Techno Press
Tp_Editing System.E (TES.E)
Login Search


You have a Free online access.
ose
 
CONTENTS
Volume 7, Number 4, December 2017
 

Abstract
Higher prediction efficacy is a very challenging task in any field of engineering. Due to global warming, there is a considerable increase in the global sea level. Through this work, an attempt has been made to find the sea level variability due to climate change impact at Haldia Port, India. Different statistical downscaling techniques are available and through this paper authors are intending to compare and illustrate the performances of three regression models. The models: Wavelet Neural Network (WNN), Minimax Probability Machine Regression (MPMR), Feed-Forward Neural Network (FFNN) are used for projecting the sea level variability due to climate change at Haldia Port, India. Model performance indices like PI, RMSE, NSE, MAPE, RSR etc were evaluated to get a clear picture on the model accuracy. All the indices are pointing towards the outperformance of WNN in projecting the sea level variability. The findings suggest a strong recommendation for ensembled models especially wavelet decomposed neural network to improve projecting efficiency in any time series modeling.

Key Words
WNN; MPMR; FFNN; sea-level; statistical downscaling

Address
Thendiyath Roshni, Md. Sajid K. and Pijush Samui: Department of Civil Engineering, National Institute of Technology Patna, Ashok Rajpath, Bihar, India-800005

Abstract
This paper introduces a BEM/RANS interactive scheme to predict the contra-rotating propeller (CRP) performance. In this scheme, the forward propeller and the aft propeller are handled by two separate BEM models while the interactions between them are achieved by coupling them with a RANS solver. By using the body force field and mass source field to represent the propeller in the RANS model, the number of RANS cells and the number of required RANS iterations reduce significantly. The method provides an efficient way to predict the effective wake, the steady/unsteady propeller forces, etc. The BEM/RANS interactive scheme is first applied to a CRP in both an axisymmetric manner and a non-axisymmetric manner. Results are shown in good agreement with the experimental data in moderate to high advance ratios. It is proved that the difference between the axisymmetric scheme and the non-axisymmetric scheme mainly comes from the non-axisymmetric bodies. It is also found that the error is larger at lower advance ratios. Possible explanations are given. Finally, some additional cases are tested which justifies that the non-axisymmetric BEM/RANS scheme is able to handle a podded CRP working at given inclination angles.

Key Words
contra-rotating propeller; boundary element method; CFD simulation; hydrodynamic analysis; propeller performance; BEM/RANS

Address
Yiran Su and Spyros A. Kinnas: Ocean Engineering Group, Department of Civil, Architectural and Environmental Engineering The University of Texas at Austin, Austin, TX 78712, USA


Abstract
The ocean environment offshore West Africa is considered to be mild. However, the generated swell from distant North and South Atlantic during austral winter and summer can reach high wave amplitudes with relatively low wave periods or low wave amplitudes with long wave periods, the later can be a crucial scenario to consider when the assessment of vessel resonance is of importance. Most offshore operations, which include offshore drilling, and installation in West Africa, are carried out from floating systems. The response of these systems and performance are governed by characteristics, such as amplitude and frequency of the wave and swell seas. It is therefore important to fully understand the sea conditions offshore Nigeria. This study covers the description of the swell sea offshore Nigeria using Bonga offshore wave measurements collected from the directional wave-rider (DWR), positioned at the Bonga site off the coast of Nigeria.

Key Words
West African swell waves; wave periods; wave heights; extreme value estimates; safe operations of floating vessels

Address
Akinsanya Akinyemi Olugbenga, Ove Tobias Gudmestad: Department of Civil, Mechanical and Material Sciences, University of Stavanger, 3056 Stavanger, Norway
Jasper Agbakwuru: Federal University of Petroleum Resources, FUPRE, Warri, Nigeria

Abstract
Calm water wave resistance plays a very important role in ship hull design. Numerical methods are meaningful for this reason. In this study, two prevailing methods, the Neumann-Kelvin and the Rankine source method, were implemented and compared. The Neumann-Kelvin method assumes linearized free surface boundary condition and only needs to mesh the hull surface. The Rankine source method considers nonlinear free surface boundary condition and meshes both the ship hull surface and free surface. Both methods were implemented and the wave resistance of a Wigley III and three Series 60(Cb=0.6, 0.7, 0.8) hulls were analyzed. The results were compared with experimental results and the merits of both numerical techniques were quantified. Based on the results, it is concluded that the Rankine source method is more accurate in the calculation of the wave-making resistance. Using the Neumann-Kelvin method, it is found to be easier to model the hull and can be used for slender ships to solve problems like wave current coupling calculation.

