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Abstract.  Nowadays, the interest of aerospace and automotive industries on virtual testing of medium-
frequency vibrational behavior of shallow shell structures is growing. The development of software capable 
of predicting the vibrational response in such frequency range is still an open question because classical 
methods (i.e., FEM, SEA) are not fully suitable for the medium-frequency bandwidth. In this context the 
Variational Theory of Complex Rays (VTCR) is taking place as an ad-hoc technique to address medium-
frequency problems. It is a Trefftz method based on a weak variational formulation. It allows great flexibility 
because any shape function that satisfies the governing equations can be used. This work further develops 
such theory. In particular, orthotropic materials are introduced in the VTCR formulation for shallow shell 
structures. A significant numerical example is proposed to show the strategy. 
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1. Introduction 

 

Recently, aerospace and automotive industries have shown interest towards efficient virtual 

testing of the vibration response. Shallow shell structures are widely used in air- and spacecraft 

due to their high resistance and lightweight. Aircraft wings, fuselages, tails and spacecraft 

launchers are all composite shallow shell structures. The equilibrium Eqs. are quite complex and in 

almost every real case an analytic solution cannot be obtained. Therefore, an effective method to 

predict vibrational behavior in shallow shell structures is needed.  
The Modal Overlap Factor Lyon (1975) defines three zones: low, mid and high frequency 

range. The low-frequency range has been extensively studied by deterministic techniques such as 
the Finite Element Method (FEM) Hughes (2012) and the Boundary Element Method (BEM) Hall 
(1994). On the other side, the high-frequency range can be addressed by averaging methods as the 
Statistical Energy Analysis (SEA) Lyon (1975). This technique neglects almost entirely spatial 
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quantities to focus on global energy. This effective approach is based on some key assumptions 
assured in the high-frequency range. The medium-frequency range is still an open question. On 
one hand the FEM and BEM are not suited in this frequency domain since the phenomena 
variation length is very small if compared to characteristic dimensions of the structure. For this 
reason computational costs explode Deraemaeker (1999). On the other hand the classical SEA is 
not indicated because the key assumptions of the theory might be unsatisfied Mace (2003). 
However a lot of work has been done to extend such theories to the medium-frequency range 
Farhat and Roux (1991), Liu (2009), Tezaur et al. (2014), De Rosa and Franco (2010), Soize 
(1998).  

There is also a class of methods developed specifically for the medium-frequency range known 

as Trefftz methods such as the partition of unity method Strouboulist and hidajat (2006), the ultra-

weak variational method Cessenatu and Despres (1998), the least-squares method Monk and Wang 

(1999), the discontinuous enrichment method Farhat et al. (2001), the element-free Galerkin 

method Bouillard et al. (1998), the wave boundary element method Perrey-Debain et al. (2004) or 

the wave-based method Desmet et al. (2002), Genechten et al. (2011). One of them is the 

Variational Theory of Complex Rays (VTCR). It approximates the vibrational problem solution 

with a sum of shape functions that identically satisfies the equilibrium Eqs. while addressing the 

boundary conditions in weak form. This approach allows a priori independent approximations 

among subdomains. Thus, different (in number and type) shape functions can be chosen for each 

subdomain providing great flexibility. It has already been applied to plate theory Ladevèze et al. 

(2001), shallow shell theory Cattabiani et al. (2015), to general shell theory Riou et al. (2004), to 

transient dynamics Chevreuil et al. (2007), to orthotropic plates Kovalevsky et al. (2014), to 3D 

acoustic Kovalevsky et al. (2012) and, on a wide frequency band Ladeveze and Riou (2005), 

Barbarulo et al. (2014).  

In the present work the VTCR is applied to orthotropic shallow shell structures. Section 2 

illustrates the general shallow shell theory and the notation. Section 3 presents the VTCR adapted 

for the shallow shell theory and its improvements. In the end, Section 4 validates the method on a 

relevant numerical example comparing the VTCR solution with a FEM reference and analyzing 

performances. 

 

 

2. General shallow shell theory 
 

In this Section the equilibrium and boundary equations of the general kirchhoff-Love theory for 

orthotropic shallow shells are examined. The present development is akin to the one provided in 

Ventsel and Krauthammer (2001) and van der Heijden (2009). 

