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Abstract. Simplified equations for fundamental period of vibration of skeletal structures provided by
most seismic design provisions suffer from the absence of any associated confidence levels and of any
reference to their empirical basis. Therefore, such equations may typically give a sector of designers the
false impression of yielding a fairly accurate value of the period of vibration. This paper, although not
addressing simplified codes equations, introduces a set of mathematical equations utilizing the theory of
error propagation and First-Order Second-Moment (FOSM) techniques to determine bounds on the relative
error in theoretically calculated fundamental period of vibration of skeletal structures. In a complementary
step, and for verification purposes, Monte Carlo simulation technique has been also applied. The latter,
despite involving larger computational effort, is expected to provide more precise estimates than FOSM
methods. Studies of parametric uncertainties applied to reinforced concrete frame bents – potentially
idealized as SDOF systems – are conducted demonstrating the effect of randomness and uncertainty of
various relevant properties, shaping both mass and stiffness, on the variance (i.e. relative error) in the
estimated period of vibration. Correlation between mass and stiffness parameters – regarded as random
variables – is also thoroughly discussed. According to achieved results, a relative error in the period of
vibration in the order of 19% for new designs/constructions and of about 25% for existing structures for
assessment purposes – and even climbing up to about 36% in some special applications and/or
circumstances – is acknowledged when adopting estimates gathered from the literature for relative errors
in the relevant random input variables.
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1. Introduction

The fundamental period of vibration for different civil structures (e.g. buildings, bridges, elevated

tanks, etc…) represents the fingerprint for such structures identifying their dynamic characteristics

and controlling their performance and response. This period does not only play a major role in

predicting the expected behavior of these structures under any type of dynamic excitations, but it

has also been traditionally used to estimate the equivalent lateral seismic design force as per various

international seismic design codes and recommendations. 

Recent research in seismic design universally pushes towards estimating such periods using either

sophisticated analytical accurate formulae (e.g. via the Rayleigh quotient), or, computer eigen
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analysis instead of available ad-hoc conservative empirical equations currently extensively used by

most designers and yet still approved and provided by codes. In their way to promote drifting to

such accurate calculation methods predicting more realistic values, new generations of seismic

design provisions (e.g. IBC 2003, UBC 1997 and ASCE 7-05) – mainly in the US practice – allow,

as a first and modest step, for some relaxation in the considerably low-valued (Goel and Chopra

1997) fundamental period of vibration calculated by currently available approximate equations

showing remarkable differences between “code-estimated” and “measured” period values for actual

structures (Kwon and Kim 2010, Masi and Vona 2010, Pinho and Crowley 2009). But these

provisions still do not fully permit ignoring such approximate period values and liberally using the

analytically computed ones. They instead enforce an upper bound to the proposed allowed

relaxation in the approximate low-valued code period. This bound, beside catering for the stiffening

effect of nonstructural or “secondary” elements, is to protect against any uncertainty in the stiffness

or mass modeling that may result in a corresponding un-conservative error in the period of vibration

(predicting longer periods and consequently lower design forces leading to unsafe structures under

actual excitations). Such upper ceiling to the period value thus admits the fairly noticeable margin

of uncertainty and variance expected in the period of vibration – even if this period is theoretically

calculated – and the consequent impact of such uncertainty on the designed facilities. It is however

worth mentioning that in European seismic design practice such as in CEN (2004), a period

calculated from basics of mechanics is allowed without limiting its value relative to the empirical

(usually conservative) value. This applies both for equivalent static analysis as well as for modal

response spectrum (linear dynamic) analysis.

The theme of this paper, geared towards the field of seismic-resistant design, is to quantify the

error in the calculated period of single-mode dominant structures (representing a considerable

percentage of civil structures) due to the error propagated through variation and uncertainty in the

values of both mass and stiffness parameters. The paper adopts a Second-Order approximation

technique to determine the expected value (including the anticipated built-in error) of the

fundamental period of vibration of a given structure calculated from first principles of structural

mechanics. It further applies First-Order Second-Moment (FOSM) approach to calculate the

variance (representing the error) in the estimated period of vibration given the inherent error or

uncertainty in its constituents. The FOSM results are checked versus those of the more accurate, yet

computationally demanding, Monte Carlo simulation. Application to simple skeletal reinforced

concrete structures is presented to demonstrate the effect of the error propagation on the period of

vibration – such an important design and behavioral structural property. The focus of the paper is on

single mode-dominant structures (idealized as SDOF systems) for which the equivalent lateral static

analysis recommended by most seismic design codes worldwide is appropriate and fairly efficient.

Correlation between mass and stiffness is carefully discussed and its effect on the estimated error in

the fundamental period of vibration is also investigated.

2. Propagation of uncertainty

 

Uncertainty in estimated various structural properties due to either lack of knowledge or

approximate modeling procedure directly affects the accuracy of the calculated and/or actual

structural response. The probabilistic response of various structural systems or the probabilistic

nature of any of their characteristics is generally expressed in terms of uncertain parameters
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associated with relevant structural properties. The uncertainty in these parameters is customarily

expressed in terms of the coefficient of variation, C.O.V. The latter, representing the relative error in

a given random variable, is usually estimated through unbiased sampling from large populations of

the parameters of interest and is usually available in the literature for some common applications.

