Techno Press
Tp_Editing System.E (TES.E)
Login Search


sem
 
CONTENTS
Volume 66, Number 5, June10 2018
 

Abstract
An investigation is made in the present work on the post-buckling and geometrically nonlinear behaviors of moderately thick perfect and imperfect rectangular plates made-up of functionally graded materials. Spectral collocation approach based on Legendre basis functions is developed to analyze the functionally graded plates while they are subjected to end-shortening strain. The material properties in this study are varied through the thickness according to the simple power law distribution. The fundamental equations for moderately thick rectangular plates are derived using first order shear deformation plate theory and taking into account both geometric nonlinearity and initial geometric imperfections. In the current study, the domain of interest is discretized with Legendre-Gauss-Lobatto nodes. The equilibrium equations will be obtained by discretizing the Von-Karman\'s equilibrium equations and also boundary conditions with finite Legendre basis functions that are substituted into the displacement fields. Due to effect of geometric nonlinearity, the final set of equilibrium equations is nonlinear and therefore the quadratic extrapolation technique is used to solve them. Since the number of equations in this approach will always be more than the number of unknown coefficients, the least squares technique will be used. Finally, the effects of boundary conditions, initial geometric imperfection and material properties are investigated and discussed to demonstrate the validity and capability of proposed method.

Key Words
spectral collocation method; functionally graded plates; geometric nonlinearity; least squares technique; imperfection; quadratic extrapolation technique

Address
S. Amir M. Ghannadpour and Payam Kiani: Aerospace Engineering Department, Faculty of New Technologies and Engineering, Shahid Beheshti University, G.C, Tehran, Iran

Abstract
Effects of crack separation, bridge area, on the tensile behaviour of concrete are studied experimentally and numerically through the Brazilian tensile test. The physical data obtained from the Brazilian tests are used to calibrate the two-dimensional particle flow code based on discrete element method (DEM). Then some specially designed Brazilian disc specimens containing two parallel cracks are used to perform the physical tests in the laboratory and numerically simulated to make the suitable numerical models to be tested. The experimental and numerical results of the Brazilian disc specimens are compared to conclude the validity and applicability of these models used in this research. Validation of the simulated models can be easily checked with the results of Brazilian tests performed on non-persistent cracked physical models. The Brazilian discs used in this work have a diameter of 54 mm and contain two parallel centred cracks (90o to the horizontal) loaded indirectly under the compressive line loading. The lengths of cracks are considered as; 10 mm, 20 mm, 30 mm and 40 mm, respectively. The visually observed failure process gained through numerical Brazilian tests are found to be very similar to those obtained through the experimental tests. The fracture patterns demonstrated by DEM simulations are mostly affected by the crack separation but the tensile strength of bridge area is related to the fracture pattern and failure mechanism of the testing samples. It has also been shown that when the crack lengths are less than 30 mm, the tensile cracks may initiate from the cracks tips and propagate parallel to loading direction till coalesce with the other cracks tips while when the cracks lengths are more than 30 mm, these tensile cracks may propagate through the intact concrete itself rather than that of the bridge area.

Key Words
experimental tests; discrete element method; Brazilian discs; non-persistent cracks; crack separation

Address
Vahab Sarfarazi: Department of Mining Engineering, Hamedan University of Technology, Hamedan, Iran
Hadi Haeri: Young Researchers and Elite Club, Bafgh Branch, Islamic Azad University, Bafgh, Iran
Alireza Bagher Shemirani: Department of Civil Engineering, Sadra Institute of Higher Education, Tehran, Iran
Zheming Zhu: College of Architecture and Environment, Sichuan University, Chengdu 610065, China
Mohammad Fatehi Marji: Mine Exploitation Engineering Department, Faculty of Mining and Metallurgy, Institution of Engineering, Yazd University, Yazd, Iran

