
 

 

 

 

 

 

 

Advances in Aircraft and Spacecraft Science, Vol. 5, No. 1 (2018) 141-164 

DOI: https://doi.org/10.12989/aas.2018.5.1.141                                              141 

Copyright © 2018 Techno-Press, Ltd.  
http://www.techno-press.org/?journal=aas&subpage=7        ISSN: 2287-528X (Print), 2287-5271 (Online) 
 
 
 

 

 
 
 

Dynamic modeling of nonlocal compositionally graded 
temperature-dependent beams 

 

Farzad Ebrahimi1 and Ramin Ebrahimi Fardshad2 
 

1Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University,  
Qazvin P.O.B. 16818-34149, Iran 

2Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran 

 
(Received May 7, 2017, Revised July 29, 2017, Accepted August 1, 2017) 

 
Abstract. In this paper, the thermal effect on buckling and free vibration characteristics of functionally 

graded (FG) size-dependent Timoshenko nanobeams subjected to an in-plane thermal loading are 

investigated by presenting a Navier type solution for the first time. Material properties of FG nanobeam are 

supposed to vary continuously along the thickness according to the power-law form and the material 

properties are assumed to be temperature-dependent. The small scale effect is taken into consideration based 

on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived based on Timoshenko 

beam theory through Hamilton’s principle and they are solved applying analytical solution. According to the 

numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG 

nanobeams as compared to some cases in the literature. The detailed mathematical derivations are presented 

and numerical investigations are performed while the emphasis is placed on investigating the effect of the 

several parameters such as thermal effect, material distribution profile, small scale effects, aspect ratio and 

mode number on the critical buckling temperature and normalized natural frequencies of the temperature-

dependent FG nanobeams in detail. It is explicitly shown that the thermal buckling and vibration behaviour 

of a FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as 

benchmarks for future analyses of FG nanobeams. 
 

Keywords: thermal buckling; Timoshenko beam theory; vibration; functionally graded material; nonlocal 

elasticity theory 

 
 
1. Introduction 
 

Functionally graded materials (FGMs) are composite materials with inhomogeneous 

micromechanical structure. They are generally composed of two different parts such as ceramic 

with excellent characteristics in heat and corrosive resistances and metal with toughness. The 

material properties of FGMs change smoothly between two surfaces and the advantages of this 

combination lead to novel structures which can withstand in large mechanical loadings under high 

temperature environments (Ebrahimi and Rastgoo 2008a, b, c). Presenting novel properties, FGMs 

have also attracted intensive research interests, which were mainly focused on their static, dynamic 
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and vibration characteristics of FG structures (Ebrahimi et al. 2009a, b, Ebrahimi 2013, Ebrahimi 

et al. 2016a, Ebrahimi and Zia 2015, Ebrahimi and Mokhtari 2015). 

Moreover, structural elements such as beams, plates, and membranes in micro or nanolength 

scale are commonly used as components in micro/nano electromechanical systems 

(MEMS/NEMS). Therefore understanding the mechanical and physical properties of 

nanostructures is necessary for its practical applications. Nanoscale engineering materials have 

attracted great interest in modern science and technology after the invention of carbon nanotubes 

(CNTs) by Iijima (1991). They have significant mechanical, thermal and electrical performances 

that are superior to the conventional structural materials. In recent years, nanobeams and CNTs 

hold a wide variety of potential applications (Zhang et al. 2004, Wang 2005, Wang and Varadan 

2006) such as sensors, actuators, transistors, probes, and resonators in NEMSs. For instance, in 

MEMS/NEMS; nanostructures have been used in many areas including communications, 

machinery, information technology, biotechnology technologies.  

Since conducting experiments at the nanoscale is a daunting task, and atomistic modeling is 

restricted to small-scale systems owing to computer resource limitations, continuum mechanics 

offers an easy and useful tool for the analysis of CNTs. However the classical continuum models 

need to be extended to consider the nanoscale effects and this can be achieved through the 

nonlocal elasticity theory proposed by Eringen (1972) which consider the size-dependent effect. 

According to this theory, the stress state at a reference point is considered as a function of strain 

states of all points in the body. This nonlocal theory is proved to be in accordance with atomic 

model of lattice dynamics and with experimental observations on phonon dispersion (Eringen 

1983).  

Moreover, in recent years the application of nonlocal elasticity theory, in micro and 

nanomaterials has received a considerable attention within the nanotechnology community and 

Lots of studies have been performed to investigate the size-dependent response of structural 

systems based on Eringen’s nonlocal elasticity theory (Ebrahimi and Salari 2015a, b, 2016, 

Ebrahimi et al. 2015a, 2016c, Ebrahimi and Nasirzadeh 2015, Ebrahimi and Barati 2016 a, b, c, d, 

e, f, Ebrahimi and Hosseini 2016 a, b, c). Peddieson et al. (2003) proposed a version of nonlocal 

elasticity theory which is employed to develop a nonlocal Benoulli/Euler beam model. Wang and 

Liew (2007) carried out the static analysis of micro- and nano-structures based on nonlocal 

continuum mechanics using Euler-Bernoulli beam theory and Timoshenko beam theory. Aydogdu 

(2009) proposed a generalized nonlocal beam theory to study bending, buckling, and free vibration 

of nanobeams based on Eringen model using different beam theories. Phadikar and Pradhan (2010) 

reported finite element formulations for nonlocal elastic Euler-Bernoulli beam and Kirchhoff plate. 

