
 

 

 

 

 

 

 

Advances in Aircraft and Spacecraft Science, Vol. 3, No. 1 (2016) 29-43 

DOI: http://dx.doi.org/10.12989/aas.2016.3.1.029                                                                                            29 

Copyright © 2016 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=aas&subpage=7                ISSN: 2287-528X (Print), 2287-5271 (Online) 
 
 
 

 

 
 
 

Effect of temperature and blank holder force on non-isothermal 
stamp forming of a self-reinforced composite 

 

Shankar Kalyanasundaram

 and Sudharshan Venkatesan 
 

Research School of Engineering, The Australian National University, 
31 North Road, Canberra, ACT 2601, Australia 

 
(Received March 30, 2015, Revised July 6, 2015, Accepted July 7, 2015) 

 
Abstract.  Composite materials are rapidly gaining popularity as an alternative to metals for structural and 
load bearing applications in the aerospace, automotive, alternate energy and consumer industries. With the 
advent of thermoplastic composites and advances in recycling technologies, fully recyclable composites are 
gaining ground over traditional thermoset composites. Stamp forming as an alternative processing technique 
for sheet products has proven to be effective in allowing the fast manufacturing rates required for mass 
production of components. This study investigates the feasibility of using the stamp forming technique for 
the processing of thermoplastic, recyclable composite materials. The material system used in this study is a 
self-reinforced polypropylene composite material (Curv

®
). The investigation includes a detailed 

experimental study based on strain measurements using a non-contact optical measurement system in 
conjunction with stamping equipment to record and measure the formability of the thermoplastic composites 
in real time. A Design of Experiments (DOE) methodology was adopted to elucidate the effect of process 
parameters that included blank holder force, pre heat temperature and feed rate on stamp forming. DOE 
analyses indicate that feed rate had negligible influence on the strain evolution during stamp forming and 
blank holder force and preheat temperature had significant effect on strain evolution during forming. 
 

Keywords:  self-reinforced polypropylene; real-time strain measurement system; design of experiments; 

stamp forming 

 
 
1. Introduction 

 

Current Key Criteria in the development of new products include reduction of weight, safety 

and sustainability issues, such as recyclability and the impact of these products on environment. 

The mass production of fibre reinforced composite material systems will lead to the development 

of a range of advanced lightweight systems that satisfy the above criteria.  In modern cars, it is 

estimated (Hawker et al. 2000) that 80% of fuel is wasted due to inefficiencies in the system, 19% 

of the fuel is used in moving the car and only 1% of the fuel consumed is used in moving the 

passengers. This study also concludes that 25% of all greenhouse gases emitted in USA are the 

result of automotive use and 7 billion pounds of unrecyled scrap and waste is produced in USA 

every year. In automotive applications, the replacement of steel body parts by composite materials 

can reduce weight and improve specific impact resistance.  
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In the past woven fabric reinforced composite parts were assembled by hand; by laying down 

sheets of fibre in a mould along with thermoset based resins. The part was then cured, under a 

carefully temperature and pressure controlled environment, which could take many hours to 

complete. This limited the use of composite materials to high performance low volume 

applications, such as aerospace structural components. The extended curing time was governed by 

the cross-linking behaviour of the thermoset resin which forms strong intermolecular bonds 

through a chemical reaction. These bonds cannot be broken easily, and entails that a thermoset 

matrix composite cannot be reformed once set, even when reheated. Stamp forming represents a 

method of rapid production with high quality and minimum operator skill. The capacity of 

composites to be stamp formed has come about through the development of thermoplastic matrix 

based composites. Thermoplastic matrix composites exhibit a different molecular structure to 

thermosets which allows reshaping after the initial forming process. This makes for ready forming 

of composite materials, which can be enhanced by heating the material prior to stamping. 

