Techno Press
Tp_Editing System.E (TES.E)
Login Search
You logged in as

mwt
 
CONTENTS
Volume 15, Number 2, April 2024
 


Abstract
The removal of phosphorus, especially phosphate-form phosphorus, is necessary in wastewater treatment. Biofouling induced by the quorum sensing mechanism is also a major problem in membrane bioreactor (MBR), which reduces membrane flux. This study introduces lanthanum-doped quorum quenching (QQ) beads into MBR, confirming their inhibitory effect on biofouling due to Rhodococcus sp. BH4 and their capacity for phosphorus removal through lanthanum adsorption. A batch test was conducted to access the phosphate adsorption of lanthanum-QQ (La-QQ) beads and lab-scale MBR to verify the effect of inhibition. The study aimed to identify distinctions among the MBR, QQ MBR, and La-QQ MBR. In the batch test, the phosphate removal rate increased as the volume of beads increased, while the unit volume removal rate of phosphate decreased. In the lab-scale MBR, the phosphate removal rates were below 20% in the control MBR and QQ MBR, whereas the La-QQ MBR achieved a phosphate removal rate of 74%. There was not much difference between the ammonia and total organic carbon (TOC) removal rates. Regarding the change in transmembrane pressure(TMP), 3.7 days were taken for the control MBR to reach critical pressure. In contrast, the QQ-MBR took 9.8 days, and the La-QQ MBR took 6.1 days, which confirms the delay in biofouling. It is expected that La-QQ can be used within MBR to design a more stable MBR process that regulates biofouling and enhances phosphate removal.

Key Words
adsorption; biofouling; lanthanum beads; MBR; phosphate removal; quorum quenching

Address
Hyeonwoo Choi, Youjung Jang, Jaeyoung Choi, Hyeonsoo Choi and
Heekyong Oh: Department of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea

Shinho Chung: Department of Environmental Science, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, Punjab, 54600, Pakistan


Abstract
This study evaluated the performance of a membrane aerated biofilm reactor (MABR) for nitrogen removal from a high-strength ammonia nitrogen-containing wastewater. The experimental setup consisted of four compartments that are sequentially anaerobic and aerobic to achieve complete nitrogen removal. The last compartment of the reactor setup contained a membrane bioreactor (MBR) to reduce sludge production in the system and to obtain a better-quality effluent. Continuous experiment over a period of 47 days showed that MABR exhibited excellent NH4+-N removal efficiency (99.5%) compared to the control setup without MABR (56.5%). The final effluent NH4+-N concentration obtained in the MABR was 2.99

Key Words
ammonia nitrogen; biofilm; membrane aerated bioreactor; membrane bioreactor; nitrogen removal; scouring

Address
Arindam Sinharoy, Ji-Hong Min and Chong-Min Chung: Department of Environmental Science & Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea

Abstract
In this study, a nickel hexacyanoferrate and manganese dioxide-polyacrylonitrile (NM–PAN) composite was synthesized and used for the sorptive removal of Co2+, Sr2+, and Cs+ in radioactive laundry wastewater. Single- and multi-solute competitive sorptions onto NM–PAN were investigated. The Freundlich (Fr), Langmuir (Lang), Kargi–Ozmihci (K–O), Koble–Corrigan (K–C), and Langmuir–Freundlich (Lang-Fr) models satisfactorily predicted all the single sorption data. The sorption isotherms were nonlinearly favorable (Freundlich coefficient, NF = 0.385–0.426). Cs+ has the highest maximum sorption capacity (qmL = 0.855 mmol g–1) for NM-PAN compared to Co2+ and Sr2+, wherein the primary mechanism was the physical process (mainly ion-exchange). The competition between the metal ions in the binary and ternary systems reduced the respective sorption capacities. Binary and ternary sorption models, such as the ideal adsorbed solution theory (IAST) model coupled with single sorption models of IAST–Fr, IAST–K–O, IAST–K–C and IAST–Lang–Fr, were fitted to the experimental data; among these, the IAST–Freundlich model showed the most satisfactory prediction for the binary and ternary systems. The presence of cationic surfactants highly affected the sorption on NM-PAN due to the increase in distribution coefficients (Kd) of Co2+ and Cs+.

