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1. Introduction 
 

The finite element method (FEM) has been widely used 

to analyze problems in various scientific and engineering 

fields (Bathe 1996, Hughes 2000, Cook 2007). The 

accuracy of finite element solutions relies upon the quality 

of the meshes used. However, because the geometries used 

in engineering practice are very complex, considerable 

effort is required to create well-shaped meshes (Jeon et al. 
2014, Jung et al. 2020, Jung et al. 2022, Choi and Lee 

2023). Conventional triangular and quadrilateral finite 

elements have usually been preferred owing to their 

efficiency and simplicity (Tabarraei and Sukumar 2006). 

Recently, polygonal finite elements have been 

investigated as they can provide a high level of flexibility in 

mesh generation, transition, and refinement (Tabarraei and 

Sukumar 2006, Biabanaki and Khoei 2012, Biabanaki et al. 

2014, Ho-Nguyen-Tan and Kim 2018, Khoei et al. 2015a, b, 

Talischi et al. 2012, Yan et al. 2013, Nguyen et al. 2020, 

Huang et al. 2017, Wachspress 1975, Floater 2003, 

Sukumar and Tabarraei 2004, Thomes and Menandro 2020, 

Natarajan et al. 2009, Talischi et al. 2014, Nguyen-Xuan 

2017, Beira͂o da Veiga et al. 2013, Natarajan et al. 2015, 

Lien and Kajiya 1984); simpler meshing algorithms are 

possible, such as conformal decomposition (Biabanaki and 

Khoei 2012, Biabanaki et al. 2014, Ho-Nguyen-Tan and 
Kim 2018, Khoei et al. 2015a) and Voronoi tessellations 

(Talischi et al. 2012, Yan et al. 2013). They can effectively 

solve various problems such as contact problems on non-

conformal meshes (Biabanaki et al. 2014, Khoei et al. 

2015b), crack propagation problems with minimum 

remeshing (Khoei et al. 2015a, Nguyen et al. 2020), and the 
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modeling of polycrystalline materials (Huang et al. 2017). 

Further research is required to develop polygonal finite 

elements that provide more accurate and reliable solutions. 

Polygonal finite elements typically adopt barycentric 

coordinates to construct shape functions, such as 

Wachspress coordinates (Wachspress 1975) and mean value 

coordinates (Floater 2003). In these coordinates, the shape 

functions are constructed in the form of rational functions 

using the sub-areas or interior angles of an element. Then, it 
is difficult to accurately calculate the stiffness matrix 

through numerical integration. Numerous studies pertaining 

to the numerical integration of polygonal elements have 

been conducted (Tabarraei and Sukumar 2006, Sukumar 

and Tabarraei 2004, Thomes and Menandro 2020, Natarajan 

et al. 2009, Talischi et al. 2014, Nguyen-Xuan 2017). 

Instead, piecewise linear shape functions can be introduced 

such that numerical integration can be performed easily for 

each sub-triangle of the polygonal element (Tabarraei and 

Sukumar 2006, Nguyen-Xuan 2017, Jun et al. 2018, Kim 

and Lee 2018, Kim and Lee 2019). 

Various strain smoothing techniques have been 

successfully developed for the FEM (Chen et al. 2001, Liu 

et al. 2007, Dai et al. 2007, Nguyen-Thanh et al. 2008, Liu 

et al. 2009a, b, Nguyen-Thoi et al. 2009, Nguyen-Thoi et 

al. 2011, Nguyen-Xuan et al. 2013, Liu et al. 2018, Lee and 

Lee 2018, Lee and Lee 2019, Lee et al. 2021, Lee and Park 
2021). A distinct feature is that no additional degrees of 

freedom are required for the solution improvement. In well-

known smoothed finite element methods, special smoothing 

domains are constructed based on a cell, node, edge, or face 

(Liu et al. 2007, Dai et al. 2007, Nguyen-Thanh et al. 2008, 

Liu et al. 2009a, b, Nguyen-Thoi et al. 2009, Nguyen-Thoi 

et al. 2011, Nguyen-Xuan et al. 2013, Liu et al. 2018). The 

recently proposed strain-smoothed element (SSE) method 

provides further improved solutions without requiring the 

construction of specific smoothing domains, unlike existing  
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Fig. 1 A polygonal element and its sub-triangles: (a) k th 

sub-triangle (b) Natural coordinate system for a sub-triangle 

 

 

strain smoothing techniques. The SSE method has been 

successfully applied to 3-node triangular and 4-node 

quadrilateral 2D solid elements, and a 3-node MITC3+ shell  

element (Lee and Lee 2018, Lee and Lee 2019, Lee et al. 