Cabrera et al. (2008) investigated the non-isothermal stamp forming of all polypropylene and 

glass fibre reinforced polypropylene composites. The authors used a stretch forming ring and 

varied the number of screws in the stretch forming ring to investigate the impact on stretch and 

draw forming. Stretch forming was determined to be more desirable in composite forming than 

draw forming, because draw forming tends to result in residual stresses and wrinkling in parts. A 

similar investigation was undertaken by Lee et al. (2002) who stretch formed random orientated 

glass fibre reinforced polypropylene at elevated temperatures using dome forming as the method 

of analysis. This study used the deformation of a square grid to determine the strains at the 

completion of the forming process, and did not track the strain progression throughout the 

forming. The study used the major and minor strain measures for comparison, and generated 

forming limit windows for a range of punch speeds, forming temperatures, and glass fibre volume 

fraction. The greatest formability was achieved at a temperature of 125ºC, at a punch speed of one 

centimetre per second, with a glass volume fraction of 20%. The formability was found to increase 

with increasing punch speed. Lim et al. (1999) focussed on the interaction between stretch and 

draw behaviour in forming of thermoplastic composite sheets with a knitted fabric structure. It was 

concluded that blank forming could be optimised through variation of blank holder force, punch 

shape and blank size which effectively varied the amount of stretch and draw present in the 

forming. A more in depth characterisation of woven composite deformation behaviour was 

undertaken by Cao et al. (2008). The study focussed on the mechanical properties of fabrics, rather 

than the random orientated fibre approach of Lee et al. (1999). The paper suggests that the 

dominant mechanism in woven composite forming is the intra-ply shear phenomenon, which is 

deformation by the movement of the fibres with respect to each other within a lamina. A further 

characterisation of the forming process was conducted by Lussier at al. (2002) who investigated 

the impact of temperature on the shearing behaviour of plain weave and satin weave materials. 

There was difficulty in achieving repeatability of results, which indicates the impact of 

manufacturing imperfections and alignment during testing on results. Our previous works 

(Compston et al. 2004, Mosse et al. 2005, Mosse et al. 2006a, b, Gresham et al. 2006, Sexton et 

al. 2012, Kalyanasundaram et al. 2013, Davey et al. 2013) have shown that feed-rate, blank holder 

force and tool temperatures have important influence in the stamp forming of composite material 

system.  

This study investigates the feasibility of using the stamp forming technique for the processing 

of thermoplastic, recyclable composite materials. The composite material studied in this study is 

an all-Polypropylene composite material (Curv® ). The investigation includes a detailed 
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experimental study based on strain measurements using a non-contact optical measurement system 

in conjunction with stamping equipment to record and measure the formability of the 

thermoplastic composites in real time 

 

 

2. Experimental procedures 
 

The apparatus configuration included a stamping press and a heating press. The heating press 

consisted of a manually actuated hydraulic cylinder press and two heating elements in each of the 

contact faces. The press could be safely operated to a temperature of 250°C. The stamping press 

was a 300 kN double action mechanical press used to form the composite sheet to the dome 

geometry. Forming action was performed using a hydraulic ram with a stroke length of 200 mm. A 

blank holder was coupled with the press to hold down the composite sheet during the forming 

process and had a maximum holding force of 14 kN. To record the punch force, a 150 kN 

compression load cell was mounted in line with the punch and a potentiometer was used to 

measure the displacement. This study employs biaxial forming to investigate two of the main 

forming modes that commonly occur, namely stretching and drawing. Hemispherical-shaped 

punch is used to produce the necessary forming modes. 

An open die configuration was chosen to provide for the coupling of 3D strain measurement 

system (ARAMIS) manufactured by GOM, mbH, Germany, which provides deformation and 

strain analysis using 3D image correlation. The system provides a full field strain measurement 

using photogrammetric method as the samples are being tested. Schematic representation of this 

system is illustrated in Fig 1. 

 

 

 

Fig. 1 Schematic representation of ARAMIS coupled with stamping press (Venkatesan 2012) 
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Fig. 2 Stochastic pattern on circular composite material sample (Venkatesan 2012) 

 

 

To ensure the successful measurement of surface strain using the ARAMIS system, the surface 

structure of the specimens is an important factor. The specimens prepared were spray painted with 

a thin film of matte white paint. The white paint was chosen as the background to reduce the 

difficulty in attaining the correct lighting conditions and the matte finish was used to reduce the 

reflectivity of the surface of the specimens. After the application of the white background, the 

specimens were coated with a spatter pattern of black on the surface to generate a high contrast 

stochastic pattern. This is essential for the allocation of coordinates on the surface of a specimen. 