Key Words
IAST; multi-solute sorption; NM–PAN; radioactive; wastewater

Address
Md Abdullah Al Masud and Won Sik Shin: School of Architecture, Civil, Environmental, and Energy Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea


Abstract
Modification of Polyvinylidene fluoride (PVDF) hollow fiber membranes (HFMs) characteristics and performance were investigated via post treatment using different oxidants. sodium hypochlorite (NaOCl), hydrogen peroxide (H2O2) and potassium persulfate (KPS). Fourier transform infrared (FTIR) and Proton nuclear magnetic resonance (1H-NMR) results revealed no structural differences after post treatment. Cross-sectional micrographs show finger-like structures at the outer and inner walls of the HFMs and sponge-like structures in middle, where NaOCl and KPS post treated fibers exhibited a decrease in finger-like structures in addition to aggregates appearing on the surface, consequently leading to an increase in the surface roughness (Ra) from 48 nm to 52.8nm and 56 nm, respectively. Hydrogen peroxide post treatment only was observed to decrease the water contact angle from 98° to 81.4°. It was also observed that the elongation at break and the modulus deceased after NaOCl post treatment from 34.5 to 28.5% and from 19.3 Mpa to 16.6 Mpa, respectively. Moreover, pure water flux after H2O2 post treatment increased from 87.8 LMH/bar to 113 LMH/bar at 0.45 bar, while no changes were detected for the methylene blue dye rejection (74%) between raw and hydrogen peroxide post treated fibers at the same pressure. According to the findings hydrogen peroxide post treated PVDF HFMs have the most uniform surfaces, with almost no alterations in structural and mechanical properties or porosities with enhanced hydrophilicity and pure water flux maintaining appropriate rejection. Therefore, it is considered an efficient surface modifying agent for UF/NF membranes or low-pressure separators.

Key Words
characterization; performance; post treatment; PVDF hollow fiber membrane

Address
Eman S. Sayed, Hayam F. Shaalan and Heba A. Hani: Chemical Engineering and Pilot Plant Department, Engineering and Renewable Energy Research Institute, National Research Centre, El-Buhouth Street, Dokki, Giza, Egypt

Magda I. Marzouk: Organic Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt

Abstract
The ability of Zizyphus lotus stem powder (ZLSP) to remove Pb (II) and Cd (II) ions from an aqueous solution was evaluated. The present phenomenon of biosorption was revealed to depend on pH, biosorbent dosage, temperature, initial ionic concentration, time of contact and biosorbent's particle size. The sorption process was exothermic (∆H°<0), and showing a strong Pb(II)/Cd(II)-ZLSP affinity (∆S°>0). Gibbs free energy data (∆G°<0, and decreases as temperature increase) reveals that the process studied is characterized by its feasibility and spontaneous nature. The best fits of the equilibrium data were obtained by the Temkin model and the Langmuir model. The maximum Pb(II)/Cd(II)-ZLSP biosorption capacities were 33.02 mg/g for Pb (II) and 20.73 mg/g for Cd (II). The pseudo-second order model was the most appropriate for fitting the kinetic data. The characterization of the biochemical groups essentially involved in the sorption phenomenon was made possible by FTIR spectral analysis. The capacity of ZLSP as an effective and ecofriendly biosorbent is confirmed through this study.

Key Words
biosorption; isotherm; kinetic; thermodynamic; Ziziphus lotus

Address
Nosair El Yakoubi, Naouar Ben Ali, Mohammed L'bachir EL KBIACH and Brahim El Bouzdoudi: Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco

Mounia Ennami: Agronomic and Veterinary Institute Hassan II (IAV), Production, Protection and Plant Biotechnology Department, Rabat, Morocco

Zineb Nejjar El Ansari: Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco/ Life and Health Sciences Team, Faculty of Medicine and Pharmacy, Abdelmalek Essaadi University, Tétouan, Morocco

Loubna Bounab: Advanced Materials, Structures and Civil Engineering Team, ENSA Tetouan, Abdelmalek Essaadi University, Tetouan, Morocco



Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: admin@techno-press.com