 

2.1 The equilibrium equations 
 
The general reference example is presented in Fig. 1. The focus is on a generic subdomain    

of the frame structure in Fig. 1. For the sake of clarity various boundary, corner, coupling, and 

surface conditions are split in Fig. 2. The      symbol refers to a generic boundary of    where 

condition  1 is applied. In the particular case of a boundary shared among subdomains,   is 

used instead. In the same way, for the conditions applied on corners, a symbol       is used.  

                                           
1The symbol   stands for a generic constraint i.e.     is the displacement field. 
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Fig. 1 Generic frame structure described in Section 2.1 

 

  

(a) Boundary conditions (b) Corner conditions 

  

(c) Coupling conditions (d) Coupling conditions 

Fig. 2 Boundary, corner, coupling and surface constraints of the generic structure frame of Fig. 1 

subdivided and highlighted 

 

 

The generic corner shared among subdomains is indicated with  . The over-line symbol   

indicates that quantity   is known (i.e. the value of the boundary constraint). The term  ̂  is the 

normal unit vector of the boundary directed outward   .  

A subdomain is subject to loads, displacements constraints, and continuity conditions along the 

boundaries (Fig. 2(a)) and on the corners (Fig. 2(b)) as well as a distributed load per unit surface 

   (Fig. 2(d)). The displacement constraint      ,       -
  along        can be divided in in-

plane    and out-of-plane     components
1
. In the same way, the load per unit length 

     [       ]
 
 along        can be divided in in-plane    and out-of-plane    components. 

The rotation condition     ̂ 
 is imposed along      ̂ 

    while a bending moment per unit length 

   is applied along       . The corners of the subdomain are subject to out-of-plane 

displacements constraints     on      
   and punctual forces     on      

  . Coupling 

conditions are applied on   and along  , in order to ensure continuity of stresses and 

displacements among subdomains (Fig. 2(c)). 

All quantities of interest are defined in the complex domain. Each one is considered multiplied by 

𝑒𝑗𝜔𝑡 where 𝑗   √   is the imaginary unit,     𝑓 is the angular frequency and   is the time. 

                                           
1   is the transpose operator. 
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The geometry of the subdomain can be approximated by its projection on the local plane defined by 

the orthonormal basis * ̂   ̂   ̂ + and the displacement field can be restricted to (Kirchhoff’s kinematics 

assumptions) 

  
           

             

    [
      

      
]  

where   
  is the displacement thorough the thickness of the shell,   ,    and    are respectively the 

total, the in-plane and the out-of-plane displacements of the middle surface and    is the curvature 

matrix.     *        + is the set of fields that satisfies the equilibrium equations. 

  
    

  finite energy displacement set,                      (1) 

*     +     finite energy generalized stress set,                  (2) 

             𝑕  
      over   ,                     (3) 

  (    )         𝑔     𝑕  
      over   ,               (4) 
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],                        (10) 
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,         𝑕                  (11) 
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  (          )
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  (          )
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             (13) 

        (  𝑗   ),                           (14) 

        (  𝑗   ),                           (15) 

      (  𝑗   ),                            (16) 

where    and    are Hooke’s plane stress operators concerning in-plane and out-of-plane stresses 

respectively,    is the density, 𝑕  is the shell thickness,      and      are the Young moduli along 

directions   and   respectively,     and     are the relative damping coefficients of the Young 
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moduli,      and      are the Poisson’s ratios (   ) and (   ) respectively,      is the in-plane 

shear modulus,     is its specific damping coefficient,      is the inner matrix product operator, 

, -    
 

 
(    ) is the symmetric part operator, 𝑒 (   ) is the component (   ) of the matrix 

  , and    and    are the stress and stress moment resultants tensors respectively. As suggested in 

Cattabiani et al. (2015), in-plane inertia is not neglected. The sub-space of    associated with 

homogenized conditions (    ) is denoted as      *           +. This definition will be useful 

in the next Sections. 
 

