Techno Press
Tp_Editing System.E (TES.E)
Login Search


eas
 
CONTENTS
Volume 9, Number 4, October 2015
 

Abstract


Key Words


Address


Abstract
The effect of reinforcing concrete members with high strength steel bars with yield strength up to 600 MPa on the overall seismic behavior of concrete moment frames was studied experimentally and numerically. Three geometrically identical plane frame models with two bays and two stories, where one frame model was reinforced with hot rolled bars (HRB) with a nominal yield strength of 335 MPa and the other two by high strength steel bars with a nominal yield strength of 600 MPa, were tested under simulated earthquake action considering different axial load ratios to investigate the hysteretic behavior, ductility, strength and stiffness degradation, energy dissipation and plastic deformation characteristics. Test results indicate that utilizing high strength reinforcement can improve the structural resilience, reduce residual deformation and achieve favorable distribution pattern of plastic hinges on beams and columns. The frame models reinforced with normal and high strength steel bars have comparable overall deformation capacity. Compared with the frame model subjected to a low axial load ratio, the ones under a higher axial load ratio exhibit more plump hysteretic loops. The proved reliable finite element analysis software DIANA was used for the numerical simulation of the tests. The analytical results agree well with the experimental results.

Key Words
high strength; reinforcement; moment frame; seismic performance; plastic hinge

Address
Jianping Fu, Yuntian Wu and Yeong-bin Yang: Lab for construction of mountainous city and new technology of Ministry of education of China, School of Civil Engineering,83 Shazheng Street, Shapingba District, Chongqing 400045, China

Yeong-bin Yang: Department of Civil Engineering, National Taiwan University, No.1, Sec.4, Roosevelt Road,
Taipei 10617, Taiwan

Abstract
Seismic risk management of the built environment is integrated by two main stages, the assessment and the remedial measures to attain its reduction, representing both stages a complex task. The seismic risk of a certain structure located in a seismic zone is determined by the conjunct of the seismic hazard and its structural vulnerability. The hazard level mainly depends on the proximity of the site to a seismic source. On the other hand, the ground shaking depends on the seismic source, geology and topography of the site, but definitely on the inherent earthquake characteristics. Seismic hazard characterization of a site under study is suggested to be estimated by a combination of studies with the history of earthquakes. In this Paper, the most important methods of seismic vulnerability evaluation of buildings and their application are described. The selection of the most suitable method depends on different factors such as number of buildings, importance, available data and aim of the study. These approaches are classified in empirical, analytical, experimental and hybrid. For obtaining more reliable results, it is recommends applying a hybrid approach, which consists of a combination between methods depending on the case. Finally, a recommended approach depending on the building importance and aim of the study is described.

Key Words
earthquake hazard; structural vulnerability; seismic risk management; methods of assessment; historical and unreinforced masonry structures

Address
Adolfo Preciado, Juan L. Caro-Becerra and Ramiro Lujan-Godinez: Department of Civil Engineering, Polytechnical University of Guadalajara (UPZMG) 595 Carretera Tlajomulco Santa Fe, 45640 Tlajomulco, Jalisco, Mexico

Alejandro Ramirez-Gaytan, Ricardo A. Salido-Ruiz: Department of Computational Sciences (CUCEI), University of Guadalajara (UdeG) 1421 Boulevard Marcelino García Barragan, 44430, Guadalajara, Jalisco, Mexico

Abstract
The effectiveness of seismic retrofitting of RC-frame buildings by converting selected bays into new walls through infilling with RC walls was studied experimentally using a full-scale four-storey model tested with the pseudo-dynamic (PsD) method. The frames were designed and detailed for gravity loads only using different connection details between the walls and the bounding frame. In order to simulate the experimental response, two numerical models were formulated differing at the level of modelling. The purpose of this paper is to illustrate the capabilities of these models to simulate the experimental nonlinear behaviour of the tested RC building strengthened with RC infill walls and comment on their effectiveness. The comparison between the capacity, in terms of peak ground acceleration, of the strengthened frame and the one of the bare frame, which was obtained numerically, has shown a five-fold increase.