Pradhan and Murmu (2010) investigated the flapwise bending-vibration characteristics of a 

rotating nanocantilever by using Differential quadrature method (DQM). They noticed that small-

scale effects play a significant role in the vibration response of a rotating nanocantilever. Civalek 

et al. (2010) presented a formulation of the equations of motion and bending of Euler–Bernoulli 

beam using the nonlocal elasticity theory for cantilever microtubules. The method of differential 

quadrature has been used for numerical modeling. Civalek and Demir (2011) developed a nonlocal 

beam model for the bending analysis of microtubules based on the Euler–Bernoulli beam theory. 

The size effect is taken into consideration using the Eringen’s nonlocal elasticity theory. 

Furthuremore, with the development of the material technology, FGMs have also been 

employed in MEMS/NEMS (Witvrouw 2005, Lee et al. 2006). Because of high sensitivity of 

MEMS/NEMS to external stimulations, understanding mechanical properties and vibration 

behavior of them are of significant importance to the design and manufacture of FG 
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MEMS/NEMS. Thus, establishing an accurate model of FG nanobeams is a key issue for 

successful NEMS design. Fallah and Aghdam (2012) used Euler-Bernoulli beam theory to 

investigate thermo mechanical buckling and nonlinear vibration analysis of functionally graded 

beams on nonlinear elastic foundation. The nonlinear static response of FGM beams under in-

plane thermal loading is studied by Ma and Lee (2012). Asghari et al. (2010, 2011) studied the 

free vibration of the FGM Euler-Bernoulli microbeams, which has been extended to consider a 

size-dependent Timoshenko beam based on the modified couple stress theory. The dynamic 

characteristics of FG beam with power law material graduation in the axial or the transversal 

directions was examined by Alshorbagy et al. (2011). Ke and Wang (2011) exploited the size 

effect on dynamic stability of functionally graded Timoshenko microbeams. The free vibration 

analysis of FG microbeams was presented by Ansari et al. (2011) based on the strain gradient 

Timoshenko beam theory. They also concluded that the value of gradient index plays an important 

role in the vibrational response of the FG microbeams of lower slenderness ratios. Employing 

modified couple stress theory the nonlinear free vibration of FG microbeams based on von-

Karman geometric nonlinearity was presented by Ke et al. (2012). It was revealed that both the 

linear and nonlinear frequencies increase significantly when the thickness of the FGM microbeam 

was comparable to the material length scale parameter. Recently, Eltaher et al. (2012, 2013a) 

presented a finite element formulation for free vibration analysis of FG nanobeams based on 

nonlocal Euler beam theory. They also exploited the size-dependent static-buckling behavior of 

functionally graded nanobeams on the basis of the nonlocal continuum model (Eltaher et al. 

2013b). Using nonlocal Timoshenko and Euler–Bernoulli beam theory, Simsek and Yurtcu (2013) 

investigated bending and buckling of FG nanobeam by analytical method. More recently, vibration 

behaviour of simply supported Timoshenko FG nanobeams were investigated by Rahmani and 

Pedram (2014). Most recently Ebrahimi and Barati (2016g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, 

2017a, b) and Ebrahimi et al. (2017) explored thermal and hygro-thermal effects on nonlocal 

behavior of FG nanobeams and nanoplates. Furthermore, the common use of FGMs in high 

temperature environment leads to considerable changes in material properties. For example, 

Young’s modulus usually decreases when temperature increases in FGMs. To predict the behavior 

of FGMs under high temperature more accurately, it is necessary to consider the temperature 

dependency on material properties. It is found that most of the previous studies on vibration 

analysis of FG nanobeams have been conducted based on the ignorance of the thermal 

environment effects. As a result, these studies cannot be utilized in order to thoroughly study the 

FG nanobeams under investigation. However, it is woth mentioning that some of the researchers 

spent their time in order to present more reliable models to take into consider thermal effects while 

investigating the mechanical answers of structures. Therefore, there is strong scientific need to 

understand the vibration behavior of FG nanobeams in considering the effect of temperature 

changes. Motivated by this fact, in this study, thermal buckling and vibration characteristics of 

temperature dependent FG nanobeams considering the effect of thermal environment is analyzed. 

An analytical method called Navier solution is employed for vibration and thermal buckling 

analysis of size-dependent FG nanobeams for the first time. It is assumed that material properties 

of the beam, vary continuously through the beam thickness according to power-law form and are 

temperature dependent. Nonlocal Timoshenko beam model and Eringen’s nonlocal elasticity 

theory are employed. Governing equations and boundary conditions for the free vibration of a 

nonlocal FG beam have been derived via Hamilton’s principle. These equations are solved using 

Navier type method and numerical solutions are obtained. The detailed mathematical derivations 

are presented while the emphasis is placed on investigating the effect of several parameters such as 
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thermal effects, constituent volume fractions, mode number, aspect ratio and small scale on critical 

buckling temperature and vibration characteristics of FG nanobeams. Comparisons with analytical 

solotions and the results from the existing literature are provided for two-constituents metal-

ceramic nanobeams and the good agreement between the results of this article and those available 

in literature validated the presented approach. Numerical results are presented to serve as 

benchmarks for the application and the design of nanoelectronic and nano-drive devices, nano-

oscillators, and nanosensors, in which nanobeams act as basic elements. They can also be useful as 

valuable sources for validating other approaches and approximate methods.  