The influence of uncertainty in these parameters is propagated in accordance with the functional

relationships that relate them to the structural response or to the structural property of interest. The

propagation of uncertainty may be accomplished by employing one or a combination of the

following approaches: Taylor series-based perturbation techniques, stochastic finite element

methods, Monte Carlo simulation, and Second-Moment approaches (Kareem 1988). In the special

application related to random natural periods of vibration (i.e. random eigenvalue problems for large

MDOF systems), considerable effort has already been spent in the probabilistic mechanics literature

to most accurately estimate means of these eigenvalues (i.e. periods of vibration). A short but

valuable survey of the literature in this arena is outlined in Adhikari and Friswell (2007) where it

may be noted that more precise solution schemes including Monte Carlo simulation techniques

(Adhikari and Friswell 2007) and methods based on polynomial chaos expansions (Ghosh et al.

2005) are currently promoted for tackling this highly sophisticated random problem. Such

approaches are preferred than perturbation methods if expected level of uncertainty is fairly large. 

In this paper, Second-Moment approach (namely, FOSM technique), supplemented by Monte

Carlo simulation technique for validation purposes, are used to trace the uncertainties and quantify

the propagation of error when estimating the fundamental period of vibration for the single mode-

dominant skeletal structures of interest in this research.

 

2.1 Second-moment techniques

 

The Second-Moment techniques have traditionally provided practical and efficient means of

analyzing probabilistic engineering mechanics problems (e.g. Ang and Tang 1984, Benjamin and

Cornell 1970). The attractiveness of these techniques rests on the limited statistical information

needed to analyze a problem. For example, only the first two statistical moments of a random

variable are sufficient for the analysis. The expression for studied response or quantity is expanded

in terms of the Taylor series; only up to the first or second-order terms are retained. In this paper,

only the first-order terms are retained; the approximation is thus referred to as the First-Order

Second-Moment (FOSM) approach. The discarded terms are functions of the second and higher

order derivatives of the performance function, the variances and shapes of the probability density

functions of the input variables, and the correlations among input variables. This means that the

method is exact for linear performance functions, and that for a given degree of curvature, i.e. for

nonlinear functions, the method is more accurate for smaller values of the variances (i.e.

uncertainties) and/or if the input parameters distribution is Guassian. However, the FOSM method

has been satisfactorily used by Ibarra (2003) in estimating variances in collapse capacities of

structures due to randomness in System Parameters (SP) yet with fairly large inherent uncertainty

(SP coefficient of variation of about 60%). Despite these limitations, the FOSM method (or Taylor

series-based perturbation technique) is sometimes preferred because it requires fairly smaller

computational effort relative to the other equivalent approaches and it does not necessitate

commitment to a probabilistic distribution of the input random variables (i.e. system parameters). 

Given a function Y of a number of random variables Xi taking the following form
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Y = g(X1, X2, X3,..., Xi,..., XN) (1)

 

one could express, in a FOSM format, the coefficient of variation, ΩY, of the function Y which

represents the uncertainty (or relative error) in the expected value of Y by

 

 (2)

in which ρij is the correlation coefficient between xi and xj, Y is the mean value of Y,  is the mean

value of xi,  is the C.O.V. of variable xj, and  is the derivative of g(.) evaluated at the

mean value of xi. Note that Eq. (2) above may be re-written to alternatively express the FOSM

approximation of the variance, , of Y in terms of the variance, , of different random variables, xi.

(3)

To expand the benefit of our study of propagation of uncertainty, and within the same line shown

above, the second-order approximation of the Expected value of Y, E[Y] or Y as shown above in Eq.

(2), could be given by

(4)

2.2 Monte Carlo simulation techniques

Monte Carlo simulation involves sampling randomly to realize a large number of events in order

to get reasonable estimates of statistical measures for the response parameter or the performance

function of interest. Conversely to the FOSM method, the nonlinearity of the performance function

of interest is not an issue – regarding the accuracy of results – in Monte Carlo (MC) simulation

technique. However, the results of MC simulations are only accurate to the extent that the assumed

Probability Distribution Functions (PDF) of considered random input variables are accurate.

Moreover, the MC technique is computationally more demanding. Nevertheless, since the FOSM

method introduced above is an approximation that simplifies the nature of the problem and that only

satisfactorily works under a set of limitations, the validity of obtained results based on FOSM

techniques needs to be checked through a more robust approach such as the Monte Carlo

simulation. 

3. Application of the theory of error propagation to period calculation

 

It is fairly obvious that the variation in mass, M, and stiffness, K, of a given structural system, is
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the source of error in fundamental period of vibration. Local errors in various individual random

properties/variables shaping both mass and stiffness are already incorporated in global errors

assumed (or estimated) for the mass and stiffness quantities regarded themselves as random

variables.

3.1 Formulation of the FOSM method

In this section, the theory of error propagation in the context of the FOSM approach described

above is implemented to derive the expected relative error in the final value of the period of

vibration based on the errors incorporated in its constituents, namely: M and K.

 Applying the technique introduced in the previous section through Eqs. (1) to (4), and knowing

that the theoretical value of the period of vibration of any single mode-dominant structural system

(or of an idealized single degree of freedom SDOF oscillator) is simply given by the function 

 

 (5)

 

where M is the total mass of the system (or simply the mass of the SDOF oscillator) and K is the

equivalent stiffness of this idealized SDOF oscillator, the second-order approximation of the

expected value of T may be estimated by manipulating

(6)

which results in the following simplified expression

(7)

where σM = MΩM and σK = KΩK. ρM,K is the correlation coefficient between M and K; ρ takes a

value of 1 for fully (i.e. perfectly) correlated M and K and a value of “zero” for un-correlated mass

and stiffness.

Similarly, by applying Eq. 3, the FOSM approximation of the variance of T is

(8)

The first two terms represent the contribution of the variance in M and K to the variance in T. The

last term represents, however, the contribution of the correlation between M and K to the variance

of the period T.

