Techno Press
Tp_Editing System.E (TES.E)
Login Search
You logged in as

eri
 
CONTENTS
Volume 8, Number 2, June 2022
 


Abstract
Wind energy can be utilized for the generation of electricity, due to significant wind potential at differentparts of the world, some countries have already been generating of electricity through wind. Pakistan is still well behind and has not yet made any appreciable effort for the same. The objective of this work was to add some new strategies to calculate Weibull parameters and assess wind energy potential. A new approach calculates Weibull parameters; we also developed an alternate formula to calculate shape parameters instead of the gamma function. We obtained k (shape parameter) and c (scale parameter) for two-parameter Weibull distribution using five statistical methods for five different cities in Pakistan. Maximum likelihood method, Modified Maximum likelihood Method, Method of Moment, Energy Pattern Method, Empirical Method, and have been to calculate and differentiate the values of (shape parameter) k and (scale parameter) c. The performance of these five methods is estimated using the Goodness-of-Fit Test, including root mean square error, mean absolute bias error, mean absolute percentage error, and chi-square error. The daily 10- minute average values of wind speed data (obtained from energydata.info) of different cities of Pakistan for the year 2016 are used to estimate the Weibull parameters. The study finds that Hyderabad city has the largest wind potential than Karachi, Quetta, Lahore, and Peshawar. Hyderabad and Karachi are two possible sites where wind turbines can produce reasonable electricity.

Key Words
parameter estimation methods; statistical analysis; Weibull distribution; Weibull parameters; wind energy; wind speed

Address
Department of Physics, University of Karachi, Karachi, Pakistan.


Abstract
Solar Energy is the energy of solar radiation carried by them in the form of heat and light. It can be converted into electricity. Solar potential depends on the site's atmosphere; the solar energy distribution depends on many factors, e.g., turbidity, cloud types, pollution levels, solar altitude, etc. We estimated solar radiation with the help of the Ashrae clear-sky model for three locations in Pakistan, namely Pasni, Gwadar, and Jiwani. As these locations are close to each other as compared to the distance between the sun and earth, therefore a slight change of latitude and longitude does not make any difference in the calculation of direct beam solar radiation (BSR), diffuse solar radiation (DSR), and global solar radiation (GSR). A modified formula for declination angle is also developed and presented. We also created two different models for Ashrae constants. The values of these constants are compared with the standard Ashrae Model. A good agreement is observed when we used these constants to calculate BSR, DSR, GSR, the Root mean square error (RMSE), Mean Absolute error (MABE), Mean Absolute percent error (MAPE), and chisquare (χ2) values are in acceptance range, indicating the validity of the models.

Key Words
Ashrae constants; Ashrae model; global; hourly and diffused solar radiation; mathematical modeling; solar radiation

Address
(1) Atteeq Razzak:
Department of Mathematics, University of Karachi, Pakistan;
(2) Zaheer Uddin:
Department of Physics, University of Karachi, Pakistan;
(3) M. Jawed Iqbal:
Institute of Space Science & Technology, University of Karachi, Pakistan.


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: info@techno-press.com