 

 

2. Theory and formulation 
 

2.1 Nonlocal power-law FG nanobeam equations based 
 
 

 
Fig. 1 Geometry and coordinates of Timoshenko FG nanobeam 

 

 

Consider a FG nanobeam of length a, width b and uniform thickness h in the unstressed 

reference configuration. The coordinate system for FG nano beam is shown in Fig. 1. The 

nanobeam is made of elastic and isotropic functionally graded material with properties varying 

smoothly in the z thickness direction only. Indeed, the top surface of the beam is assumed to be 

made of pure metal and the bottom surface is considered to be consist of pure ceramic. The 

effective material properties of the FG beam such as Young’s modulus Ef, shear modulus Gf and 

mass density pf are assumed to vary continuously in the thickness direction (z-axis direction) 

according to a power function of the volume fractions of the constituents. 

According to the rule of mixture, the effective material properties, Pf, can be expressed as 

(Simsek and Yurtcu 2013) 

f c c m mV VP P P= +  (1) 

where Pm, Pc, Vm and Vc are the material properties and the volume fractions of the metal and the 

ceramic constituents related by 

1c mV V+ =  (2a) 

The volume fraction of the ceramic constituent of the beam is assumed to be given by 

1
( )

2

p

c

z
V

h
= +  (2b) 
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Here, p is the non-negative variable parameter (power-law exponent) which determines the 

material distribution through the thickness of the beam and z is the distance from the mid-plane of 

the FG beam. The FG beam becomes a fully ceramic beam when p is set to be zero. Therefore, 

from Eqs. (1)-(2), the effective material properties of the FG nanobeam such as Young’s modulus 

(E), mass density (ρ), thermal expansion (α) and Poisson’s ratio (v) can be expressed as follows 

( )
1

( )
2

p

c m m
E E E

z

h
Ez = − + +

 
 
 

 

( )
1

( )
2

p

c m m

z
z

h
   = − + +

 
 
 

 

( )
1

( )
2

p

c m m

z
z

h
   = − + +

 
 
 

 

( )
1

( )
2

p

c m m

z
z

h
  = − + +

 
 
 

 

(3) 

To predict the behavior of FGMs under high temperature more accurately, it is necessary to 

consider the temperature dependency on material properties. The nonlinear equation of thermo-

elastic material properties in function of temperature T(K) can be expressed as (Touloukian 1967)  

1 2 3

0 1 1 2 3( 1 )P P P T P T P T P T−

−= + + + +  (4) 

Where T=T0+ΔT and T0=300 K (ambient or free stress temperature), T is the temperature 

change, P0, P-1, P1, P2 and P3 are the temperature dependent coefficients which can be seen in the 

table of materials properties (Table 1) for Si3N4 and SUS304. The bottom surface (z = -h/2) of FG 

nanobeam is pure metal (SUS304), whereas the top surface (z = h/2) is pure ceramics(Si3N4). 

 

 
Table 1 Temperature dependent coefficients of Young’s modulus, thermal expansion coefficient, mass 

density and Poisson’s ratio for Si3N4 and SUS304 (Ebrahimi et al. 2017) 

Material Properties 0
P  

1
P
−

 
1

P  
2

P  
3

P  

3 4Si N  (Pa)E  348.43e+9 0 -3.070e-4 2.160e-7 -8.946e-11 

 -1(K )  5.8723e-6 0 9.095e-4 0 0 

 3(Kg/m )  2370 0 0 0 0 

   0.24 0 0 0 0 

       

SUS304  (Pa)E  201.04e+9 0 3.079e-4 -6.534e-7 0 

 -1(K )  12.330e-6 0 8.086e-4 0 0 

 3(Kg/m )  8166 0 0 0 0 

   0.3262 0 -2.002e-4 3.797e-7 0 
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2.2 Kinematic relations 
 

The equations of motion is derived based on the Timoshenko beam theory according to which 

the displacement field at any point of the beam can be written as 

( ) ( ), , , ( , )xu x z t u x t z x t= +  (5a) 

( , , ) ( , )zu x z t w x t=  (5b) 

where t is time, φ is the total bending rotation of the cross-section, u and w are displacement 

components of the mid-plane along x and z directions, respectively. Therefore, according to the 

Timoshenko beam theory, the nonzero strains are obtained as 

xx

u

x
z

x





=


+

 
 (6) 

xz

w

x
 


= +


 (7) 

where εxx and γxz are the normal strain and shear strain, respectively. Based on the Hamilton’s 

principle, which states that the motion of an elastic structure during the time interval [0, t] is such 

that the time integral of the total dynamics potential is extremum (Tauchert 1974) 