Finally, combining Eq. (7) and the solution of Eq. (8), the C.O.V., ΩT, of the period T (representing

the relative error in the expected mean value of T) may be given by 

(9)

T 2π M K⁄=

 

 

 

 



22 Sameh S.F. Mehanny

3.2 Implementation of Monte Carlo technique

In the present research, to derive the expected relative error in the value of the period of vibration

based on the errors incorporated in its constituents through MC simulation technique, the random

input variables (M and K) assume 10,000 different randomly generated values following selected

appropriate PDFs with reasonably assumed statistical properties (e.g. mean and C.O.V., i.e. Ω)

gathered from the literature as will be discussed in details in a following section. MATLAB is used

as a computational platform to generate relevant random input and to calculate variations, ΩT, in the

resulting period of vibration. Random generation of each of the input variables (M and K) is first

independently performed to model un-correlated scenario for both M and K. Then, to realize the

perfectly correlated situation, an uncertain term, ε, with mean value, E[ε] = 1.0 and a given Ωε

applicable to both M and K is first randomly generated adopting the appropriate PDF. In a following

step, the actual mean value of M and K is multiplied by the randomly generated uncertainty term, ε,

thus capturing perfect correlation between M and K. 

4. Correlation between mass and stiffness

The fundamental period of vibration of a given structure approximated (i.e. idealized) as a Single

Degree of Freedom SDOF system is a function of its vibrating lumped mass and the lateral stiffness

of its supporting system as shown in Eq. (5). The problem of statistical correlation between mass and

stiffness of such structures is relatively debatable (Deierlein and Cornell, personal communication,

August, 2006). In a design sense, as will be described in the sequel, one could argue that there is

some statistical correlation between the two structural properties. However, if one were looking at

the randomness in properties, the correlation would be rather small and may be assumed marginal

or even negligible.

Correlation in a design sense: Since presumably the stiffness of a system is correlated with its

strength, and since for seismic design purposes the required strength is a function of supported

mass, then from a design standpoint, one could presume some correlation between the two variables

in a general sense. Therefore, for building systems of a certain type, e.g. moment frames, or for

bridges with pier-to-girder monolithic connections, one would expect some correlation between

mass and stiffness in a design context.

No-correlation in randomness for an existing system: On the other hand, once a system is

designed and the nominal mass and stiffness are fixed, further variations in the two would be un-

correlated. For instance, since most of the mass is due to floor framing in buildings and decking

system for bridges and superimposed dead load, one would not expect that random increases in

these values would be associated with significant changes in stiffness. Similarly, many of the major

variations in stiffness (e.g. assumption on effective stiffness, EI, foundation rigidity, connection

rigidity, composite beam action, etc…) would not be associated with a random change in mass. One

could argue though that member sizes that are selected larger than nominal during design process

(e.g. slightly larger columns or walls) would increase both stiffness and mass, however, percentage-

wise their impact on mass would be minimal.

To further elaborate, one should realize from the formal statistical definition of the term

“correlation” that it is related to the expected value of random deviations from the means of the

mutually correlated variables. One could still argue that this is not the same as saying, for example,
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if in a given design the specified slab thickness is doubled, then the frame will also get stiffer

because there is a need to increase columns dimensions to carry the heavier mass and its associated

inertial effect. This latter situation would rather represent a “change in the means” of mass and

stiffness and not “deviations from the mean” as implied by the “correlation” statistical concept. In a

practical sense, having perfect correlation between two random variables implies that if one variable

deviates from its mean by a standard deviation, σ, then so will the other. However, each variable

still has its own marginal distribution (e.g. mean and σ), but the two variables also display this

close coupling of their individual deviations relative to the mean irrespective of any changes in their

individual “means”.

For the purpose of this paper, both “perfectly correlated” and “un-correlated” mass and stiffness

parameters will be investigated in order to quantify the effect of such correlation, if any, on the

severity of the error propagating and accordingly impairing the accuracy of the period of vibration.

“Perfectly correlated” and “un-correlated” situations represent, in a sense, lower and upper bounds,

respectively, to the error (i.e. the variance) in the estimated period of vibration.

5. Example of simple skeletal structures likely approximated by SDOF systems 

The error propagation analysis described in Sections 2 and 3 above is further applied herein for

demonstration purposes to single and/or multi-bay reinforced concrete frame bents. Investigated

frames are selected as single-story frames with high potential to be idealized as SDOF systems. By

selecting such simple structures one could avoid unnecessary complications that may conceal the

main idea of studying and demonstrating the propagation of parametric uncertainties while

determining the period of vibration of skeletal structural systems, for seismic design purposes, using

either the introduced FOSM approach or MC simulation technique. Such case study frames are

commonly encountered in bridges, warehouses, industrial facilities, single-story dwellings, etc…

which constitute a considerable percentage of civil structures.

The stiffness parameter, K, is theoretically derived for this specific case using elementary

structural mechanics and may be given as

(10)

Summation is over all columns of the frame. α is a problem-dependent constant coefficient which

is a function of end conditions of the columns; these end conditions are implicitly depending on the

beam-to-column stiffness ratio. α is considered as a deterministic constant in the present research. Ic
is the in-plane moment of inertia for each of the columns, and H is the column height from top of

foundation to beam level. For the purpose of this research, a simple idealized example – easy to

interpret – of a single-bay one-story reinforced concrete frame is selected. Assuming both columns

with same height and same cross section and assuming the beam infinitely rigid with respect to the

columns and that the columns are fixed to the foundation, the summation symbol, Σ, in Eq. (10) is

dropped out and the coefficient a takes the deterministic value of 24. However, the symbol α will

be kept in the sequel without numerical substitution for generality.