However, there is a trade-off between the number of points for calculations and the ability to fully 

resolve the surface pattern. Larger surface characteristics reduce the resolution due to less pixels 

being assigned to the surface. Smaller surface characteristics may not produce enough contrast to 

be properly identified by the cameras. Fig. 2 shows a typical pattern applied to a circular 

composite material specimen (200 mm diameter) prior to stamp forming. 

Two high speed, high resolution, digital CCD cameras recorded the images of the sample 

during the test and the deformation was calculated from these images using an area based 

matching algorithm. The two dimensional displacements recorded by each of the cameras are then 

correlated to a three dimensional measurement using intersection of the two dimensional 

measurements. The result is a three dimensional point distribution for each of the stages and the 

strain values are calculated from this point. This digital image provides a full-field contour of the 

sample and the strain distribution throughout the test. The image sampling frequency was 

maintained at 20 Hz. 

 

 

3. Results and analysis 
 

The hemispherical stamp forming of composite sheets is known to be good manufacturing 
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technique to illustrate the forming modes typically encountered in stamp forming of production 

parts. The most important modes of deformation expected to be visualized during stamp forming 

process are balanced biaxial stretch over the pole of the dome, plane strain in the non-contact 

region along the fibre directions, uniaxial tension at the die edges and deep draw mode which is 

expected to be the greatest value at an angle of 45o to the fibre orientation. Therefore, to accurately 

assess the formability, three points of interest are chosen during the course of this investigation. 

These points of interest include: Point 1-pole, Point 2-Along the fibre and Point 3-At an angle of 

45o to fibre direction. Point 1 is located at the centre of the blank which is the first point of contact 

between the punch and the blank. Point 2 is located at a distance of 40 mm along the fibre 

direction from the pole. Point 3 is located 40 mm from the pole but at an angle of 45o to the fibre 

orientation. Fig. 3 illustrates the locations of these points. 

A DOE analysis was used to derive qualitative information from the data sets to analyse the 

significance of each factors. The factors used in the study include: temperature, blank holder force 

and feed rate. The levels and settings for these factors are illustrated in Table 1.  

Statistical analysis carried out by ANOVA and DOE methods indicated (Venkatesan 2012) that 

temperature and blank holder are the significant factors in the evolution of strain during stamp 

forming and feed rate had negligible effect on forming. In the following sections, results will be 

presented on strain evolution at the three points of interest. 

 

 

 

Fig. 3 Points of interest depicted on the surface of the composite blanks (Venkatesan, 2012) 

 
Table 1 Governing factors and levels 

Factors Levels 

Blank holder force(kN) 2,7,14 

Feed rate (mm/s) 20, 40,60 

Temperature(centigrade) 20,40,60,80,100,120,140) 
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Fig. 4 Main effect of process parameters on mean major strain at point 1 (Venkatesan 2012) 

 

 

3.1 Effect of process parameters on forming strain at point 1 
 
Fig. 4 elucidates the effect of the process parameters on mean major strain measurements at 

point 1. The mean major strain measurements at the point of interest shows an increasing trend 

with increase in temperature. This trend further diverges with increase in forming depth. At a 

depth of 10mm, the mean major strain measurements show a very small increase, with temperature 

increasing from ambient temperature to 140°C. This effect is not considered as significant. 

However, the effect is accentuated with increase in forming depth. At 20 mm of forming depth, the 

influence of temperature results in an increase of 17% at 140°C and at 30mm this is further 

increased to 26%. At a final depth of 40mm, the increase in temperature from ambient to 140°C 

results in an increase of 42% in the strain measurements. The strain measurements recorded a 

mean major strain of 9% at room temperature to 12% at 140°C. 