Abstract
A theoretical formulation based on the linearized potential theory, the Descartes\' rule and the extremum optimization method is presented to calculate the critical distance of lifting points of the fully balanced hoist vertical ship lift, and to study pitching stability of the ship lift. The overturning torque of the ship chamber is proposed based on the Housner theory. A seven-free-degree dynamic model of the ship lift based on the Lagrange equation of the second kind is then established, including the ship chamber, the wire rope, the gravity counterweights and the liquid in the ship chamber. Subsequently, an eigenvalue equation is obtained with the coefficient matrix of the dynamic equations, and a key coefficient is analyzed by innovative use of the minimum optimization method for a stability criterion. Also, an extensive influence of the structural parameters contains the gravity counterweight wire rope stiffness, synchronous shaft stiffness, lifting height and hoists radius on the critical distance of lifting points is numerically analyzed. With the Runge-Kutta method, the four primary dynamical responses of the ship lift are investigated to demonstrate the accuracy/reliability of the result from the theoretical formulation. It is revealed that the critical distance of lifting points decreases with increasing the synchronous shaft stiffness, while increases with rising the other three structural parameters. Moreover, the theoretical formulation is more applicable than the previous criterions to design the layout of the fully balanced hoist vertical ship lift for the ensuring of the stability.

Key Words
fully balanced hoist vertical ship lift; stability; critical distance of lifting points; linearized potential theory; Descartes

Address
Xionghao Cheng, Duanwei Shi, Hongxiang Li, Re Xia, Yang Zhang and Ji Zhou: School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

Abstract
This paper deals with the lateral - torsional motion of bridges provided with external cables acting as dampers under the action of horizontal dynamic loads or of walking human crowd loads. A three dimensional analysis is performed for the solution of the bridge models. The theoretical formulation is based on a continuum approach, which has been widely used in the literature to analyze bridges. The resulting equations of the uncoupled motion are solved using the Laplace Transformation, while the case of the coupled motion is solved through the use of the potential energy. Finally, characteristic examples are presented and useful results are obtained.

Key Words
bridges; stay cables; footbridges; dynamic behaviour; damping systems

Address
Ioannis G. Raftoyiannis and George T. Michaltsos: Department of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechneiou Str., Athens 15780, Greece

Abstract
When the irregularities occurred in buildings, affect their seismic performance. This paper has focused on one of the types of irregularities at the height that named setback in elevation. For this purpose, several multistorey Reinforced Concrete Moment Resisting Frames (RCMRFs) with different types of setbacks were designed according to new edition of Iranian seismic code. The nonlinear time history analysis was performed to predict the seismic performance of frames subjected to seven input ground motions. The assessment of the seismic performance was done considering both global and local criteria. Results showed that the current edition of Iranian seismic code needs to be modified in order to improve the seismic behaviour of reinforced concrete moment resisting setback buildings. It was also shown that the maximum damages happen at the elements located in the vicinity of the setbacks. Therefore, it is necessary to strengthen these elements by appropriate modification of Iranian seismic code.

Key Words
RC buildings; Irregularity in elevation; Setback frame; Seismic performance; Standard 2800

Address
Alireza Habibi: Department of Civil Engineering, Shahed University, The beginning of the Tehran-Qom Highway, 3319118651, Tehran Province, Tehran, Iran
Meisam Vahed and Keyvan Asadi: Department of Civil Engineering, University of Kurdistan, Kurdistan Province, Sanandaj, Pasdaran Street, 6617715175, Iran

Abstract
By employing the nonlocal continuum field theory of Eringen and Von Karman nonlinear strains, this paper presents an analytical model for linear and nonlinear dynamics analysis of single-walled carbon nanotubes (SWNTs) conveying fluid with different boundary conditions. In the linear analysis the natural frequencies and critical flow velocities of SWNTs are computed. However, in the nonlinear analysis the effect of nonlocal parameter on nonlinear dynamics of cantilevered SWNTs conveying fluid is investigated by using bifurcation diagram, phase plane and Poincare map. Numerical results confirm existence of chaos as well as a period-doubling transition to chaos.

Key Words
fluid conveying single-walled carbon nanotube; nonlocal continuum field theory; Von Karman nonlinear strain; chaos

Address
Seyed Ali Hosseini Kordkheili and Taha Mousavi: Aerospace Engineering Department, Sharif University of Technology, Azadi Ave., Tehran, Iran
Hamid Bahai: School of Engineering and Design, Brunel University, Uxbridge, UB8 3PH, London, U.K.

Abstract
This study aims to investigate the flexural behaviour of glass fibre reinforced polymer (GFRP) laminated hybrid fibre reinforced concrete (HFRC) beams. The flexural and ductility performance of GFRP laminated HFRC beams having different proportions of polyolefin and steel fibres with 1.0% of total volume fraction were investigated. The parameters of this investigation included: load and deflection at first crack, yield, and ultimate stages, ductility and crack width. A total of seven beams of 150x250 mm in cross-section were tested in the laboratory over an effective span of 2800 mm. One reinforced concrete (RC) beam without any internal or external GFRP was taken as the reference beam. Of the remaining six beams, one beam was strengthened with GFRP, one beam with 100% steel fibres was strengthened with GFRP and four beams, each with different volume proportions of polyolefin and steel fibres (20:80, 30:70, 40:60, 50:50) were strengthened with GFRP. All the above beams were tested until failure. The experimental results show that a fibre volume proportion of 40:60 (polyolefin-steel) has significantly improved the overall performance of the tested beams.