2.2 Boundary conditions 
 

In order to present a well-posed problem, three conditions must be imposed along each boundary and 

one on each corner. Boundary and corner conditions presented in Fig. 1 can be classified in this way: 

1. an in-plane condition, either a displacement constraint or a load per unit length (   or   ), 

2. an out-of-plane condition, either a displacement constraint or a load per unit length (   or   ), 

3. either a rotation or a bending moment per unit length (    ̂ 
 or   ), 

4. an out-of-plane condition, on corners either a displacement constraint or a point load (    or    ). 

Boundary conditions in the most general case are 

    {
        

 𝑗      
,                                   (17) 

    {
        

 𝑗      
,                                   (18) 

    ̂ 
 (   ) ̂   {

    ̂ 
       ̂ 

 

 𝑗   ̂ 
       ̂ 

,                           (19) 

      ̂      𝑗   
     ,                             (20) 

   (    ) ̂   ( ̂ 
    ̂ )   ̂  , 

 (    ) ̂  ( ̂ 
    ̂ )  ̂      𝑗   

     ,                     (21) 

    ̂ 
    ̂      𝑗   

                              (22) 

 

 

 

Fig. 3      subdomains (   included) sharing the same boundary   
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Fig. 4      subdomains (   included) sharing the same corner   

 

 

where  ̂  is the tangent unit vector, 𝑗  is the index relative to the other subdomains sharing with    the 

boundary  , and    is their total number    excluded) as is shown in Fig. 3. 

Corner conditions in the most general case are 

     {
          

  𝑗       
,                                     (23) 

     ̂  
    ̂     ̂  

    ̂        𝑗   
     ,                      (24) 

where  ̂   and  ̂   are outward normal unit vectors of the two boundaries of    sharing the corner  . 

 ̂   and  ̂   are their respective tangent unit vectors directed towards the corner. As for 𝑗 , the index 𝑗  

is relative to other subdomains sharing with    the corner  .    is their total number (   excluded) as 

is shown in Fig. 4. 

 

 

3. Shallow shell-VTCR theory 
 

In this Section the VTCR developed for shallow shell structures is illustrated. Since the VTCR is a 

Trefftz method, the solution is searched in a function set that satisfy equilibrium equations.. Boundary and 

corner residuals are addressed in weak form. The weak variational problem is: 

find the solution set      *           +     where 𝑖  ,     - is the index related to the 

subdomain    such that 
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where     is the test functions space being VTCR a Galerkin method. Ladevèze in Ladevèze et al. 

(2003) proved uniqueness and existence properties in general elastic theory. Since shell theory is a 

particularization of such theory, those demonstrations (properly adapted to meet shell theory 

approximations) hold in our specific case. 

 

3.1 Discretization 
 

Different sets of shape functions can be chosen. In Riou et al. (2004) plane waves were chosen, 

meanwhile in Kovalevsky (2012) Fourier functions were selected. In this work plane waves are used 

since integrals over straight boundaries can be calculated analytically, drastically reducing computational 

costs. Their generic form is 

𝑓      ̂ 𝑒 
                                        (26) 

where    𝑘   ̂  is the wave vector,  ̂  is the unit direction vector of the wave vector and 𝑘  is a 

complex scalar term,    is the amplitude of the plane wave,  ̂  is the unit direction of the plane wave, 

and      is the relative position vector. The relative coordinate system is located in the geometric center
1
 

of the element and  ̂ is directed along the normal surface. The unknown parameters are * ̂  𝑘    +. The 

first two are chosen so that equilibrium equations are identically satisfied meanwhile the amplitude is set 

by the weak variational formulation. The unit direction vector  ̂  is set a priori. This is the only 

discretized parameter of the VTCR. This class of shape functions can be divided into propagative and 

evanescent waves. These are both needed as explained in Riou et al. (2004). The difference between them 

lies in the unit direction vector  ̂  that, in case of propagative waves, is 

 ̂    [
 
 
]                                    (27) 

                                           
1The geometric center is chosen just for the sake of convenience. 
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Fig. 5 Qualitative behavior of a propagative wave described in Section 3.1 

 

 

Fig. 6 Qualitative behavior of an evanescent wave described in Section 3.1 

 

 

where 

  [
cos(  )  sin(  )
sin(  ) cos(  )

]                              (28) 

is the rotation matrix and     ,    ) is the discretized angle of the plane wave direction. Their 

qualitative behavior is pictured in Fig. 5. 