2021). Recently, a variational framework for the SSE 

method has been studied (Lee and Park 2021). 

In this study, the SSE method is applied to polygonal 

finite elements to generate strain-smoothed polygonal 

elements. Piecewise linear shape functions are employed 

and strain smoothing is performed via the triangulation of 

polygonal elements. The polygonal elements have a 

smoothed strain field within the element, which is 

constructed by assigning smoothed strain values to the 

vertices of the sub-triangles. The proposed elements show 
further improved convergence behaviors compared with the 

existing polygonal elements in various numerical examples. 

In the following sections, we present the formulation of 

the strain-smoothed polygonal elements. The performance 

of the proposed elements is demonstrated through basic 

tests and numerical examples. 

 

 

2. Strain-smoothed polygonal finite elements 
 

In this section, we present the formulation of the strain-

smoothed polygonal finite elements, including the 

interpolations of geometry and displacement, strain 

smoothing, strain-displacement relation, and stiffness 

matrix. 

 

2.1 Geometry and displacement interpolations 
 

An n-sided polygonal element can be segmented into n 

sub-triangles based on its nodes and center point, as shown 

in Fig. 1(a). The position vector of the center point, 𝐱𝑐, is 

defined using the nodal position vectors 𝐱𝑖 (𝑖 = 1, 2,⋅⋅⋅, 𝑛) 

as follows 

1

1 n

c i

in =

= x x  with  
T

i i ix y=x . (1) 

The geometry of the k th sub-triangle of the polygonal 

element shown in Fig. 1 can be represented by 

1 1 2 3k k ch h h−= + +x x x x  (2) 

where 𝐱𝑘−1 and 𝐱𝑘 refer to the set of position vectors of two 

neighboring nodes with 𝐱0 = 𝐱𝑛; ℎ𝑖(𝑟, 𝑠) correspond to the 

shape functions of the standard isoparametric procedure for 

the 3-node triangular domain 

1h r= , 
2h s= , 

3 1h r s= − − . (3) 

Based on Eq. (2), the displacement interpolation of the 

k th sub-triangle of the n-sided polygonal element can be 

expressed as 

1 1 2 3k k ch h h−= + +u u u u  with  
T

k k ku v=u , (4) 

1

1 n

c i

in =

= u u , (5) 

where 𝐮𝑘  is the displacement vector of node 𝑘, and 𝐮𝑐  is 

the displacement vector of the center point of the polygonal 

element. 

 

2.2 Strain smoothing 
 

We consider the n-sided polygonal element m  in a finite 

element mesh, as shown in Fig. 2. By adopting the standard 

isoparametric finite element procedure (Bathe 1996), the 

strain field within the k th sub-triangle of the target element 

m  is defined as 

( ) ( ) ( )

11 22 12[ 2 ]k m T k m m  = =ε B u   

with 𝑘 = 1, 2,⋅⋅⋅, 𝑛, 
(6) 

( )

1 2

k m k k k

n
 =   B B B B , (7) 
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B  (8) 

 ( )

1 2

Tm

n= u u u u  with  
T

i i iu v=u , (9) 

where 𝐁𝑘 (𝑚)  is the strain-displacement matrix of the 𝑘 th 

sub-triangle, 𝐁𝑘
𝑖  is the strain-displacement matrix 

corresponding to node 𝑖, 𝛿𝑖𝑘 is the Kronecker delta, 𝐮(𝑚)  is 

the nodal displacement vector of the target element 𝑚, see 

Fig. 2(b) and Fig. 3. 

The n-sided polygonal element can have a maximum of 

𝑛 adjacent elements through its 𝑛 element edges, as shown 

in Fig. 2. The smoothed strain between the 𝑘 th sub-triangle 

of the target element m  and its adjacent sub-triangle of the 

neighboring element is calculated as follows 

( ) ( ) ( ) ( ) ( )

( ) ( )

1
ˆ ( )k m k m k k

km k

k

A A
A A

= +
+

ε ε ε  

with 𝑘 = 1, 2,⋅⋅⋅, 𝑛, 

(10) 

where 𝛆𝑘 (𝑚)  and 𝐴𝑘
(𝑚)

 are the (constant) strain and area of 

the 𝑘 th sub-triangle of the target element 𝑚, respectively; 

𝛆(𝑘)  and 𝐴(𝑘)
 are the strain and area of its neighboring sub- 
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Fig. 3 Sub-triangles and nodes of an element 

 

 

triangle, respectively. If no element is adjacent to the 𝑘 th 

sub-triangle, then 𝛆̂(𝑘) = 𝛆𝑘 (𝑚)  is adopted (Lee and Lee 

2018). 