0
( ) 0

t

U T V dt − + =  
(8) 

in which U is strain energy, T is kinetic energy and V is work done by external forces. The virtual 

strain energy can be calculated as 

( )ij ij xx xx xz xz
v v

U dV dV         = = +   (9) 

Substituting Eqs. (6) and (7) into Eq. (9) yields 

0
( ( ) ( ) ( ))

L u w
U N M Q dx

x x x


    

  
= + + +

    (10) 

in which N is the axial force, M is the bending moment and Q is the shear force. These stress 

resultants used in Eq. (10) are defined as 

, ,xx xx s xz
A A A

N dA M z dA Q K dA  = = =    (11) 

where Ks is the shear correction factor. Also, the kinetic energy for Timoshenko beam can be 

written as 

2 2

0

1
( , ) ( ( ) ( ) )

2

L
x z

A

u u
T z T dA dx

t t


 
= +

    (12) 

Also, the virtual kinetic energy can be expressed as 
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0 1 2
0

( ) ( )
L u u w w u u

T I I I dx
t t t t t t t t t t

      


          
= + + + +           
  (13) 

where (I0, I1, I2) are the mass moment of inertias, defined as follows 

2

0 1 2( , , ) ( , )(1, , )
A

I I I z T z z dA=   (14) 

For a typical FG nanobeam which has been in high temperature environment for a long period 

of time, it is assumed that the temperature can be distributed uniformly across its thickness so that 

the case of uniform temperature rise is taken into consideration. In this investigation, initial 

uniform temperature (T0=300 K), which is a stress free state, changes to final temperature with ΔT. 

Hence, the first variation of the work done corresponding to temperature change can be written in 

the form (Kim 2005, Mahi et al. 2010) 

0
( )

L
T w w

V N dx
x x

 
 

=
   (15) 

where NT is thermal resultant can be expressed as 

/2

/2
( , ) ( , )

h
T

h
N E z T z T T dz

−
=   (16) 

By Substituting Eqs. (10), (13) and (15) into Eq. (8) and setting the coefficients of δu, δw and, 

δφ to zero, the following Euler-Lagrange equation can be obtained 

2 2

0 12 2

N u
I I

x t t

  
= +

  
 (17a) 

2 2

02 2

TQ w w
N I

x x t

  
− =

  
 (17b) 

2 2

1 22 2

M u
Q I I

x t t

  
− = +

  
 (17c) 

Under the following boundary conditions 

0N =  or 0u =  at 0x =  and x L=  (18a) 

0Q =  or 0w =  at 0x =  and x L=  (18b) 

0M =  or 0 =  at 0x =  and x L=  (18c) 

 

2.3 The nonlocal elasticity model for FG nanobeam 
 

Based on Eringen nonlocal elasticity model (Eringen and Edelen 1972), the stress at a reference 

point x in a body is considered as a function of strains of all points in the near region. This 

assumption is agreement with experimental observations of atomic theory and lattice dynamics in 
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phonon scattering in which for a homogeneous and isotropic elastic solid the nonlocal stress-tensor 

components σij at any point x in the body can be expressed as 

( ) ( , ) ( ) ( )ij ijx x x t x d x  


  = −   
(19) 

where tij(x’) are the components of the classical local stress tensor at point x which are related to 

the components of the linear strain tensor εkl by the conventional constitutive relations for a 

Hookean material, i.e., 

ij ijkl klt C =  (20) 

The meaning of Eq. (19) is that the nonlocal stress at point x is the weighted average of the 

local stress of all points in the neighborhood of x, the size of which is related to the nonlocal 

kernel ),(  xx −  . Here, xx − is the Euclidean distance and τ is a constant given by 

0e a
l

 =  (21) 

which represents the ratio between a characteristic internal length, a (such as lattice parameter, C-

C bond length and granular distance) and a characteristic external one, l (e.g., crack length, 

wavelength) trough an adjusting constant, e0, dependent on each material. The magnitude of e0 is 

determined experimentally or approximated by matching the dispersion curves of plane waves 

with those of atomic lattice dynamics. According to for a class of physically admissible kernel 

),(  xx − it is possible to represent the integral constitutive relations given by Eq. (19) in an 

equivalent differential form as 

2
0

2(1 ( ) ) kl kle a t−  =  (22) 

where 2 is the Laplacian operator. Thus, the scale length e0a takes into account the size effect on 

the response of nanostructures. For an elastic material in the one dimensional case, the nonlocal 

constitutive relations may be simplified as 

2
2

0 2
( ) xx

xx xxe a E
x


 


− =


 (23) 

2
2

0 2
( ) xz

xz xze a G
x


 


− =


 (24) 

where σ and ε are the nonlocal stress and strain, respectively. E is the Young’s modulus, 

G=E/2(1+v) is the shear modulus (where v is the poisson’s ratio). For Timoshenko nonlocal FG 

beam, Eqs. (23) and (24) can be rewritten as 

2

2
( )xx

xx xxE z
x


  


− =


 (25) 

2

2
( )xz

xz xzG z
x


  


