2002) 

( ) ( ) ( ) ( )( ) ( )t t t t t+ + + =MW CW KW W F  (1) 

where M, C and K are the mass, damping, and stiffness matrices respectively, W is the 

displacement vector and F represents the force excitation vector. The nonlinear forcing term 

( )( )tW  is a nonlinear vector function of W that in absence of large structural displacement can 

be ignored. An alternative solution approach of the above equation is via transformation to a 

reduced basis modal coordinate system that dramatically reduces the number of DOFs (McEwan et 

al. 2001). The generalized coordinate transformation approach is implemented to obtain a set of 

coupled modal equations, with reduced DOF 

=W Φη  (2) 

where η and Φ are time-dependent vectors of generalized coordinates and a subset of linear 

eigenvectors (assumed mode shapes vectors), respectively. Using the above transformation under 

the assumption of the low amplitude structural displacement, resulting in an uncoupled, linear 

system of equations as follows 

( ) ( ) ( ) ( )2
2 ; 1,2,...

r r r r r r r
t t t N t r    + + = =  (3) 

where 
r , 

r  are the structural undamped natural frequencies and the damping coefficients, 

respectively and 
rN ’s are the generalized forces which defined as 

( ) ( ) ( ) ( ), , 1,2,r r
D

N t P P t dD P r= = F  (4) 

where P is an arbitrary point within the domain D. 
 

2.2 Inertial force modelling 
 

Due to accelerated motion of the EFW, centrifugal and normal forces are applied to each 
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element. Considering the inherent in-plane tensile strength of the EFW, centrifugal forces can be 

neglected in comparison with the normal forces. The summation of normal inertial forces applied 

to an element due to angular acceleration is 

( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2

0 0 0 0

,
ijz n

i j

a dm y y t x x t x y x y t dm  = = − −  + − + + − + F  (5) 

where Fij is the applied force caused by neighbouring elements, an is the linear acceleration, x and 

y are the position of the mass element dm, x0 and y0 are the position of the wing junction, and   , 

  and ( )t  are the angular accelerations of the EFW due to flapping, pitching and sweeping 

motions, respectively. Please note that the minus sign in Eq. (5) is due to the reference definition 

of the  . Thus, according to the Newton's third law of reaction, the applied inertial force from this 

element to EFW will be 

( )

( )

( )

03

0

1
2 2 2 2

0 0

. ; ;I k k

k

y y t

d dm r dm x x t

tx y x y



 


=

 −  
   

= = = − −   
   −+ − +    

F r r  =  (6) 

where the subscript k refers to each kinematics DOF (KDOF). Referring to Eq. (6), one can define 

generalized forces as follows 

( )
3 3

1 1
kr r I k r k k r

D A
k k

N t d r dm 
= =

= = =   F   (7) 

where 

kr r k
A

r dm =    (8) 

It is realized that, 
kr

  turns out as structural property that depends on the structure mass 

distribution and is motion independent. In this sense it can be referred to as “Generalized Inertial 

Moment” or GIM. 

 

2.3 Servo motor dynamics 
 
The objective of the servo systems is to control the position of a mechanical system in 

accordance with a prescribed position. To model the servo actuator effects on the dynamic 

response of the EFW, a second order servo dynamics is considered whose transfer function is 

suggested (Ogata 2010).  

 

 

3. Analytical solution of rigid wing motion 
 

In analogy with actual flying EFWs like a bird, it is possible for the flapping motion to stop in a 

gliding phase of flight. Accordingly, the desired flapping motion can be broken in to a sinusoidal 

part followed by a command to stop the flapping at a static value. As already discussed, 

considering a second order transfer function for the controller, will yield,  

( )
2

2 22

k

k k k k

ck

input c c c

s
s s



   
=

+ +
 (9) 
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where 
kc  and 

kc
 are the undamped natural frequency and the damping ratio for kth kinematic 

DOF. 
 

3.1 Periodic flapping command 
 

A periodic flapping trend that includes rotational motions about all three major axes can be 

represented via sine series by means of amplitude
,maxk j

  , frequency ωk,j and a phase shift ϕk,j as 

( ) ( )
,max , ,

1

sin
k k jinput k j k j

j

t t   


=

= +  (10) 

Please note that in real flapping motion all, the frequencies are equal or a product of a specific 

frequency (ωf). 

