Techno Press
Techno Press

Earthquakes and Structures   Volume 10, Number 1, January 2016, pages 53-71
DOI: http://dx.doi.org/10.12989/eas.2016.10.1.053
 
Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall
Gerardo De Canio, Gianmarco de Felice, Stefano De Santis, Alessandro Giocoli, Marialuisa Mongelli, Fabrizio Paolacci and Ivan Roselli

 
Abstract     [Full Text]
    Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods.
 
Key Words
    3D optical measurement; passive markers; steel reinforced grout; shaking table; structural damage monitoring; modal analysis
 
Address
Gerardo De Canio, Alessandro Giocoli, Ivan Roselli: Qualification of Materials and Components Laboratory, ENEA, Via Anguillarese 301 - 00123 Rome, Italy

Gianmarco de Felice, Stefano De Santis, Fabrizio Paolacci: Department of Engineering, Roma Tre University, Via Vito Volterra 62 - 00146 Rome, Italy
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2019 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: technop@chol.com