Key Words
calm water wave resistance; Neumann-Kelvin method; rankine source method; experiment; nonlinear free surface boundary condition

Address
Min Yu and Jeffrey Falzarano: Department of Ocean Engineering, Texas A&M University, 400 Bizzell St, College Station, Texas 77840,United States

Abstract
The Gauss-Legendre integral method is applied to numerically evaluate the Green function and its derivatives in finite water depth. In this method, the singular point of the function in the traditional integral equation can be avoided. Moreover, based on the improved Gauss-Laguerre integral method proposed in the previous research, a new methodology is developed through the Gauss-Legendre integral. Using this new methodology, the Green function with the field and source points near the water surface can be obtained, which is less mentioned in the previous research. The accuracy and efficiency of this new method is investigated. The numerical results using a Gauss-Legendre integral method show good agreements with other numerical results of direct calculations and series form in the far field. Furthermore, the cases with the field and source points near the water surface are also considered. Considering the computational efficiency, the method using the Gauss-Legendre integral proposed in this paper could obtain the accurate numerical results of the Green function and its derivatives in finite water depth and can be adopted in the near field.

Key Words
green function; finite water depth; numerical evaluation; Gauss-Legendre integral

Address
Zhitian Xie, Yujie Liu and Jeffrey Falzarano: Department of Ocean Engineering, Texas A&M University, College Station, Texas, USA 77840

Abstract
The dynamic and structural responses of a 1000-m long circular submerged floating tunnel (SFT) with both ends fixed under survival irregular-wave excitations are investigated. The floater-mooring nonlinear and elastic coupled dynamics are modeled by a time-domain numerical simulation program, OrcaFlex. Two configurations of mooring lines i.e., vertical mooring (VM) and inclined mooring (IM), and four different buoyancy-weight ratios (BWRs) are selected to compare their global performances. The result of modal analysis is included to investigate the role of the respective natural frequencies and elastic modes. The effects of various submergence depths are also checked. The envelopes of the maximum/minimum horizontal and vertical responses, accelerations, mooring tensions, and shear forces/bending moments of the entire SFT along the longitudinal direction are obtained. In addition, at the mid-section, the time series and the corresponding spectra of those parameters are also presented and analyzed. The pros and cons of the two mooring shapes and high or low BWR values are systematically analyzed and discussed. It is demonstrated that the time-domain numerical simulation of the real system including nonlinear hydro-elastic dynamics coupled with nonlinear mooring dynamics is a good method to determine various design parameters.

Key Words
ubmerged floating tunnel (SFT); hydro-elasticity; coupled dynamics; wet natural modes; dynamic/structural responses; irregular waves; vertical/inclined mooring; mooring tension; buoyancy weight ratio (BWR); shear force; bending moment

Address
Chungkuk Jin and MooHyun Kim: Department of Ocean Engineering, Texas A&M University, College Station, TX, USA

Abstract
The main objective of this study is to investigate the turning and zig-zag maneuvering performance of the well-known naval surface combatant DTMB (David Taylor Model Basin) 5415 hull with URANS (Unsteady Reynolds-averaged Navier-Stokes) method. Numerical simulations of static drift tests have been performed by a commercial RANS solver based on a finite volume method (FVM) in an unsteady manner. The fluid flow is considered as 3-D, incompressible and fully turbulent. Hydrodynamic analyses have been carried out for a fixed Froude number 0.28. During the analyses, the free surface effects have been taken into account using VOF (Volume of Fluid) method and the hull is considered as fixed. First, the code has been validated with the available experimental data in literature. After validation, static drift, static rudder and drift and rudder tests have been simulated. The forces and moments acting on the hull have been computed with URANS approach. Numerical results have been applied to determine the hydrodynamic maneuvering coefficients, such as, velocity terms and rudder terms. The acceleration, angular velocity and cross-coupled terms have been taken from the available experimental data. A computer program has been developed to apply a fast maneuvering simulation technique. Abkowitz\'s non-linear mathematical model has been used to calculate the forces and moment acting on the hull during the maneuvering motion. Euler method on the other hand has been applied to solve the simultaneous differential equations. Turning and zig-zag maneuvering simulations have been carried out and the maneuvering characteristics have been determined and the numerical simulation results have been compared with the available data in literature. In addition, viscous effects have been investigated using Eulerian approach for several static drift cases.

Key Words
ship maneuvering; turning circle; zig-zag maneuver; CFD (Computational Fluid Dynamics); DTMB 5415; drift; wave deformations; hydrodynamic derivatives; viscous effects

Address
Suleyman Duman: Department of Naval Architecture and Marine Engineering, Yildiz Technical University, Istanbul, Turkey
Sakir Bal: Department of Naval Architecture and Marine Engineering, Istanbul Technical University, Istanbul, Turkey


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2018 Techno-Press
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: subs@techno-press.com