Subsequently, using Laplace transformations results in 

( ) ( ) ( )
, , , ,22 22 11 , 11

1

sin sinc ck k

k j k k j k j k j

t

k dc k j

j

t e A t A t
 

    


−

=

= + + +  (11) 

with the following parameters that are defined for sensitivity analysis of the EFW response, 

21
k k kdc c c  = −  (12) 

( )

,

,

max

21 2 4

, ,21 2 1 2

k j

k j

k

k k

k j k j

c

c c

A


 


 

=
   

− − +   
   
   

 

(13) 

, ,

2
2

, ,

22 21 , ,

1
2 2

3 2

, , , ,2

, ,
2

2 cos 1 sin

1
2 cos 3 sin

1

k j k j k

k k

k k

k k k kk

k j k j

c k j k j

c c

k j k j k j k j

c k j c k j

c c c cc

A A
 

  
 

   
   

   

     = + −          

            + − + + −            −         

 
(14) 

, ,

2 2
2 2

, , , ,

11 21 , , , ,2 cos 1 sin 1 cos 2 sin
k j k j k k

k k k k

k j k j k j k j

c k j k j k j c k j

c c c c

A A
   

     
   

         
      = + − + − +   

                     

 (15) 

,

2

, ,

, ,

1

11 2

, ,

, ,

2 cos 1 sin

tan

1 cos 2 sin

k

k k

k j

k

k k

k j k j

c k j k j

c c

k j k j

k j c k j

c c

 
  

 


 
  

 

−

   
  + − 

   
   =

   
  − + 

       

 
(16) 

,

2

, ,2

, ,

1

22 3 2

, , , ,2

, ,

1 2 cos 1 sin

tan

2 cos 3 sin

k

k k

k j

k k

k k k k

k j k j

c c k j k j

c c

k j k j k j k j

c k j c k j

c c c c

 
   

 


   

   
   

−

       − + − 
    

    =            − + + −                  

 
(17) 
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3.2 Stopping command 
 

In the stopping command case, it is assumed that the EFW flapping is suddenly commanded to 

perform a stopping manoeuvre at kth KDOF towards a fixed angle at ti, such that 

glide glide Stop; ( )
k k k kinput k it    =   = −  (18) 

where ( )k it and 
Stopk

  are the current and final angles of the EFW for a final glide operation at 

kth KDOF, respectively. Again, via Laplace transformation, one can show the actual commanded 

result due to the servo dynamic to be as follows 

( ) ( )Stop 11 11sinc ck k

k k k k

t

k dct e B t
 

   
−

= − +  (19) 

where 

2

glide 1

11 11
2

1
; tan

1

kk

k k

kk

c

cc

B





−

 −
 = =
 −
 

 (20) 

 

 

4. Analytical Solution of EFW 
 

The analytical solution for the structural behaviour of the EFW is developed in two parts that 

includes response to a pure flapping command as well as the EFW response to a flap angle 

command. 

 

4.1 Periodic flapping response 
 
Substituting ( )k t  which gathered via Eq. (10), in Eqs. (3) and (7), yields the desired ordinary 

differential equation (ODE) for dynamic behaviour of the EFW under periodic actuation. 

 
(21) 

where 

 

(22) 

The analytical solution of this ODE is determined using the specified initial conditions. 

( ) ( ) ( ) ( )
, , , ,

3

1 , 1 2 2 3 3

1 1

sin sin sinc ck k r r

k j k j k j k k j

t t

r k j dc dr

k j

t A t e A t e A t
         


− −

= =

 = + + + + +
   (23) 

where 

21dr r r  = −  (24) 
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( ) ( )

( )

, , , ,

3

0 1 1 2 2

1 1

3

3

sin sin

sin

k j k j k j k jr

k j

A A

A

  





= =

 − +
 

=


 (25) 

( )
, , , ,

2

31

3
2

3
, 10

1 1 2 2 3

1 1

1
tan

1
cos sin tan kk

k j k j k j k j

k

r

cck jr
r

k jr r r c

A A

 



   

   

−


−

= =

−
=

  −  − + − + 
    



 

(26) 

( ) ( )
, , , ,

3

3 0 1 1 2 2

1 1

sin sin
k j k j k j k jr

k j

A A   


= =

 = − +
   (27) 

( )

,

,

22

2
2 22

2 2 21 2 2 2 1 2 1

k j k

k j

k k k k k

k k k

r

r r r
c r c r c c c

c c c

A
A

  
      

  


= −

        
   − − − + − − −     
              

 

(28) 

,

,

2

,

11

1
2 22

, ,
1 2

k k j

k j

k j

r

r

k j k j

r

r r

A

A





 