− =


 (26) 
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where (μ=(e0a)2). Integrating Eqs. (25) and (26) over the beam’s cross-section area, the force-

strain and the moment-strain of the nonlocal Timoshenko FG beam theory can be obtained as 

follows 

2

2 xx xx

N u
N A B

x x x



  

− = +
  

 (27) 

2

2 xx xx

M u
M B D

x x x



  

− = +
  

 (28) 

2

2
( )xz

Q w
Q C

x x
 
 

− = +
 

 (29) 

in which the cross-sectional rigidities are defined as follows 

2( , , ) ( , ) (1, , )xx xx xx
A

A B D E z T z z dA=   (30) 

( )xz s
A

C K G z dA=   (31) 

where the shear correction factor is assumed to be Ks=5/6. The explicit relation of the nonlocal 

normal force can be derived by substituting for the second derivative of N from Eq. (17a) into Eq. 

(27) as follows 

3 3

0 12 2
( )xx xx

u u
N A B I I

x x x t x t

 


   
= + + +

     
 (32) 

Also, the explicit relation of the nonlocal bending moment can be derived by substituting for 

the second derivative of M from Eq. (17c) into Eq. (28) as follows 

2 3 3 2

0 1 22 2 2 2
( )T

xx xx

u w u w
M B D I I I N

x x t x t x t x

 


     
= + + + + +

       
 (33) 

By substituting for the second derivative of Q from Eq. (17b) into Eq. (29), the following 

expression for the nonlocal shear force is derived 

3 3

0 2 3
( ) ( )T

xz

w w w
Q C I N

x x t x
 

  
= + + +

   
 (34) 

The nonlocal governing equations of Timoshenko FG nanobeam in terms of the displacement 

can be derived by substituting for N, M and Q from Eqs. (32)-(34), respectively, into Eq. (17) as 

follows 

2 4 2

xx xx 0 1 0 12 2 2 2

2 4 2

2 2 2 2
0

u u u
A B I I I I

x x t x t x t t

  

      

+ + + − − = 
        

 (35a) 

2 4 2 2

0 02 4

4

2 2 2 2
( ) ( ) 0T T

xz

w w w w
C

w

t
N I N I

x x x xx t




    
+ + + − − =

    
 (35b) 
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4 2 2

xx xx 2 1 22 2 2

2 2 4

12 2 2 22
( ) ( ) 0xz

u w u u
B D C I I I I

x x x t x t x t t

  
 

      
+ − + + + − − =

        
 (35c) 

 

 

3. Solution procedures 
 

Here, based on the Navier type method, an analytical solution of the governing equations for 

free vibration and thermal buckling of a simply supported FG nanobeam is presented. The 

displacement functions are expressed as product of undetermined coefficients and known 

trigonometric functions to satisfy the governing equations and the conditions at x = 0, L. The 

following displacement fields are assumed to be of the form 

1

( , ) cos ( ) ni t

n

n

n
u x t U x e

L



=

=  (36) 

1

( , ) sin ( ) ni t

n

n

n
w x t W x e

L



=

=  (37) 

1

( , ) cos ( ) ni t

n

n

n
x t x e

L


 



=

=  (38) 

where (Un, Wn, φn) are the unknown Fourier coefficients to be determined for each n value; also, 

ωn is the natural frequency of the n-th mode of the nanobeam. Boundary conditions for simply 

supported beam are as Eq. (39) 

(0) 0 , ( ) 0
u

u L
x


= =


 

(0) ( ) 0 , (0) ( ) 0w w L L
x x

  
= = = =

 
 (39) 

Substituting Eqs. (36)-(38) into Eqs. (35a)-(35c) respectively, leads to Eqs. (40)-(42) 

2 2 2 2

xx 0 xx 1

2 2( ( ) I (1 ( ) ) ) ( ( ) I (1 ( ) ) 0+ )n n n n

n n n n
A U B

L L L L

   
    − + + + − + =  (40) 

2 2 2 2

z 0

2

x xz( ( ) I (1 ( ) ) ( ) ( ) ) ( )1 0( )n

T

n n

n n n n n
C W C

L L L L L
N

    
   + −++ +− =  (41) 

2 2 2

xx

2 2 2

1

2xx xz xz

( ( ) I (1 ( ) ) )

( ( ) I (1 ( ) ) )) ( ) 0

n n

n n n

n n
B U

L L

n n n
D C C W

L L L

 
 

  
  

− + +

+ − −− + + =

 (42) 

By setting the determinant of the coefficient matrix of the above equations, the analytical 

solutions can be obtained from the following equations 
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Table 2 Comparison of the nondimensional fundamental frequency for a S-S FG nanobeam with various 

gradient indexes when L/h=50 

μ 

p =0 p =0.2 p =1 p =5 

Rahmani and 

Pedram 

(2014) 

Present 

Analytical 

Rahmani 

and 

Pedram 

(2014) 

Present 

Analytical 

Rahmani 

and 

Pedram 

(2014) 

Present 

Analytical 

Rahmani and 

Pedram (2014) 