Ec is the modulus of elasticity for concrete. It is generally given by different design codes

worldwide (e.g. ACI 318 2005) as a function of the square root of the compressive strength, fcu, of

K α
EcIc

H
3

---------
c
∑=
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concrete and may be written as

  (11)

where β is a constant that varies from code to code partly depending on the quality of concrete

industry in the local construction practice.

Applying Eq. (4), the second-order approximation of the expected value of K may be estimated

by solving

(12)

which may be simplified as

(13)

with same system of notations previously defined. Note that, for instance, if H is a deterministic

constant, i.e. error free, instead of the general assumption of being a random variable, the coefficient

of variation ΩH vanishes and Eq. (13) may be reduced to

(14)

Similarly, by applying Eq. (3), the FOSM approximation of the variance of K expressed in terms

of Eqs. (10) and (11) is

(15)

Ec β fcu=
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Similarly to what has been performed to get ΩT, solving Eq. (15) and making use of the result

given by Eq. (13) or (14), the C.O.V. of the stiffness random parameter may be given as follows

(16)

Note that Eq. (16) above assumes again a deterministic value of the variable H, i.e. ignoring any

uncertainty or relative error in the columns height for the subject frame (ΩH = 0). Such error-free

assumption for H is just for the sake of presenting the resulting variation in the stiffness parameter

in a concise format. However, in the numerical analysis section, results addressing H as a random

variable are also presented and evaluated.

To conclude, one could say that to determine the relative error in the expected value of the period

of vibration T, Eq. (9) may be directly used if an estimation of ΩK is adequately available to the

user. Otherwise, ΩK could be first estimated through applying Eq. (16) based on reasonable

estimates – fairly available in the literature – of C.O.V. of relevant random variables, fcu and Ic.

Then, as a complimentary step, the user could plug in Eq. (9) to determine a final estimate for ΩT.

Again, a MC simulation technique is carried out to randomly generate a wealth of values of the

stiffness K relying on adequate PDFs of relevant input random variables: fcu, Ic and H. Estimates of

the variation in the resulting K values due to uncertainty in the input parameters are then recovered. 

6. Assessment of coefficient of variation for various considered random parameters

Estimates for C.O.V., i.e. Ω, and adequate Probability Distribution Functions (PDF) for various

considered random variables benchmarking the relative error (or uncertainty) in theoretically

calculated fundamental period of vibration for reinforced concrete skeletal structures are compiled

from the literature. 

First, the structure mass is considered an uncertain (i.e. random) variable for the following

reasons: as-built members dimensions may vary from those shown on the design drawings, unit

weights of construction materials are imperfectly known; location and dimension of non-structural

elements are generally uncertain, and actual structure components may vary from those assumed in

the design, e.g. layers of roofing are often added during the life of a building which can

significantly affect dead load. Quantification of uncertainty in the structure mass is an integration of

uncertainties in the above-mentioned factors. However, for simplicity, most researchers in the

literature considered mass uncertainty as a whole, as per Ellingwood and his co-workers

(Ellingwood et al. 1980), following a representative PDF (usually Gaussian) with an assumed

typical C.O.V. of 0.10 applied to the mean value of the nominal calculated mass, M (e.g. Haselton

and Deierlein 2005, Shaikhutdinov 2004). To avoid unrealistic negative values for such positive

structural parameter, M, that may inadvertently assume spurious non-vanishing probabilities, a

Lognormal PDF is therefore instead adopted herein for the random mass parameter (Soize 2000,

Tarantola 2005). 

Structure stiffness is comparably an uncertain variable for reasons similar to those listed above for

mass: as-built dimensions, contribution of non-structural elements, properties of construction

materials, beside other behavioral factors due to level of concrete cracking, effective inertia, etc...
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Different researchers suggest a range for the variation in K. For example, a value of ΩK = 0.27 is

adopted by Kareem (1980) for reinforced concrete tall chimneys with a circular cross-section. On

the other hand, for regular reinforced concrete skeletal structures, other researchers suggest a value

of ΩK in the order of 0.36 (Haselton and Deierlein 2005, Fardis and Biskinis 2003, Panagiotakos

and Fardis 2001) with K following a Lognormal distribution. Note that this value is reported to

apply for isolated members and is based on the member’s initial stiffness. Such value is expected to

increase after occurrence of some structural damage and non-linearity during the lifetime of the

structure. To recapitulate, ΩK of 0.36 may accordingly be adopted for a new design while an

expected higher value may be assumed (or estimated) for an existing structure. 

On the other hand, instead of adopting a lumped and directly assumed value for ΩK, an educated

estimate may be derived for simple skeletal structures, potentially idealized as SDOF systems,

through an integration of the variance in the various random components of the variable K. Such

components – as introduced in section 5 and Eq. (10) – include moment of inertia, Ic, of the

columns of the frame, its effective height, H, and a material property considered herein as the

compressive strength of concrete, fcu, for reinforced concrete structures.

Most researchers collectively agree upon a reasonable estimate for the variation in fcu. Uncertainty

in this random material property may be quantified by = 0.18 (Kareem 1988, Shaikhutdinov

2004). Such estimate is based on previous research by Mirza et al. (1979). For the same practical

reasons mentioned above and in order to avoid non-vanishing probabilities for unrealistic negative

values of this positive mechanical property, a Lognormal PDF is assumed for the random variable,

fcu (Soize 2000 and Tarantola 2005). 