 

 
−  

 =

      
 − +     
      

 
(29) 

( )
, ,

2 2

1

2 22 2

2

2 1 2 1

ˆ tan

2 1 2

k k k

k

k j k j

k

k k

r
r c c c

c

r r
r c c

c c


   


 

 
  

 

−

 
 − − −
 

= −  
  

− − −  
  
  

 (30) 

, ,

,

1

1 11 2

,

2

tan

1

k j k j

k j

r

r

k j

r





 





−

 
 
 

= −  
  −   
  

 (31) 

The resulting analytical solution (Eqs. (23)-(31)) indicates that larger natural frequencies of the 

structural mode shapes tend to have no significant effect on the EFW dynamic behaviour. In 

addition, it is also seen that at structure-actuator frequency ratio (SAFR) close to one, i.e., 

ωr/ωc→1, existence of the actuation damping,
 
ζc effectively bounds A2(Eq. (28)) that in turn 

prevents the second term of the EFW dynamic response (Eq. (23)) from growing. To check the 

conditions for other resonance behaviours, other coefficients will also be examined.  

In this respect, when there is insignificant or zero structural damping, ζr→0, A1 and 

consequently A3 tend towards infinity at structure-flapping frequency ratio (SFFR) close to one, 

i.e., ωf/ωr→1. Fig. 1 shows the variation of A1 for two different values of ζr as a function of SAFR 

and SFFR. According to this figure, it is seen that A1 achieves its pick value for resonance  
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(a)

rζ 0.07=  (b) 
rζ 0.00001=  

Fig. 1 The variation of A1 values versus frequency ratios 
 

 
Fig. 2 The variation of A1 values versus structural damping ratio at ωr/ωc=ωf/ωc=1  

 

 

conditions of both frequency ratios, i.e., ωf/ωr→1 and ωr/ωc→1. Finally, Fig. 2 shows the 

variation of A1 at resonance conditions as a function of the EFW structural damping
 
ζr. 

 

4.2 Response to flap angle (glide) command 
 

In analogy with the sinusoidal forcing the ODE governing EFW structural dynamic response is 

( ) ( ) ( ) ( ) ( ) ( )
3

2

11 11 0 0

1
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Similarly, respective analytical solution is obtained as 
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5. Case study 
 

To better understand the EFW dynamic behaviour subsequent to commanded flapping, a case 

study is performed where the commanded flapping is a sinusoidal motion whose analytical 

solution have already been developed. It needs to be mentioned that the EFW natural frequencies 

and mode shapes are required for dynamic response analysis and calculated via FEM. To analyse 

the EFW structural response, a flapping scenario is considered where the actuator initially 

commands a sinusoidal behaviour (from rest). 

 

5.1 Simulation considerations 
 
In this study, only the right wing is modelled and simulated, while the EFW body is considered  

 

 

 

 

Fig. 3 Flapping wing Coordinates systems Definition 
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motionless and fixed to an inertial coordinate system (ICS). Therefore, one can specify the EFW 

rigid motion via a single flapping angle
 
with respect to the ICS. Accordingly, EFW elements will 

experience a vibrating motion in addition to the aforementioned prescribed rigid body motion as 

shown in Fig. 3. As a result, the total inertial position of EFW elements can be computed via 

superposition of its rotational position plus an elastic deformation emanating from the EFW 

analytical solutions presented.  

Additionally, the origin of the ICS is taken at the EFW hinge located at the wing root leading 

edge point, where xI points forward, zI points downward within the EFW plane of symmetry and yI 

axis is perpendicular to the previous directions to form a right handed orthogonal system (see Fig. 

3). Moreover, a rigid body coordinate system is defined that shows the EFW elements rigid motion 

via the flapping angle γ. The subscript I, R and E are indicative of ICS, rigid EFW local body 

coordinate system and the elastic local deformation of a typical point on R, respectively. Finally, 

one can obtain the coordinates of any arbitrary point, PE with respect to the ICS as, (see Fig. 4). 
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5.2 Structural considerations 
 
The rectangular wing considered in this study (Fig. 3) is modelled as cantilever structure. This 

is because the wing structure is practically being carried by the servomotor connector bar where 

the EFW is fixed to this connector bar at the junction.  