Key Words
GFRP; polyolefin fibre; steel fibre; HFRC; strength; ductility

Address
S. Syed Ibrahim, S. Eswari and T. Sundararajan: Department of Civil Engineering, Pondicherry Engineering College, Pillaichavady, Pondicherry 605-005, India

Abstract
When the centers of mass and stiffness of a building do not coincide, the structure experiences torsional responses. Such systems can consist of the underlying soil and the super-structure. The underlying soil may modify the earthquake input motion and change structural responses. Specific effects of the input motion shall also not be ignored. In this study, seismic demands of asymmetric buildings considering soil-structure interaction (SSI) under near-fault ground motions are evaluated. The building is modeled as an idealized single-story structure. The soil beneath the building is modeled by non-linear finite elements in the two states of loose and dense sands both compared with the fixed-base state. The infinite boundary conditions are modelled using viscous boundary elements. The effects of traditional and yield displacement-based (YDB) approaches of strength and stiffness distributions are considered on seismic demands. In the YDB approach, the stiffness considered in seismic design depends on the strength. The results show that the decrease in the base shear considering soft soil induced SSI when the YDB approach is assumed results only in the center of rigidity to control torsional responses. However, for fixed-base structures and those on dense soils both centers of strength and rigidity are controlling.

Key Words
torsional response; yield displacement-based approach; dynamic soil-structure interaction; strength distribution; stiffness and strength eccentricity

Address
Gholam Reza Atefatdoost: Department of Civil Engineering, Estahban Branch, Islamic Azad University, Estahban, Iran
Behtash JavidSharifi: Fars Regional Electrical Company, Shiraz, Iran
Hamzeh Shakib: Tarbiat Modares University, Tehran, Iran

Abstract
The scaled boundary finite element method is extended to evaluate the dynamic stress intensity factors and T-stress with a numerical procedure based on the improved continued-fraction. The improved continued-fraction approach for the dynamic stiffness matrix is introduced to represent the inertial effect at high frequencies, which leads to numerically better conditioned matrices. After separating the singular stress term from other high order terms, the internal displacements can be obtained by numerical integration and no mesh refinement is needed around the crack tip. The condition numbers of coefficient matrix of the improved method are much smaller than that of the original method, which shows that the improved algorithm can obtain well-conditioned coefficient matrices, and the efficiency of the solution process and its stability can be significantly improved. Several numerical examples are presented to demonstrate the increased robustness and efficiency of the proposed method in both homogeneous and bimaterial crack problems.

Key Words
scaled boundary finite element method; stress intensity factors; T-stress; improved continued-fractions

Address
Xinran Tian, Chengbin Du and Shangqiu Dai: Department of Engineering Mechanics, Hohai University, Nanjing 210098, China
Denghong Chen: College of Civil Engineering and Architecture, China Three Gorges University, Yichang 443002, China

Abstract
In this study, a four-node quadrilateral partial mixed plate element with low degrees of freedom (dofs) is developed for static and free vibration analysis of functionally graded material (FGM) plates rested on Winkler-Pasternak elastic foundations. The formulation of the presented finite element model is based on a parametrized mixed variational principle which is developed recently by the first author. The presented finite element model considers the effects of shear deformations and normal flexibility of the FGM plates without using any shear correction factor. It also fulfills the boundary conditions of the transverse shear and normal stresses on the top and bottom surfaces of the plate. Beside these capabilities, the number of unknown field variables of the plate is only six. The presented partial mixed finite element model has been validated through comparison with the results of the three-dimensional (3D) theory of elasticity and the results obtained from the classical and high-order plate theories available in the open literature.

Key Words
FGM plate; thickness flexibility effects; partial mixed plate theory; finite element; elastic foundation

Address
M. Lezgy-Nazargah and Z. Meshkani: Faculty of Civil Engineering, Hakim Sabzevari University, Sabzevar 9617976487-397, Iran


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2018 Techno-Press
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: subs@techno-press.com