Blank holder force also exerts a significant influence on the mean major strain measurements at 

the point of interest. The plotting of the mean major strain measurements at the Point 1 follows the 

observation from the DoE analysis. The plots for 10 mm and 200 mm of forming depth show that 

the lines are parallel to each other with minimal changes in the strain measurements at all three 

blank holder forces used. At a forming depth of 30 mm, the strain measurements show an 

increasing trend. This increase in blank holder force from 2 kN to 7 kN shows an increase from 

6% mean major strain measurement to 7%. A further increase in the force to 14 kN results in an 

increase from 7% to 8.1% in the strain measurement. At a depth of 40mm, the strain measurement 

shows a similar trend. The increase in the blank holder forces results in an increase from 8% at 2 

kN to 11.8% at 14 kN.  

Fig. 5 shows the plots of the mean strain measurements of εx, εy and εxy at point 1. The 

measurements for the εx and εy show an influence of temperature starting at 20 mm and blank  
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Fig. 5 Effects of strain on mean values of strain components at point 1(Venkatesan 2012) 
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holder forces at 30 mm of forming depth. Increasing the temperature from ambient to 140°C 

shows an increase of 16% for εx and 15.8% for εy measurements at a depth of 20 mm. At 30 mm, εx     

records an increase of 28% with an increase from ambient to 140°C while εy shows an increase of 

25%. This increase is further accentuated at 40mm to results in an increase of 50.5% in εx   

measurements and 48.7% for εy measurements. The distribution of the strain in x and y direction at 

this point of interest bear a striking similarity to the major strain measurements. One of the most 

important factors governing this similarity to major strain is the weave patterns in the composite 

material. The fibre orientation lies along the x and y directions and tend to stretch in a balanced 

manner along both these axes, and this behaviour results in similar measurements along these axes. 

Major strain measurements are dependent on εx, εy and the shearing strain. An observation from the 

graphing of the shearing strain at the forming depth shows that the shearing strain measurements 

are extremely small at this point of interest and are negligible. Thus, it can be concluded that the 

major strain measurements are driven by εx and εy at this point of interest. 

 

3.2 Effect of process parameters on forming strain at point 2 
 
The plotting of mean major strain as a function of the significant process parameters are 

illustrated in Fig. 6. The increase in the mean major strain measurements, with increase in 

temperature can be observed from a forming depth of 10 mm. An increase from ambient 

temperature to a maximum of 140°C, shows an increase of 8% in the strain measurements. At 20 

mm of forming depth, there is a similar increase in the strain measurements from 2.5% at ambient 

temperature to 4% at 140°C. The increasing trend continues in a steady manner at 30 mm and 40 

mm of forming depth. At 40 mm, there is an increase from 9.3% at room temperature to 12.6% at 

140°C. The blank holder forces show an influence from 30 mm of forming depth. The increase in 

blank holder force from 2 kN to 14 kN results in an increase from 6.88% to 8.1% in mean major 

 

 

 

Fig. 6 Main effect of process parameters on mean major strain at point 2 (Venkatesan 2012) 
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strain measurements. At 40 mm, the increase in blank holder force from 2 kN to 7 kN results in an 

increase in the strain measurements from 8% to 10.5% which further increases to 12.8% at 14 kN 

of force. 

The increase in the mean major strain measurements, with increase in temperature can be 

observed from a forming depth of 10 mm. An increase from ambient temperature to a maximum of 

140°C, shows an increase of 8% in the strain measurements. At 20 mm of forming depth, there is a 

similar increase in the strain measurements from 2.5% at ambient temperature to 4% at 140°C. 

The increasing trend continues in a steady manner at 30 mm and 40 mm of forming depth. At 

40mm, there is an increase from 9.3% at room temperature to 12.6% at 140°C. The blank holder 

forces show an influence from 30 mm of forming depth. The increase in blank holder force from 