Present 

Analytical 

0 9.8631 9.86315733 8.6895 8.68954599 6.9917 6.99174004 5.9389 5.93894397 

1 9.4097 9.40973040 8.2901 8.29007206 6.6703 6.67031728 5.6659 5.66592012 

2 9.0136 9.01358936 7.9411 7.94106762 6.3895 6.38950303 5.4274 5.42739007 

3 8.6636 8.66360601 7.6327 7.63272858 6.1414 6.14140878 5.2166 5.21665314 

4 8.3515 8.35146095 7.3577 7.35772548 5.9201 5.92013713 5.0287 5.02869994 

5 8.0708 8.07079327 7.1104 7.11045428 5.7212 5.72117899 4.8597 4.85970034 

 
Table 3 Material graduation and aspect ratio effect on the critical buckling temperature ΔTcr[K] of S-S FG 

nanobeam with different nonlocality parameters 

μ /L h  
Gradient index 

0 0.2 0.5 1 2 5 

0 40 68.6671 57.8509 50.5266 45.4570 41.9905 39.1223 

 50 43.9712 37.0448 32.3547 29.1086 26.8894 25.0534 

 60 30.5447 25.7331 22.4752 20.2204 18.6790 17.4039 

1 40 62.4988 52.6542 45.9878 41.3736 38.2185 35.6080 

 50 40.0212 33.7170 29.4482 26.4938 24.4739 22.8029 

 60 27.8008 23.4215 20.4562 18.4040 17.0011 15.8405 

2 40 57.3473 48.3141 42.1972 37.9634 35.0683 32.6729 

 50 36.7224 30.9379 27.0209 24.3100 22.4566 20.9233 

 60 25.5093 21.4910 18.7701 16.8870 15.5998 14.5349 

3 40 52.9803 44.6350 38.9840 35.0725 32.3979 30.1849 

 50 33.9261 28.5820 24.9633 22.4588 20.7466 19.3300 

 60 23.5668 19.8545 17.3408 15.6011 14.4119 13.4280 

4 40 49.2314 41.4766 36.2254 32.5907 30.1054 28.0490 

 50 31.5254 26.5595 23.1969 20.8696 19.2785 17.9622 

 60 21.8992 18.4496 16.1137 14.4972 13.3921 12.4779 

 

 

 2([ ] [ ]) [ ] 0

n

T n

n

U

K T K M W



 
 

+  − = 
 
 

 (43) 

where [K] and [KT] are stiffness matrix and the coefficient matrix of temperature change, 

respectively, and [M] is the mass matrix. By setting this polynomial to zero, we can find natural 

frequencies ωn and critical buckling temperature ΔTcr. 
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4. Numerical results and discussions  
 

Through this section, the effect of temperature change, FG distribution, nonlocality effect and 

thickness ratios on the natural frequencies and critical buckling temperature of the FG nanobeam 

will be figured out. The functionally graded nanobeam is composed of Steel (SUS304) and Silicon 

nitride (Si3N4) where its properties are given in Table 1. The bottom surface of the beam is pure 

Steel, whereas the top surface of the beam is pure Silicon nitride. The beam geometry has the 

following dimensions: L (length) = 10,000 nm, b (width) = 1000 nm and h (thickness) = 100 nm. 

Relation described in Eq. (44) are performed in order to calculate the non-dimensional natural 

frequencies 

2ˆ ωL ρ A / EIc c =  (44) 

where I=bh3/12 is the moment of inertia of the cross section of the beam. To evaluate accuracy of 

the natural frequencies predicted by the present method, the non-dimensional natural frequencies 

of simply supported FG nanobeam with various nonlocal parameters previously analyzed by 

Navier method are reexamined. Table 2 compares the results of the present study and the results 

presented by Rahmani and Pedram (2014) which has been obtained by analytical method for FG 

nanobeam with different nonlocal parameters (varying from 0 to 5). The reliability of the presented 

method and procedure for FG nanobeam may be concluded from Table 2; where the results are in 

an excellent agreement as values of non-dimensional fundamental frequency are consistent with 

presented analytical solution.  

After extensive validation of the present formulation for S-S FG nanobeams, the effects of 

different parameters such as aspect ratio, nonlocality parameter and gradient index on the thermal 

buckling of FG nanobeam are investigated.  
 

 

  
(a) 0p =  (b) 0.2p =  

  
(c) 0.5p =  (d) 1p =  

Fig. 2 The variation of the critical buckling temperature of S-S FG nanobeam with aspect ratios and 

nonlocality parameters for different material graduations 
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(e) 2p =  (f) 5p =  

Fig. 2 The variation of the critical buckling temperature of S-S FG nanobeam with aspect ratios and 

nonlocality parameters for different material graduations 

 

  
(a) 0 =  (b) 1 =  

  

  
(c) 2 =  (d) 3 =  

 
(e) 4 =  

Fig. 3 The variation of the critical buckling temperature of S-S FG nanobeam with material graduations and 

aspect ratios for different nonlocality parameters 
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Table 4 Temperature and material graduation effect on first three dimensionless frequency of S-S FG 

nanobeams with different nonlocality parameters (L/h=20) 