Remaining random variables affecting the stiffness random parameter, K, are the geometrical

properties of the case study frame: Ic and H. Uncertainty in these variables may be derived from

available literature (Kareem 1988, Haselton and Deierlein 2005). As a result, Ic is assumed to follow

a Lognormal distribution with  falling in a wide range between 0.16 (for the case of gross un-

cracked inertia) and 0.35 (accounting for effective inertia with cracking-induced uncertainty). ΩH is

in the order of 0.04, where H, as well following a Lognormal PDF, is the column height measured

for structural analysis purposes from top of foundation to beam bottom level. Such C.O.V. of H

may assume larger values to account for other additional implicit uncertainty related to modeling

issues trying to capture the dynamic behavior of the frame. In other words, ΩH may depend on

whether the height considered extends to the bottom of beam or, instead, to the beam centerline;

whether such modeling assumption depends on the beam-to-column stiffness ratio or not, etc

7. Numerical analysis and discussions

Effect of parametric uncertainties on the relative error of theoretically calculated fundamental

period of vibration for skeletal structures is presented in this section. All possible permutations – in

a fairly wide range – for the coefficients of variation ΩM and ΩK of random variables M and K,

respectively, are studied. As previously stated, ΩM and ΩK represent the relative error in the

corresponding expected (mean) value of mass and stiffness random parameters, respectively. The

investigated range for C.O.V. (i.e. Ω) encompasses values between, and including, 0 (denoting an

error-free variable) and 0.5 (representing a considerable relative error or variation). Such broad

range, that may be overestimating the realistic variation in either M or K, is however adopted to

model practically all plausible bounds on the relative error, ΩT, in the resulting period of vibration,

Ωfcu

ΩIc
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T. Specific values of C.O.V. for different considered random variables inferred from information

available in the literature are also implemented herein to model discrete situations resulting in

particular relative error in the period of vibration. 

A set of three-dimensional surface plots is generated using MATLAB – applying the FOSM

method introduced herein and considering various scenarios – for the relative error, ΩT, regarded as

a continuous function of corresponding relative errors in M and K parameters. Different studied

scenarios include “un-correlated” and “perfectly correlated” relevant random variables for the

following two cases: (1) ΩM and ΩK directly assigned, as well as (2) ΩM directly assigned while ΩK

computed from the corresponding C.O.V. of its basic components. Moreover, to ensure a precise

quantification of ΩT, the more accurate Monte Carlo simulation technique has been applied to a few

selected discrete variations of the relevant random input variables. Note that, although the statistical

assumption of perfectly correlated M and K is highly unlikely as previously discussed, it is included

herein to draw the full picture with lower and upper limits to the relative error, ΩT.

Figs. 1 and 2 show the continuous variation in the relative error, ΩT, due to mutual uncertainty in

mass and stiffness parameters represented by ΩM and ΩK for the un-correlated and perfectly

correlated assumptions, respectively, via the FOSM method. It may be noted that ΩT for un-

correlated mass and stiffness is constantly larger than its value for the perfectly correlated

assumption. This applies to all combinations of non-zero values of ΩM and ΩK. It may be also

observed from Fig. 2 that ΩT always assumes a non-zero value for the scenario of perfectly

correlated variables for the studied wide range of joint relative errors, ΩM and ΩK, excluding the

case where coincidentally ΩM = ΩK. This latter situation with equal relative error in both mass and

stiffness parameters, along with the highly unlikely perfect positive correlation assumption between

these two random variables, causes their relative errors to cancel out (refer to Eq. (9)). The same

result has been equally observed when performing the MC simulation technique. 

It is also worth mentioning that, when following FOSM methods, if either mass or stiffness is

considered as a deterministic (i.e. error free) parameter for a special application, the resulting error,

ΩT, in the period of vibration is about half the corresponding relative error in the other random

variable (be it stiffness or mass). Referring to Eq. (5), the square root relationship is responsible for

reducing (cutting to half) the resulting relative error propagated in the period T with respect to

associated built-in relative errors in M and K. On the other hand, if applying the more accurate MC

Fig. 1 Relative error in T - Case of un-correlated
mass and stiffness parameters

Fig. 2 Relative error in T - Case of perfectly
correlated mass and stiffness parameters
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simulation techniques that work better for nonlinear functions, it may be observed that the

contribution of the relative error in either M or K, independently considered, to the relative error in

T, ΩT, is almost alike. In other words, as may be noted from Table 1, ΩT for random M associated

with a deterministic K (or with a specific ΩK) is nearly identical to that for random K along with a

deterministic (i.e. error free) M (or with a specific ΩM). This may be easily observed for instance if

consulting the values of ΩT in any row in Tables 1(a) through 1(d) showing the effect on the

relative error in T caused by different ΩK values associated with a specific value of ΩM (say 0.3)

and comparing them to the corresponding values of ΩT due to different values of ΩM associated

with the specific value of 0.3 for ΩK. The difference in these ΩT values is practically negligible

even at larger uncertainties considered herein (i.e. at ΩM and ΩK values as high as 0.5). As a general

observation, for all typical studied variations encountered in the present research, both the FOSM

method which is much less computationally demanding, and the MC technique give fairly

comparable results. 