Key Words
retrofitting of RC buildings; RC infill walls; connection details; finite element analysis; fibre model; pseudo-dynamic experimental results

Address
Nicholas Kyriakides, Christis Z. Chrysostomou,Elpida Georgiou: Cyprus University of Technology, Department of Civil Engineering and Geomatics, P.O.Box 50329, 3603 Lemesos, Cyprus

Panagiotis Kotronis: LUNAM Université, Ecole Centrale de Nantes, Université de Nantes, CNRS UMR 6183 GeM (Institut de
Recherche en Génie Civil et Mécanique), 1 rue de la Noë, BP 92101, 44321 Nantes, France

Panayiotis Roussis: University of Cyprus

Abstract
An investigation has been carried out for the propagation of torsional surface waves in an inhomogeneous prestressed layer over an inhomogeneous half space when the upper boundary plane is assumed to be rigid. The inhomogeneity in density, initial stress (tensile and compressional) and rigidity are taken as an arbitrary function of depth, where as for the elastic half space, the inhomogeneity in density and rigidity is hyperbolic function of depth. In the absence of heterogeneities of medium, the results obtained are in agreement with the same results obtained by other relevant researchers. Numerically, it is observed that the velocity of torsional wave changes remarkably with the presence of inhomogeneity parameter of the layer. Curves are compared with the corresponding curve of standard classical elastic case. The results may be useful to understand the nature of seismic wave propagation in geophysical applications.

Key Words
torsional waves; rigid boundary; density; rigidity; in-homogeneity; initial stress

Address
Rajneesh Kakar: 163/1, C-B, Jalandhar-144022, India

Abstract
A steel shear wall with double-tapered links and in-plane reference was developed for assisting the assessment of the structural condition of a building after an earthquake while maintaining the original role of the wall as a passive damper device. The double-tapered link subjected to in-plane shear deformation is designed to deform torsionally after the onset of local buckling and works as an indicator of the maximum shear deformation sustained by the shear wall during an earthquake. This paper first examines the effectiveness of double-tapered links in the assessment of the structural condition under various types of loading. A design procedure using a baseline incremental two-cycle loading protocol is verified numerically and experimentally. Meanwhile, in-plane reference links are introduced to double-tapered links and greatly enhance objectivity in the inspection of notable torsional deformation with the naked eye. Finally, a doublelayer system, which consists of a layer with double-tapered links and a layer with rectangular links made of low-yield-point steel, is tested to demonstrate the feasibility of realizing both structural condition assessment and enhanced energy dissipation.

Key Words
condition assessment; steel shear wall; damper; earthquake loading; low-yield-point steel

Address
Liusheng He, Masahiro Kurata and Masayoshi Nakashima: Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto, Japan

Abstract
The recent re-assessment of the seismic hazard in Europe led for many regions of low to moderate seismicity to an increase in the seismic demand. As a consequence, several modern unreinforced masonry (URM) buildings, constructed with reinforced concrete (RC) slabs that provide an efficient rigid diaphragm action, no longer satisfy the seismic design check and have been retrofitted by adding or replacing URM walls with RC walls. Of late, also several new construction projects have been conceived directly as buildings with both RC and URM walls. Despite the widespread use of such construction technique, very little is known about the seismic behaviour of mixed RC-URM wall structures and codes do not provide adequate support to designers. The aim of the paper is therefore to propose a displacement-based design methodology for the design of mixed RC-URM edifices and the retrofit of URM buildings by replacing or adding selected URM walls with RC ones. The article describes also two tools developed for estimating important quantities relevant for the displacement-based design of structures with both RC and URM walls. The tools are (i) a mechanical model based on the shear-flexure interaction between URM and RC walls and (ii) an elastic model for estimating the contribution of the RC slabs to the overturning moment capacity of the system. In the last part of the article the proposed design method is verified through non-linear dynamic analyses of several case studies. These results show that the proposed design approach has the ability of controlling the displacement profile of the designed structures, avoiding concentration of deformations in one single storey, a typical feature of URM wall structures.