2kN to 14kN results in an increase from 6.88% to 8.1% in mean major strain measurements. At 40 

mm, the increase in blank holder force from 2 kN to 7 kN results in an increase in the strain 

measurements from 8% to 10.5% which further increases to 12.8% at 14 kN of force 

Fig. 7 illustrates the evolution of εx and εy in addition to shearing strain at Point 2. These strain 

measurements along the x co-ordinate at Point 2 shows a similar trend to that of the mean major 

strain. εx shows an increasing trend from a depth of 10 mm during the stamp forming. The strain 

measurements increase from 1.2% at ambient temperature to 1.6% at 140°C at 10 mm of depth 

before increasing from 2.8% at ambient temperature to 3.2% at 140°C at 20 mm. At 30 mm of 

forming depth, the percentage of increase rises further from 7.1% to 9.6%. At 40mm of forming 

depth, the mean εx measurement increases from a measured value of 8.6% at ambient temperature 

to that of 13.8% at 140°C. At this point of interest, though the ANOVA analysis shows a 

significant influence of temperature and blank holder force, both the measured values of strain 

along y direction and the shearing strain are very small. The strain at this point of interest is largely 

governed by the stiffness of the fibres. In a stamp forming scenario, the tendency of the fibres to 

stretch only along the x direction/ fibre orientation are highlighted by this analysis. The low values 

of measured strain εy and shearing strain show that the region is governed by plane strain  

 

 

 

Fig. 7 Effects of strain on mean values of strain components at point 2 (Venkatesan 2012) 
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Fig. 7 Continued 

 

 

deformation. It can thus be concluded that the mean major strain values at this point are governed 

by εx. No attempt to further discuss the effects of the process parameters on εy and εy are made for 

this point of interest.  

The second independent process parameter that influences the strain measurements at this point 

of interest is the blank holder force. The influence of the blank holder forces can be observed from 

a forming depth of 30 mm. There is a significant increase in the mean εx strain measurements 

correlating with an increase in blank holder force. At a forming depth of 30 mm, the mean εx   

strain measurement increases from a low value of 6.6% at 2 kN to a high value of 8% at 14 kN of 

blank holder force. At 40 mm of forming depth, a similar increasing trend can observed. The strain 

measurement increases from 8.4% at 2 kN to 13% at 14 kN. This increasing trend influenced by  
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Fig. 8 Main effect of process parameters on mean major strain at point 3 (Venkatesan 2012) 

 

 

the increase in blank holder forces shows the influence of the force applied on the amount of 

stretch in this region of the blank. It can be interpreted as an increase in plane strain with increase 

in the blank holder force. Another important observation lies in the analysis of the measured 

values of strain for this region. Though plain strain regions typically do not experience any tensile 

forces, the failure behaviour in the specimen would likely be similar to that experienced in tension. 

During the characterisation of the all-PP composite material (Venkatesan 2012), it was observed 

that the failure in the specimen was driven by the failure in the fibres. Catastrophic failure in the 

fibres would result in the consequent damage in the matrix. The strain values recorded during the 

failure due to tensile loading is far greater than those observed in this region. It can be safely 

assumed that there is no failure in this region during the stamp forming process to a final depth of 

40mm for this class of composite. 

 

3.3 Effect of process parameters on forming strain at point 3 
 
The plotting of mean major strain as a function of significant process parameters are illustrated 

in Fig. 8. The influence of temperature can be clearly visualised at forming depths of 20 mm and 

above. The mean major strain measurements show an increasing trend with increase in 

temperature. At a depth of 20 mm, the major strain measurement at the point of interest is 4% 

increasing to a measured value of 6.3% at a temperature of 140°C. This increasing trend can be 

observed at 30 mm and 40 mm of forming depth. An important observation from Fig. 7 is the rate 

of increase in the mean major strain measurements with increase in temperature. The increase in 

the measurements from ambient temperature to 100°C is reasonably steady at all the depths above 

20 mm. However, the rate of increase is rapid above 100°C. At 30 mm, the mean major strain 

value is measured at 14% at 140°C and an increase in depth by 10 mm at this temperature results 

in an increase to 23%.  
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Blank holder forces also show an increasing trend at a forming depth of 30 mm and above. At 

lower depths of 10 and 20 mm, the graphs are near-parallel, with no significant change with 

increase in the force applied. At 30 mm of forming depth, the mean major strain measurement 

increases from 10% to a measured value of 13.5% corresponding to an increase in blank holder 

force from 2 kN to 14 kN. This increase is also observed at 40 mm where at 2 kN the mean major 

strain was measured at 15% to a value of 20% at 14 kN. 