Despite the fact that the extracted relations in section III are independent of the structural 

elements type for FEM analysis, the EFW structure is considered as a reinforced rectangular 

structure (RRS). The RRS is modelled as a flat plate with dimensions of 

1(mm)×300(mm)×500(mm), reinforced at the leading edge (LE) by a tubular beam of radius 2 mm 

that adds to the flexural strength about the xR axis Further, the RRS Aluminium wing has stiffness 

properties E=70 Gpa, G=26 Gpa and a mass density of ρ=2710 kg/m3 (Beer et al. 2011). 

The modal properties of the EFW are determined via FEM which consists of 25×15 beam and 

shell elements, where the first 5 modes are taken into account, see Table 1. The EFW is modelled 

via elements  

 

 
Table 1 Modal structural properties of first 10 modes 

Mode Number Natural frequency (Hz) Generalized Inertial Moment (kg.m) 

1 2.56 0.1837 

2 6.81 -0.0334 

3 16.57 -0.0178 

4 27.11 0.0092 

5 44.33 0.0064 

 

 

In order to verify the analytical structural solution of the EFW, the commercial Nastran-Patran 

(MSC Nastran 2010) (NASP) FEM code is utilized whose transient response results for a time-
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dependent point force, (f(t)=0.1sin(2πt)) where 0<t<1 applied to the arbitrary point, C, located at 

the trailing edge of tip section, is shown in Fig. 5. This figure compares the analytically calculated 

elastic displacement of C against the transient response result of NASP as well as Newmark time-

integration method. As demonstrated in this figure, all three results coincide and thus the proposed 

analytical solution is accurate and compatible with no-planner-displacement assumption. 

 

 

 
Fig. 5 Elastic displacement of point C, from analytical solution versus the transient response in NASP 

 

 

5.3 Simulation and results 
 
The EFW simulation parameters are listed in Table 2. According to the aforementioned flight 

scenarios, simulations of the EFW flapping and gliding motion are performed continuously and 

consecutively.  
 

 

Table 2 EFW simulation parameters 

Parameters (Input) Value Parameters (Calculated) Value 

( )Glide sect
 4.2 21A

 0.4958 

( )f sec
ω rad

 
2  22A

 0.6020 

( )
max degγ

 30 22
 0.9675 

( )
Glide degγ

 5 11A
 0.4979 

cζ  0.5 11
 -1.6628 

( )c sec
ω rad

 
6 11B

 0.1008 

rζ  0.07 11
 1.0472 

 

 

It needs to be mentioned that the number of required modes is problem dependent and it is 

found that three modes are sufficient with an accuracy of 0.1%. Finally, the EFW motion is 

animated under the influence of the controller dynamics in Fig. 6 at different time steps. 

Additionally, in a more accurate analysis, the simulation was run for various SFFR whose 

results for the maximum deformation is shown in Fig. 7. As seen, in general, for SFFR lower than  
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Fig. 6 Wing status at 1st cycle in 3 various step times 

 

 

one, as SFFR increases, the maximum deformation also grows. But, considering the fact that in 

current case, actuator frequency is lower than first structural frequency, the mentioned trend has 

different behaviour around ωf=ωc.  

 

 

 
Fig. 7 maximum wing deformation for various SFFR 

 

 

6. Conclusions 
 

An analytical solution for the structural dynamics of an Elastic Flapping Wing (EFW) in 

Transient phase of flapping and gliding is presented using a reduced order model that is verified 

under a time-varying loading scenario. Due to importance of having an analytical solution for the 

EFW structural behaviour in order to conceptually analyse the effect of wing elasticity, the linear 

motion range assumption is stipulated. A common flight scenario of birds is simulated in which a 

wing starts a sinusoidal motion that is subsequently commended to stop at a fixed angular position 

while the servo dynamics is accounted for. In the undamped systems, it is realized that resonance 

occurs if structure-flapping frequency ratio (SFFR) equals to unity. On the other hand, the 

resonance won’t occur in the damped system, but the maximum amplitude happens when both 

frequency ratios, structure-actuator frequency ratio (SAFR) and SFFR equal to unity. Analytical 
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investigations reveal that one does not need to consider all structural modes as the amplitude 

pertinent to generalized coordinates of the high-frequency modes tend towards zero. Although, due 

to importance and also simplicity, only the inertial force is considered in the EFW analysis, 

because of periodic nature of the aerodynamic and gravitational forces, they can be taken into 

account using periodic series such as Fourier in more comprehensive studies. In addition to the 

substantial analytical results, this study opens up a new perspective in flapping wing analysis that 

enables one to reach a better understanding of EFWs SD behaviour. The universal outcome of this 

study is that the expensive numerical approach can be intelligently substituted by mathematics-

based one in EFW analysis. 
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