The case of evanescent waves is slightly different. By definition these waves are evanescent along one 

direction and propagative along the orthogonal one as depicted in Fig. 6. 

In Cattabiani et al. (2015) the unit direction vector of these rays is 

 ̂    [
cosh(  )
j sinh(  )

]                                (29) 

where    is a different discretized angle in the complex domain. Substituting the generic shape function 

defined in Eq. (26) with a given unit direction vector  ̂  in Eqs. (3) and (4) leads to a linear set of 

equilibrium equations that in matrix form is 

                                            (30) 

where       (𝑘 ) is a     matrix that depends on 𝑘 . In order to get untrivial results (    ) the 

dispersion equation must be imposed 

    ,  -   .                                   (31) 

It provides the values of 𝑘  for the specified unit direction vector  ̂ . When 𝑘  is extracted from Eq. 

(31) the term  ̂  can be obtained by re-injecting 𝑘  in Eq. (31) and enforcing that 

‖ ̂ ‖   .                                    (32) 

As explained in Cattabiani et al. (2015), since in-plane inertia is not neglected, Eq. (31) provides four 

wavenumbers for each wavevector. Three of them are propagative rays and one corresponds to an 

evanescent wave. Moreover, one of the three propagative rays controls the out-of-plane behavior while 

the other two carries in-plane stresses and displacements. 

 

3.2 Orthotropic materials 
 

Eqs. (27) and (29) are defined for isotropic materials in a cartesian coordinate system. This Section 
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illustrates necessary corrections for orthotropic materials. Kovalevsky et al. (2014) suggested to add a 

correction matrix    to address orthotropic materials in plates 

       ̂ 𝑘 ,                                   (33) 

where 

   √  𝑕  
  
[

√   
   

 √   
  

].                          (34) 

In this formulation       (  𝑕  
 ). This dependency can lead to numerical difficulties during 

calculation of 𝑘  and  ̂  because    ̂  is no more a unit vector. For example, let us consider the case 

where    ,   - . If the direction vector corrected for orthotropic materials injected in the equilibrium 

equations is    ̂  ,     -  where    , the wavenumber provided by these equations should be 

𝑘     (   ). Since this value is computed numerically, the round-off error could approximate the 

wavenumber as 𝑘      degrading results. Hence, the direction vector should be kept unitary to avoid 

numerical difficulties. In the present approach we use a slight different formulation that solves such 

problem 

   √       
 [

√   
   

 √   
  

].                          (35) 

In this case the wavevector is dimensionless suppressing numerical difficulties that can arise when 

high frequencies are involved. In other words, this modification increases the computational precision of 

𝑘  and  ̂ . 

 

 

4. Numerical example: wing 
 

This Section investigates the vibrational response of a composite aircraft wing frame structure. The 

VTCR solution is compared with a FEM reference, investigating accuracy and performances. 

 

 

    

Fig. 7 Boundary conditions and geometric dimensions of a typical composite wing described in  

Section 4.1 
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Table 1 Studied frequencies, thicknesses, and material properties of Section 4.1 

𝑓 Frequency 500 Hz 

𝑕    𝑕   Thicknesses 3 mm 

           Young moduli 125 GPa 

           Young moduli 60 GPa 

             Shear moduli 18 GPa 

             Poisson’s ratios 0.3 

         Densities 2000 kg/m^3 

𝑕   𝑕   Thicknesses 1 cm 

        Young moduli 72 GPa 

        Poisson’s ratios 0.33 

        Densities 2800 kg/m^3 

 

 

4.1 Description of the vibrational problem 
 

Geometry and boundary conditions are illustrated in Fig. 7. It is divided in fourteen subdomains   . 

Spars ,        are isotropic aluminum plates. The upper and lower skins as well as the leading edge 

are orthotropic composite shallow shells. For the sake of simplicity, every structural damping factor is 

      . The left wing cross-section is clamped. The remaining boundaries are free but the four dotted 

boundaries where is applied a distributed and oscillatory load   ,     -    . Thicknesses and 

material properties are reported in Table 1. 