Specific values of expected relative errors in M and K for reinforced concrete skeletal structures

retrieved from available literature are particularly determined. For example, for the highly likely

scenario of un-correlated M and K, ΩT assumes a value of 0.18 (Fig. 1) and 0.19 (as inferred from

Table 1) when applying FOSM and MC techniques, respectively, for ΩM = 0.1 and ΩK = 0.36

representing new designs. On the other hand, for ΩK = 0.5 accounting for probable additional

variation in stiffness due to expected random global damage and nonlinearity all over the structure

during its lifetime (i.e. case of assessment of existing structures), ΩT scores an increase of about

33% (ΩT = 0.24) when FOSM is used and almost practically same percentage increase of about

32% (ΩT = 0.25) if MC simulation is applied as shown in Table 1. This outcome reinforces the

conclusion that FOSM results – when this rather approximate but less computationally demanding

perturbation technique is applied to the stochastic eigenvalue problem considered in this research –

are fairly accurate if compared to those of the more reliable MC simulation technique usually

Table 1(a) Values of ΩT ×100 from MC simulation (un-correlated M and K) – 1,000 simulations

 ΩM  ΩK  0  0.1  0.2  0.3  0.4  0.5

 0  0.0  5.1  9.9  14.4  18.8  23.9

 0.1  5.0  7.3  11.1  15.3  19.6  24.4

 0.2  9.3  10.6  13.5  17.5  21.5  25.9

 0.3  15.2  16.2  17.5  21.1  24.1  28.4

 0.4  19.3  20.2  21.5  23.9  26.4  30.8

 0.5  23.2  23.6  25.8  28.2  30.0  33.3

 Table 1(b) Values of ΩT × 100 from MC simulation (un-correlated M and K) – 10,000 simulations

 ΩM  ΩK  0  0.1  0.2  0.3  0.4  0.5

 0  0.0  4.9  9.8  14.8  19.6  24.2

 0.1  5.0  7.0  11.0  15.6  20.3  24.8

 0.2  9.9  11.2  14.0  17.7  22.1  26.3

 0.3  14.9  15.9  18.0  21.1  24.9  28.7

 0.4  19.5  20.1  21.9  24.9  27.8  31.6

 0.5  24.1  24.7  26.1  28.5  31.2  34.6
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known for better accuracy at large uncertainties of the associated random variables and/or high

intrinsic nonlinearity in the response function of interest.

The convergence of the MC simulation procedure performed herein with respect to the number of

simulations has been also assessed through a systematic numerical sensitivity analysis. Four

different numbers of realizations have been performed for the case of un-correlated random

parameters, M and K, namely: 1,000, 10,000, 100,000 and 250,000 simulations. Results of these

simulations are shown in Tables 1(a) through 1(d), respectively. Resulting ΩT values retrieved from

the four cases are fairly identical with the differences between corresponding variations practically

insignificant. This means that (1) MC simulation has converged to accurate and stable estimates of

the C.O.V. of the randomly computed period of vibration, T, very comparable to those retrieved

from applying the FOSM approach, and that (2) such resulting ΩT values are not spuriously

bounded as a result of halting the simulation after an arbitrary finite number of realizations.

In a complementary effort, the relative error in K is computed by locally applying the FOSM

technique introduced in Eqs. (1) to (3) and further manipulated for the case study example of a

simple SDOF reinforced concrete skeletal frame (Eqs. (15) and (16)). Random variables of interest

for this application are: the frame height H; the moment of inertia, Ic, of the columns of the frame;

and the compressive strength of concrete, fcu. Each variable shares differently in the value of K (Eq.

(10)) and hence in its associated relative error. For example, H is raised to the power 3 with its

relative error therefore contributing the most to ΩK; Ic is raised to the power 1 which lessens the

negative impact of its uncertainty on the overall relative error in K; while, fcu shows up in the

functional with a square root (i.e. raised to the power of ½) thus contributing the least to ΩK. 

Figs. 3 and 4 based on applying the FOSM method describe the continuous variation in the

relative error, ΩK, due to joint uncertainty in Ic and fcu introduced by  and  for the un-

correlated and perfectly correlated hypotheses, respectively, for the case with a deterministic height

H of the subject frame. It may be easily observed that the assumption of perfect correlation between

ΩIc
Ωfcu

 

Table 1(c) Values of ΩT × 100 from MC simulation (un-correlated M and K) – 100,000 simulations

 ΩM  ΩK  0  0.1  0.2  0.3  0.4  0.5

 0  0.0  5.0  9.9  14.8  19.5  24.0

 0.1  5.0  7.1  11.1  15.6  20.1  24.6

 0.2  9.9  11.1  14.1  17.9  22.0  26.1

 0.3  14.8  15.6  17.9  21.0  24.6  28.5

 0.4  19.4  20.0  21.8  24.6  27.7  31.3

 0.5  23.8  24.4  25.9  28.3  31.2  34.3

Table 1(d) Values of ΩT × 100 from MC simulation (un-correlated M and K) – 250,000 simulations

 ΩM  ΩK  0  0.1  0.2  0.3  0.4  0.5

 0  0.0  5.0  9.9  14.8  19.4  24.0

 0.1  5.0  7.1  11.1  15.6  20.0  24.5

 0.2  9.9  11.1  14.0  17.8  21.9  26.1

 0.3  14.8  15.6  17.8  20.9  24.5  28.4

 0.4  19.5  20.1  21.9  24.6  27.8  31.2

 0.5  23.9  24.4  26.0  28.4  31.1  34.3
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the random variables Ic and fcu collectively increases ΩK especially at large uncertainties in the

relevant input random variables. This is dissimilar to the effect of such correlation assumption on

ΩT when estimated based on mutually relative errors in M and K.

ΩK is again estimated but applying MC simulation technique instead of the FOSM method and

results for the un-correlated and perfectly correlated scenarios are given in Tables 2 and 3.