μ ˆ
i  

10[ ]T K =  30[ ]T K =  60[ ]T K =  

Gradient index Gradient index Gradient index 

0 0.2 1 5 0 0.2 1 5 0 0.2 1 5 

0 1 9.6468 7.7926 5.7659 4.6883 9.2623 7.4213 5.4110 4.3483 8.6318 6.8045 4.8070 3.7575 

 2 38.6694 31.3157 23.2770 18.9886 38.2938 30.9590 22.9447 18.6744 37.7033 30.3942 22.4123 18.1675 

 3 85.5823 69.3223 51.5567 42.0603 85.2047 68.9703 51.2374 41.7617 84.6153 68.4140 50.7229 41.2756 

1 1 9.1859 7.4175 5.4848 4.4575 8.7813 7.0264 5.1102 4.0980 8.1135 6.3712 4.4652 3.4644 

 2 32.6814 26.4571 19.6535 16.0250 32.2361 26.0321 19.2547 15.6466 31.5324 25.3561 18.6131 15.0333 

 3 62.1612 50.3329 37.4103 30.5046 61.6403 49.8398 36.9524 30.0716 60.8230 49.0599 36.2193 29.3733 

2 1 8.7825 7.0891 5.2385 4.2552 8.3584 6.6786 4.8446 3.8766 7.6537 5.9855 4.1584 3.1991 

 2 28.7981 23.3051 17.3012 14.1002 28.2917 22.8204 16.8443 13.6657 27.4873 22.0451 16.1045 12.9558 

 3 51.1639 41.4132 30.7611 25.0703 50.5298 40.8092 30.1952 24.5328 49.5295 39.8499 29.2862 23.6630 

3 1 8.4254 6.7984 5.0203 4.0758 7.9824 6.3690 4.6075 3.6785 7.2412 5.6378 3.8793 2.9556 

 2 26.0171 21.0469 15.6149 12.7197 25.4554 20.5081 15.1054 12.2341 24.5582 19.6409 14.2738 11.4335 

 3 44.4478 35.9639 26.6963 21.7465 43.7164 35.2648 26.0379 21.1193 42.5562 34.1482 24.9737 20.0971 

4 1 8.1063 6.5384 4.8251 3.9152 7.6448 6.0907 4.3938 3.4995 6.8673 5.3213 3.6226 2.7293 

 2 23.8979 19.3256 14.3287 11.6662 23.2852 18.7368 13.7703 11.1331 22.3008 17.7828 12.8512 10.2451 

 3 39.7998 32.1912 23.8803 19.4427 38.9812 31.4069 23.1389 18.7349 37.6756 30.1465 21.9314 17.5709 

 
 

In Table 3, critical buckling temperature of the simply supported FG nanobeams are presented 

for various values of the gradient index ( p =0,0.2,0.5,1,2,5), nonlocal parameters (μ=0,1,2,3,4) and 

three different values of aspect ratio (L/h=40, 50, 60) based on analytical Navier solution method. 

It can be concluded from the results of the table that an increase in nonlocal scale parameter gives 

rise to a decrement in the critical buckling temperature. In addition, it is seen that the ΔTcr decrease 

by increasing gradient index and aspect ratio (L/h) and it can be stated that nonlocality parameter 

has a notable effect on the critical buckling temperature, so that by fixing other parameters and 

increasing nonlocal parameter from 0 to 4 the ΔTcr decreases about 28%.  

Variations of the critical buckling temperature ΔTcr of the simply supported FG nanobeams 

with respect to aspect ratio for different values of gradient indexes and nonlocal parameters are 

depicted in Fig. 2. Observing the figure, it is easily deduced for S-S FG nanobeams that, an 

increase in aspect ratio parameter gives rise to a decrease in the critical buckling temperature for 

all gradient indexes. In addition, it is deduced that the buckling temperature decreases by 

increasing nonlocality parameters. 

The critical buckling temperature versus the gradient index of S-S FG nanobeam for different 

values of nonlocality parameters and aspect ratio is illustrated in Fig. 3. It can be observed from 

the figure that with an increase of the beam aspect ratio and nonlocal parameter, critical buckling 

temperature decreases. Also in this diagram it is noticed that, the buckling temperature reduces 

with high rate where the power exponent in range from 0 to 2 than that where power exponent in 

range between 2 and 10.  

In order to investigate the vibration characteristics of the Timoshenko FG nanobeam, the first 

three non-dimensional fundamental frequencies of simply-supported FG nanobeam is presented in  
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(a) 0 =  (b) 1 =  

  
(c) 2 =  (d) 3 =  

 
(e) 4 =  

Fig. 4 Variations of the first dimensionless natural frequency of the S-S FG nanobeam with respect to 

temperature change for different values of gradient indexes and nonlocal parameters (L/h=50)  

 

 

Table 4, which figures out the effect of nonlocal parameter (varying from 0 to 4), gradient index 

(varying from 0 to 5) and three different values of temperature changes (ΔT=10, 30, 60) for L/h 

=20 on the natural frequency characteristics of FG nanobeam.  