Key Words
displacement-based design; modern mixed reinforced concrete-unreinforced masonry wall structures; seismic design; pushover analyses; inelastic time history analyses

Address
Alessandro Paparo and Katrin Beyer: Earthquake Engineering and Structural Dynamics (EESD), School of Architectural, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Abstract
Seismic-design procedures for walls require that the confinement in the critical (plastic hinge) regions should extend over a length in the compression zone of the cross section at the wall base where concrete strains in the Ultimate Limit State (ULS) exceed the limit of 0.0035. In a performance-based framework, confinement is linked to required curvature ductility so that the drift demand at the performance point of the structure for the design earthquake may be met. However, performance of flexural walls in the recent earthquakes in Chile (2010) and Christchurch (2011) indicates that the actual compression strains in the critical regions of many structural walls were higher than estimated, being responsible for several of the reported failures by toe crushing. In this study, the method of estimating the confined region and magnitude of compression strain demands in slender walls are revisited. The objective is to account for a newly identified kinematic interaction between the normal strains that arise in the compression zone, and the lumped rotations that occur at the other end of the wall base due to penetration of bar tension yielding into the supporting anchorage. Design charts estimating the amount of yield penetration in terms of the resulting lumped rotation at the wall base are used to quantify the increased demands for compression strain in the critical section. The estimated strain increase may exceed by more than 30% the base value estimated from the existing design expressions, which explains the frequently reported occurrence of toe crushing even in well confined slender walls under high drift demands. Example cases are included in the presentation to illustrate the behavioral parametric trends and implications in seismic design of walls.

Key Words
bond; anchorage; yield penetration; lumped rotation; confinement boundary element

Address
Souzana P. Tastani: Department of Civil Engineering, Democritus University of Thrace (DUTh), Vas. Sofias 12, 67100, Greece

Stavroula J. Pantazopoulou: Department of Civil and Environmental Engineering, University of Cyprus, Nicosia 1687, Cyprus

Abstract
A methodology for estimation of statistical properties (viz. mean and standard deviation) of the expected seismic damage to reinforced concrete framed structures subject to corrosion of reinforcement, over a specified reference time (typically the service life of the structure) is proposed in this paper. The damage to the structure under the earthquake loading is characterised by the damage index, determined using the modified Park and Ang damage model. The reduction in area, yield strength and strain at ultimate of steel reinforcement, and the reduction in compressive strength of cover concrete due to corrosion are taken into account in the estimation of damage. The proposed methodology is illustrated through an example problem. From the results obtained, it is noted that there is an increase of about 70% in the mean value of expected seismic damage to the reinforced concrete frame considered over a reference time of 30 years when effect of corrosion is taken into consideration. This indicates that there is a need to consider the effect of corrosion of reinforcement on the estimation of expected seismic damage.

Key Words
earthquakes; chloride-induced corrosion; reinforced concrete framed structure; expected seismic damage

Address
M.B. Anoop and K. Balaji Rao: CSIR-Structural Engineering Research Centre, CSIR Campus, Taramani, Chennai 600 113, India