Comparing such results associated with a few selected discrete  and  values to results shown

in Figs. 3 and 4, it may observed that the FOSM method performs fairly good in capturing the

relative error, ΩK, in the stiffness random parameter. Furthermore, results using either MC or FOSM

techniques ascertain the fact that the contribution of the variation in Ic to the variation in K is much

more pronounced than the contribution of the variation in fcu. Furthermore, based on the set of

Ωfcu
ΩIc

Fig. 3 Relative error in K - Case of un-correlated Ic

and fcu  with ΩH = 0
Fig. 4 Relative error in K - Case of perfectly correlated

Ic and fcu  with ΩH = 0

Table 2 Values of ΩK × 100 from MC simulation (un-correlated fcu and Ic – deterministic H)

0 0.1 0.2 0.3 0.4 0.5

0 0.0 10.0 20.1 29.5 39.9 49.0

0.1 5.0 11.2 20.8 30.0 40.2 49.3

0.2 9.9 14.1 22.5 31.3 41.4 50.0

0.3 14.9 18.1 24.9 33.4 42.6 51.9

0.4 19.5 22.0 28.3 35.8 45.2 53.3

0.5 24.2 26.3 31.7 38.8 47.4 55.3 

Table 3 Values of ΩK × 100 from MC simulation (perfectly correlated fcu and Ic – deterministic H)

0 0.1 0.2 0.3 0.4 0.5

0 0.0 10.0 20.0 30.1 40.3 49.8

0.1 5.0 15.1 20.6 30.4 40.6 50.0

0.2 9.9 14.1 30.4 31.9 41.2 51.1

0.3 14.9 17.8 25.1 36.3 46.5 53.1

0.4 19.4 21.9 27.8 36.4 54.2 64.5

0.5 23.9 26.0 31.5 39.5 57.7 81.2

Ωfcu
ΩIc

Ωfcu
ΩIc
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retrieved values from the literature for  (= 0.35) and  (= 0.18), ΩK assumes a value of 0.37

for the un-correlated hypothesis when adopting the FOSM method. This estimate for ΩK is almost

literally identical to that recovered when applying the MC simulation technique as shown in Table 2

(= 0.36). Both are even matching the literature estimate for ΩK mentioned in Section 7.

In a further informative step, Fig. 5 compares the resulting relative error, ΩK, in the stiffness

parameter calculated using the FOSM method for un-correlated random variables Ic, fcu, and H for

the two distinct cases of (1) deterministic (error-free) H versus (2) random (uncertain) H with a

selected ΩH = 0.10. Such selected value for ΩH, despite being larger than the value of 0.04 compiled

from the literature and previously given in Section 7, is implemented herein in order to delineate an

upper bound to ΩK approving anticipated built-in modeling uncertainties in the height, H, of the

frame under investigation. Results shown in Fig. 5 reveal a remarkable increase in ΩK due to only

10% relative error (or variation) in H. An increase in ΩK is still observed due to randomness in H if

adopting MC simulation technique, though such increase is fairly less than that detected in the case

when FOSM method is applied (refer to Table 4). For instance, if relying on FOSM results, a

noticeable jump in ΩK from 0.36 (gathered from the literature) to 0.96 occurs for the case of un-

correlated random variables with the following combination of relative errors, namely: = 0.35,

= 0.18 along with assumed ΩH=0.10. This sharp rise in ΩK, along with ΩM = 0.1, will directly

negatively produce about 100% increase in ΩT (going up from 0.18 to 0.36). On the other hand, if

MC simulation is adopted, and again for the same relative errors mentioned above compiled from

the literature, ΩK will assume a value of about 0.48 (much less than the value predicted using

ΩIc
Ωfcu

ΩIc

Ωfcu

Fig. 5 Relative error in K - Case of un-correlated Ic, fcu and H with ΩH = 0 and 0.10

Table 4 Values of ΩK × 100 from MC simulation (un-correlated fcu, Ic and H – ΩH = 0.1)

0 0.1 0.2 0.3 0.4 0.5

0 0.0 32.1 36.6 43.2 51.2 60.5

0.1 30.6 32.6 37.0 43.5 51.5 60.7

0.2 31.8 33.6 38.3 44.4 52.2 61.6

0.3 33.6 35.4 39.6 45.8 53.6 62.5

0.4 36.2 38.0 41.7 48.6 55.7 64.5

0.5 40.2 41.7 45.1 51.8 58.6 67.2

Ωfcu
ΩIc
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FOSM method). Such increase in ΩK, being relatively moderate compared to the value of 0.36

retrieved from the literature and assumed applicable to new designs, will cause only about 30%

increase in ΩT. This increase in the built-in relative error in T may un-conservatively affect seismic

equivalent lateral force estimated based on the calculated period of vibration, T. When, however,

MC simulation is repeated but for the actual value of ΩH of 0.04 complied from the literature along

with other values of 0.35 and 0.18 for  and , respectively, the relative error ΩK marks just a

small increase (ΩK=0.40) over its value of 0.36 gathered from the literature. The associated ΩT will

accordingly almost remain unchanged assuming a value of 0.19 for the set: ΩM=0.1 and ΩK=0.36

compiled from the literature, and a similar value in the order of 0.20 for the stochastically computed

set with ΩM=0.1 and ΩK=0.40.

8. Conclusions

A set of mathematical equations is developed utilizing the theory of error propagation and First-

Order Second-Moment techniques and introduced to determine bounds on the variance in

theoretically calculated fundamental period of vibration for skeletal structures. Verifications and/or

adjustments of these bounds are also carried out relying on the results recovered from applying the

more precise Monte Carlo simulation technique. Studies of parametric uncertainties applied to

investigated reinforced concrete frame bents are performed through both the FOSM and MC

simulation approaches demonstrating the effect of randomness of various relevant structural and

material properties on the relative error in the estimated period of vibration. Correlation between

mass and stiffness – the two principal uncertain parameters of interest in the calculation of T – is

thoroughly discussed.