 

4.2 VTCR and FEM discretizations and error indicator 
 

This Subsection describes how VTCR and FEM solutions are discretized to ensure convergence. The 

common FEM ``rule-of-thumb’’ prescribes to keep the mesh characteristic dimension smaller than one 

out of ten times the wavelength. Ihlenburg in acoustic Ihlenburg (1998) and Deraemaeker for general 

Helmholtz problems Deraemaeker (1999) proved that this rule is no more valid at mid-frequency due to 

high-scattering behavior. In particular, they affirmed that pollution error becomes predominant as the 

wavenumber increases. They suggested a corrected version 

𝑕 
 𝑘  

   

    
,                                   (36) 

where   is a characteristic dimension (0.5 m in this numerical example) of the considered problem, 𝑕  

is the characteristic mesh element length, and 𝑘 is the greatest possible wavenumber.  

In VTCR the complex frame structure is divided in fourteen subdomains. The ray number increases until 

convergence. Displacements unequivocally define the solution. Since at this frequency a slight difference 

in theories can lead to very different frequency responses, the error indicator is based on the total kinetic 

energy 

  ( )  
 

 
 𝑕  ∫     

 
𝑑𝒔,                          (37) 

𝑒    
   (       )    (     )

   (       )
,                          (38) 
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Table 2 Characteristics of the workstation used for the numerical example described in 4.1 

Cores 16 

Clock frequency 2.4 GHz 

RAM 50 Gb 

 

  
(a) FEM reference solution. (top view) (b) VTCR (top view) 

  
(c) FEM reference solution. (bottom view) (d) VTCR (bottom view) 

Fig. 8 Displacement magnitude portraits comparison at 500 Hz of the wing described in Section 4.1 

 
Table 3 DoFs and performances comparison at 500 Hz of the numerical example described in Section 4.1 

 DoFs Wallclock Time h:m:s RAM consumption 

VTCR 5936 00:00:47 470 Mb 

FEM 18 520 944 02:36:21 9.676 Gb 

 

 
where         is the displacement calculated by Abaqus and       is the displacement calculated 

by VTCR theory. 

Table 2 reports principal characteristics of the used workstation. 

 

4.3 VTCR-FEM comparison at 500 Hz 
 

The FEM and VTCR displacement magnitudes portraits at 500 Hz are confronted in Fig. 8. DoFs as 

well as performances are compared in Table 3. 
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4.4 Remarks 
 

The discrepancy between VTCR and FEM is   ( )     . Even if FEM and VTCR solutions do 

not perfectly match, the energy level is similar. The amplitude magnitude portrait difference is due to 

small theory differences that at mid-frequency can be determinant. As explained in Riou et al. (2004), at 

this frequency the relatively high leading edge curvature reflect vibrational waves. FEM and VTCR 

solutions confirm such behavior demonstrating that even the shallow shell-VTCR addresses this effect. 

Since VTCR is a Trefftz method, the number of required subdomains is very small (just fourteen in this 

case). Thus, the VTCR DoFs number is very small too. In order to study performances DoFs numbers 

cannot be compared directly since FEM and VTCR are intrinsically different. Nevertheless, Table 3 

illustrates the great saving of memory and time consumption of the VTCR method even at 500 Hz. 

 

 

5. Conclusions 
 

The present work extended the VTCR to orthotropic shallow shells. Composite wings, 

fuselages, and rocket tanks are some examples of such structures in air- and spacecraft. Composite 

materials were addressed introducing a corrective term in the wave direction vector. Such 

correction is necessary to address different sound speeds along different principal directions. In 

this way, the vibrational waves (which are VTCR shape functions) propagate at different speeds 

along principal directions. In contrast to previous works, the corrective term is dimensionless 

avoiding numerical difficulties that can arise at high frequency.  

A relevant complex numerical example of a composite aircraft wing was presented to illustrate 

the method. The VTCR solution calculated at 500 Hz was compared with a FEM reference and 

performances were studied. The DoFs comparison between VTCR and FEM cannot be directly 

used to investigate performances due to the different DoFs meanings. Nevertheless, VTCR greatly 

outperformed FEM in terms of time and memory consumption proving to be a very promising 

method. 
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