First of all, when the two parameters vanish (μ=0 and p=0) the classical isotropic beam theory 

is rendered. Furthermore, the effects of temperature change, nonlocal parameter and gradient 

indexes on the dimensionless frequencies are presented in this table. It can be concluded from the 

results of the Table 4 that increasing the gradient index parameter yields the reduction in 

dimensionless frequencies for every nonlocality parameter and temperature change, which 

highlights the significance of the material distribution parameter. However, the increasing of 
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nonlocal parameter causes the decreasing in fundamental frequency, at a constant material 

graduation index. In addition, it is seen that the first three dimensionless natural frequencies 

decrease by increasing temperature change and it can be stated that temperature change has a 

significant effect on the dimensionless natural frequencies, especially for lower mode numbers.  

Variations of the first three dimensionless natural frequencies of the simply supported FG 

nanobeams with respect to temperature changes for different values of gradient indexes and 

nonlocal parameters are plotted in Figs. 4, 5 and 6, respectively. 

 

 

  
(a) 0 =  (b) 1 =  

  
(c) 2 =  (d) 3 =  

 
(e) 4 =  

Fig. 5 Variations of the second dimensionless natural frequency of the S-S FG nanobeam with respect to 

temperature change for different values of gradient indexes and nonlocal parameters (L/h=50)  
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(a) 0 =  (b) 1 =  

  
(c) 2 =  (d) 3 =  

 
(e) 4 =  

Fig. 6 Variations of the third dimensionless natural frequency of the S-S FG nanobeam with respect to 

temperature change for different values of gradient indexes and nonlocal parameters (L/h=50) 

 

 

It is seen from the figures that the fundamental frequency of FG nanobeam decreases with the 

increase of temperature until it approaches to the critical buckling temperature. This is due to the 

reduction in total stiffness of the beam, since geometrical stiffness decreases when temperature 

rises. Frequency reaches to zero at the critical temperature point. The increase in temperature 

yields in higher frequency after the branching point. 

One important observation within the range of temperature before the critical temperature, it is 

seen that the FG nanobeams with lower value of gradient index (higher percentage of ceramic 

phase) usually provide larger values of the frequency results. However, this behavior is opposite in 

the range of temperature beyond the critical temperature. It is also observable that the branching  
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(a) 0 =  (b) 1 =  

  
(c) 2 =  (d) 3 =  

 
(e) 4 =  

Fig. 7 Variations of the first dimensionless natural frequency of the S-S FG nanobeam with respect to 

temperature change for different values of nonlocal parameters and aspect ratios (p=0.5) 

 

 

point of the FG nanobeam is postponed by consideration of the lower gradient indexes due to the 

fact that the lower gradient indexes result in the increase of stiffness of the structure.  
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(a) 0 =  (b) 1 =  

  
(c) 2 =  (d) 3 =  

 
(e) 4 =  

Fig. 8 The variation of the first dimensionless frequency of S-S FG nanobeam with material graduation and 

temperatures for different nonlocality parameters (L/h=20) 

 

 

In addition, Fig. 7 demonstrates the variation of the first dimensionless natural frequency of FG 

nanobeam respect to temperature changes with varying of the aspect ratio and nonlocality 
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parameter at p = 0.5. It is shown that, by increasing the nonlocal parameter and aspect ratio, the 

critical buckling temperature decreases at a constant material distribution. 

The fundamental frequency parameter as a function of power law indexes and temperature rise 

is presented in Fig. 8 for the FG nanobeam with S–S boundary condition. It can be easily seen that 

all of the previous discussed phenomena can be understood based on this figure. In fact, the 

decreasing influence of nonlocality, gradient index and temperature change can be observed. 

 

 

5. Conclusions 
 

Thermal buckling and vibrational behavior of the temperature-dependent FG nanobeams in 

thermal environment are investigated on the basis of nonlocal elasticity theory in conjunction with 

Navier analytical method. Eringen’s theory of nonlocal elasticity together with Timoshenko beam 

theory are used to model the nanobeam. Thermo-mechanical properties of the FG nanobeams are 

assumed to be functions of both temperature and thickness. The governing differential equations 

and related boundary conditions in thermal environment are derived by implementing Hamilton’s 

principle. Accuracy of the results is examined using available date in the literature. Finally, 

through some parametric study and numerical examples, the effect of different parameters are 

investigated. The effects of small scale parameter, material property gradient index, mode number, 

temperature change and aspect ratio on critical buckling temperature and fundamental frequencies 

of FG nanobeams are investigated.  

It is concluded that various factors such as nonlocal parameter, gradient index, temperature-

dependent material properties, thermal environment and aspect ratio play important roles in 

dynamic behavior of FG nanobeams. It is illustrated that presence of nonlocality leads to reduction 

in natural frequency and buckling temperature. It is observed that the fundamental frequency 

decreases with the increase in temperature and tends to the minimum point closing to zero at the 

critical temperature. This decrease in frequency with thermal load is attributed to the fact that the 

thermally induced compressive stress weakens the beam stiffness. However, after the critical 

temperature region, the fundamental frequency increases with the increment of temperature. Also, 

it is concluded that under temperature rise, with the increase in the gradient index value leads to 

the decrease in frequency; however, the trend is reversed after the pre-buckling stage is passed. 

Moreover, it is revealed that critical buckling temperature decreases with the increase in aspect 

ratio and gradient index. 
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