Generally speaking, it was found that the contribution of ΩM and ΩK to the relative error in the

period, T, is theoretically similar if applying the FOSM method. Such conclusion has been also

confirmed on a practical basis when applying the more precise MC simulation technique.

Furthermore, it was found that estimated ΩT values through either the FOSM approach or MC

simulation technique assuming Lognormal PDF for input random variables are fairly comparable

and almost identical despite the large uncertainty in these relevant input random variables

considered in the present study. Moreover, referring to estimates of ΩM and ΩK available in the

literature and from a practical perspective, the intrinsic uncertainty in the mass random parameter is

comparably less than that in the stiffness parameter. Therefore, the effect of the relative error in K

on the resulting error (i.e. uncertainty) in the computed period of vibration is both theoretically and

practically more pronounced than the contribution of the relative error in M. As a conclusion, and

based on numerical information from the literature and the comparative error propagation analysis

technique introduced in this paper, the relative error, ΩT, in the “theoretically” calculated period of

vibration is in the range of 19 to 25% for the most likely hypothesis of “un-correlated” mass and

stiffness parameters.

Furthermore, some random variables, namely: the frame height H; the moment of inertia, Ic, of

the columns of the frame; and the compressive strength of concrete, fcu, that directly affect the value

of the stiffness parameter, K, have been investigated herein for the studied case of reinforced

concrete frames. It is found that the resulting coefficient of variation, ΩK, is theoretically more

sensitive to the relative error, ΩH, than to the relative error, ; while the variation, , has the

least effect on the relative error in the estimated stiffness parameter, K. Such conclusion, found to

ΩIc
Ωfcu

ΩIc
Ωfcu
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be very comparable either if applying FOSM technique or MC simulation approach, is supported by

numerical investigation with three-dimensional graphical and tabular representation of the results.

Fortunately, practical level of inherent uncertainty in H is numerically the least – as shown in the

literature – which alleviates a bit the final total relative error in K and henceforth in T. However,

based on likely relative errors from the literature, ΩK was found to reach a value of about 0.4 (refer

to MC simulation results) and consequently ΩT scores a value of 0.20 for the case of new designs.

This may pose a risk on the safety and/or economy of designed facilities if such built-in uncertainty

in the fundamental period of vibration, T, is un-conservatively overlooked, since seismic design base

shear is generally based on an estimate of T. The base shear is very sensitive to any variation in T if

the point lies on the descending branch of the applicable seismic design response spectrum curve.

Such conclusion applies to new seismic-resistant designs as well as to seismic risk assessment of

existing structures, though the applicable value of ΩK is different as presented in the body of the

paper.

The uncertainty in seismic analysis/design due to inaccurate period estimation for a given skeletal

structure is therefore an important subject worth to be investigated. For example, for new designs

with a possible value of the relative error in the period of vibration of about 0.20, and assuming that

the period falls within the velocity-controlled region along with the assumption that the design

spectrum decays inversely proportional to T, the difference in base shear values would be in the

order of approximately 25%. Such difference in base shear should nonetheless be evaluated versus

the additional effects of the inherent variability, uncertainty and conservatism present in many other

aspects of the codified seismic design process. This is currently under scrutiny by the author in an

ongoing study aiming at quantifying the effect on the final design of the built-in error in the

theoretically calculated period of vibration used to calculate seismic design loads (and hence used to

size the structure) relative to the effects (i.e. contributions) of other inherently varying aspects

typically encountered in (and mostly influencing) the seismic design process. These other aspects

include: (1) intrinsic randomness in seismic design hazard and code specified importance factors for

a particular structure; (2) code pre-specified built-in overstrength for new designs; (3) limits and

bounds imposed by some codes on the estimated period of vibration such as in the US practice; and

(4) code preset lower and upper bounds on design acceleration and drift, respectively, such as in

Eurocode 8. The contributions of such variability and uncertainties should be nevertheless weighed

against conservatism usually implemented in seismic design provisions. We would like however to

highlight the fact that the present manuscript just focuses on the part dealing with quantifying the

relative error (i.e. uncertainty) in theoretically calculated period of vibration, and hence determining

and reporting bounds on the variance of such random variable through a comprehensive parametric

study, for single mode-dominant skeletal structures due to inherent randomness in its constituents.

Quantification of this error should be useful within the context of probabilistic approaches promoted

in emerging seismic design provisions worldwide. 

To conclude, this research is not only highlighting the presence of built-in uncertainties in

theoretically calculated period of vibration, but is also quantifying bounds on these uncertainties (or

variances) in such structural random property for single mode-dominant structures, and is further

promoting to include such information about relative errors in T in seismic design and rehabilitation

standards for the emerging generation of performance-based codes already accepting and endorsing

probabilistic approaches. Implementation of the paper’s conclusion in relevant codes may be

through explicitly listing bounds on expected relative errors in computed periods of vibration in

order to quantify the most adverse effect on the seismic equivalent base shear due to such variance.



34 Sameh S.F. Mehanny

The paper further offers specific estimates for such variability for a certain type of structural

systems representing a large percentage of civil structures: single mode-dominant reinforced

concrete skeletal structures such as those typically encountered in bridges, industrial facilities,

elevated tanks, single-story dwellings, etc… Extensive computational and experimental efforts,

accompanied by statistical interpretation both at the component as well as at the entire structure

level, are still needed before establishing definite bounds on the relative error in the period of

vibration for different structural systems including MDOF structures.
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