Techno Press
Techno Press

Smart Structures and Systems   Volume 16, Number 6, December 2015, pages 1107-1132
DOI: http://dx.doi.org/10.12989/sss.2015.16.6.1107
 
Damage detection in structural beam elements using hybrid neuro fuzzy systems
Kamil Aydin and Ozgur Kisi

 
Abstract     [Full Text]
    A damage detection algorithm based on neuro fuzzy hybrid system is presented in this study for location and severity predictions of cracks in beam-like structures. A combination of eigenfrequencies and rotation deviation curves are utilized as input to the soft computing technique. Both single and multiple damage cases are considered. Theoretical expressions leading to modal properties of damaged beam elements are provided. The beam formulation is based on Euler-Bernoulli theory. The cracked section of beam is simulated employing discrete spring model whose compliance is computed from stress intensity factors of fracture mechanics. A hybrid neuro fuzzy technique is utilized to solve the inverse problem of crack identification. Two different neuro fuzzy systems including grid partitioning (GP) and subtractive clustering (SC) are investigated for the highlighted problem. Several error metrics are utilized for evaluating the accuracy of the hybrid algorithms. The study is the first in terms of 1) using the two models of neuro fuzzy systems in crack detection and 2) considering multiple damages in beam elements employing the fused neuro fuzzy procedures. At the end of the study, the developed hybrid models are tested by utilizing the noise-contaminated data. Considering the robustness of the models, they can be employed as damage identification algorithms in health monitoring of beam-like structures
 
Key Words
    neuro fuzzy system; grid partitioning; subtractive clustering; beam; damage detection
 
Address
Kamil Aydin: Erciyes University, Department of Civil Engineering, 38039 Kayseri, Turkey
Ozgur Kisi: Canik Basari University, Department of Civil Engineering, Ilkadim, 55080 Samsun, Turkey
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2018 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: technop@chol.com