 

 

 

 

Fig. 9 Effects of strain on mean values of strain components at point 3 (Venkatesan 2012) 
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Fig. 9 Continued 

 

 

Fig. 9 illustrates the constituent strain of major strain at Point 3. In a similar trend to major 

strain variation, all the constituent strain shows an increasing trend with increase in temperature. 

While εx and εy show increasing trends, the measured value of the strain are significantly lower 

than those of the shearing strain measurements. εx and εy show very similar measurements and are 

therefore discussed together in brief in this section. The strain measured at 20 mm of forming 

depth increase from a value of approximately 4.5% at ambient temperature to a high value of 

6.02% at 140°C. At 30 mm and 40 mm of forming depth, the measured values at ambient 

temperature are 7% and 8.5% respectively, increasing to 8% and 9.6% at 140°C respectively. The 

slope of the increase through the temperatures is steady. However, shearing strain at this point of 

interest is observed to be the dominant strain. The shear strain measurements are significantly 

influenced by temperature. At 20 mm, the mean shear strain measurements record at increase from 

4% at ambient temperature to a value of 6.8% at 140°C with a steady increase. At 30 mm, the rate 

of increase changes in line with the observed major strain measurements. The mean shear strain 

measurements increase from 6% at ambient temperature to 8.2% at 100°C. The increase in 

temperature from 100°C to 140°C shows a rapid increase in strain measurements at a value of 

13%. This trend can also be observed at a depth of 40mm with a resulting shear strain of 24.5% at 

140°C. The possible cause for this rapid increase in the measured mean shear strain values is the 

high temperature dependency of the polypropylene matrix. Polypropylene is known to undergo a 

physical phase change between 80-100°C. Further increase in temperature from 100°C results in a 

change towards a very viscous state. The melting temperature of polypropylene is around 170°C. 

This highly softened state beyond 100°C results in a greatly reduced resistance to shearing. This 

consequently leads to high shearing values. Thus, it can be concluded that shearing strain is the 

dominant straining mechanism at this point of interest. 

Blank holder forces also play an important role in the deformation of the all-PP composite at 

this point of interest. Increase in the blank holder forces result in an increase in the strain along x 
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and y directions in addition to an increase in the shear strain. This influence is observable only at 

forming depths of 30 mm and above. Similar to the effect of temperature, increase in blank holder 

forces results in an increase in shear strain measurements at this point of interest. At 30 mm, the 

mean shear strain values increase from 7.12% at 2 kN to 11.35% at 14 kN. At 40 mm, the increase 

is recorded from 12.1% at 2 kN to 19.8% at 14 kN.  

 

 

4. Conclusions  
 

Stamp forming of hemispherical domes were carried out by studying the influence of process 

parameters of temperature, blank holder force and feed rate. It was found that temperature and 

blank holder force exhibited significant effect on the formability. The forming behaviour of the 

composite was governed by a combination of stretch and draw forming. Biaxial stretching in a 

composite material will occur mainly in the area of contact with the punch. The process 

temperatures used in this investigation induced a phase change in the composite from a solid phase 

at an ambient temperature to a soft semi-solid phase at 80-100oC to a near melt condition at 140oC. 

This change in the phase resulted in an increase in the amount of biaxial stretch experienced by the 

specimens. Stretching was a dominant phenomenon along the fibre direction which is facilitated 

by the low stiffness of the polypropylene fibres. An increase in temperature and blank holder 

forces resulted in an increase in the strain measurements. This can be concluded as increasing 

stretch in forming the parts. Polypropylene being a soft material showed a very high dependency 

on the forming temperature during forming. An increase in the forming temperature significantly 

increased the shearing strain, thereby increasing the amount of draw experienced by the specimen. 

The maximum values of the measured strain were found to be in the region around 45o to the fibre 

orientation. This study demonstrates that it is feasible to produce components for this material 

system using stamp forming by carefully choosing the process parameters. 
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