Abstract
Earthquake can occur anywhere in the world and it is essential to design important members in special structures based on maximum possible forces that can be produced in them under severe earthquake. In addition, since the earthquake is an accidental phenomena and there are no similar earthquakes, therefore the possibility of strong earthquakes should be taken into account in earthquake-resistant design of important structures. Based on this viewpoint, finding the critical acceleration which maximizes internal forces is an essential factor in structural design. This paper proposes critical excitation method to compute the critical acceleration in design of important members in special structures. These critical accelerations are computed so that the columns' internal shear force at the base of the structure at each time step is maximized under constraints on ground motion. Among computed critical accelerations (of each time step), the one which produces maximum internal shear force is selected. A numerical example presents to show the efficiency of critical excitation method in determining the maximum internal shear force and base moment under variety of constraints. The results show that these method can be used to compute the resonant earthquake which have large enough effective duration of earthquake strong motion (between 12.86 sec to 13.38 sec) and produce the internal shear force and base moment for specific column greater than the same value for selected earthquakes in constructing the critical excitation (for different cases about 2.78 to 1.29 times the San Fernando earthquake). Therefore, a group of them can be utilized in developing the response spectrum for design of special structures.

Key Words
linear dynamic response analysis; critical excitation method; belt truss system; shear force

Address
Reza Kamgar and Reza Rahgozar: Department of Civil Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract
Earthquake safety of existing buildings has gained considerable importance after earthquakes which have occurred in our country especially in the last 30 years. Performance based assessment methods have been widely used for existing reinforced concrete structures. This study aims to investigate the earthquake performances of the building stock located in Van Lake basin in Eastern Anatolia of Turkey. The case study of buildings has been modeled on and the structural performances have been determined by employing the non-linear methods described in the latest Turkish Earthquake Code published in 2007. The Van lake basin is located on the very seismically active in a region. On October 23, 2011, a magnitude of Mw 7.2 earthquake struck the Van province in eastern Turkey. The earthquake ground motion was recorded as about 0.1g in Bitlis province. Performance evaluations have been performed by taking samples from each district consisting urban building stocks of Bitlis. A total of 16 reinforced concrete buildings have been evaluated. Among them, 53% of those buildings were determined in the Fully Operational performance level; 13% of them in the Life Safety performance and 34% of them could not be evaluated because of the ratio of the effective mass of first mode to the total mass of the buildings was smaller than 0.70. Therefore, incremental equivalent seismic load methods, which are a part of Turkish Earthquake Code -2007, cannot be used.

Key Words
seismicity; performance based assessment; Bitlis; Lake Van

Address
Ercan Isik: Department of Civil Engineering, Faculty of Engineering and Architecture, Bitlis Eren University,
TR-13100, Bitlis, Turkey

Mustafa Kutanis: Department of Civil Engineering, Faculty of Engineering, Sakarya University, TR-54100, Sakarya, Turkey

Abstract
This work evaluates the performance of a number of seismic assessment procedures when applied to a case study reinforced concrete (RC) wall building. The performance of each procedure is evaluated through its ability to accurately predict deformation demands, specifically, roof displacement, inter-storey drift ratio and wall curvatures are considered as the key engineering demand parameters. The different procedures include Direct Displacement-Based Assessment, nonlinear static analysis and nonlinear dynamic analysis. For the latter two approaches both lumped and distributed plasticity modelling are examined. To thoroughly test the different approaches the case study building is considered in different configurations to include the effects of unequal length walls and plan asymmetry. Recommendations are made as to which methods are suited to different scenarios, in particular focusing on the balance that needs to be made between accurate prediction of engineering demand parameters and the time and expertise required to undertake the different procedures. All methods are shown to have certain merits, but at the same time a number of the procedures are shown to have areas requiring further development. This work also highlights a number of key aspects related to the seismic response of RC wall buildings that may significantly impact the results of an assessment. These include the influence of higher-mode effects and variations in spectral shape with ductility demands.

Key Words
seismic assessment; reinforced concrete (RC); direct displacement-based assessment

Address
Matthew J. Fox: Rose Programme, UME School, IUSS Pavia, Italy

Timothy J. Sullivan: Department of Civil Engineering and Architecture, University of Pavia, Italy

Timothy J. Sullivan: EUCENTRE, Pavia, Italy

Katrin Beyer: School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédéral de Lausanne, Switzerland


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2017 Techno-Press
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com