It is noteworthy that 𝛆̂(𝑘)  in Eq. (10) is the smoothed 

strain representing the 𝑘 th sub-triangle as shown in Fig. 

4(a). Additionally, we can partition the polygonal element 

into n  sub-quadrilaterals by combining the halves of two 

neighboring sub-triangles as shown in Fig. 4(b). 

Subsequently, the smoothed strain corresponding to the 𝑘 th 

sub-quadrilateral of the target element 𝑚 is defined as 

( ) ( ) ( ) ( 1)

1( ) ( )

1

1
ˆ ˆ( )m k m k

k k km m

k k

A A
A A

+

+

+

= +
+

ε ε ε  

with 1k = , 2,  , n , 

(11) 

in which 𝛆̂(𝑛+1) = 𝛆̂(1)
 and 𝐴𝑛+1

(𝑚) = 𝐴1
(𝑚)

. The smoothed 

strain 𝛆̄𝑘  is assigned to the center point of the 𝑘 th sub-

quadrilateral. 

The smoothed strains for all the sub-quadrilaterals in Eq. 

(11) are utilized to calculate the strain at the center point of 

the polygonal element, as shown in Fig. 4(b) 

 
 

( )

1

( )

1

n
m

k k

k

c n
m

k

k

A

A

=

=

=




ε

ε . (12) 

Subsequently, we calculate the nodal strains for the sub-

triangles by assigning the strains in Eq. (11) to the center 

point of each sub-quadrilateral, and the strain in Eq. (12) to 

the center point of the polygonal element, as shown in Fig. 

4(c). For nodal strains 𝛆̄𝑛1
(𝑘)

 and 𝛆̄𝑛2
(𝑘)

 in the 𝑘 th sub-triangle, 

the components of the nodal strains, 𝜀𝑛̄1
(𝑘)

 and 𝜀𝑛̄2
(𝑘)

, are 

obtained as follows: 

1( )
1 1 11 11

( )
2 22 22

(1 )

(1 )

k
k cn

k
k cn

r sr s

r sr s

 

 

−

− − − −    
=    

− − −    
, (13) 

where (𝑟1 , 𝑠1) and (𝑟2 , 𝑠2) are the natural coordinates of the 

allocated points of the smoothed strains 𝛆̄𝑘−1  and 𝛆̄𝑘 , 

respectively (see Fig. 4(c)). 

The process for obtaining the natural coordinates (𝑟𝑖 , 𝑠𝑖) 

in Eq. (13) is presented in Appendix A. Using the nodal 

strains and the strain at the center point in Eq. (12), the 

smoothed strain field within the element is determined via 

the linear interpolation for each sub-triangle. Similar to Eq. 

(2), the smoothed strain field within the k th sub-triangle of 

the element m  is expressed as 

( ) ( ) ( )

1 1 2 2 3

k m k k

n n ch h h= + +ε ε ε ε . (14) 

 
2.3 Strain-displacement relation and stiffness matrix 
 

Let us consider the n-sided polygonal finite element 𝑚 

with 𝑛 neighboring elements through its edges, as shown in 

Fig. 2. In the  𝑘  th sub-triangle of the element 𝑚 , the 

relation between the smoothed strain field and the nodal 

displacement vector is given by 

( ) ( ) ( )k m k m m=ε Β u  (15) 

 

Fig. 2 A mesh of polygonal elements: (a) Target element m and its neighboring elements. (b) The strains of the 𝑘 th sub-

triangle of the target element and its adjacent sub-triangle in the neighboring element 
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with 

( )

1 2

k m

l
 =  B B B B , (16) 

where 𝛆̅𝑘 (𝑚)  is the smoothed strain field of the target 𝑚, 

𝐁̅𝑘 (𝑚)  is the strain-displacement matrix of the 𝑘  th sub-

triangle, and 𝐮̄(𝑚)  is the corresponding displacement vector. 

In Eq. (16), 𝐁̄𝑖  ( 𝑖 = 1 , 2, ⋅⋅⋅ , 𝑙 ) denotes the strain-

displacement matrices corresponding to the node 𝑖 located 

on the target element or neighboring elements, see Fig. 2(a). 

It is noteworthy that the number of components in the 

strain-displacement matrix and displacement vector is 

determined by the number of neighboring elements. 

Finally, the stiffness matrix of the strain-smoothed 

polygonal finite element is obtained as follows 

( ) ( )

1

n
m k m

k=

=K K , (17) 

with 

( )

( ) ( ) ( ) ( ) ( )

k m

k m k m T m k m k m

V
d V= K B C B , (18) 

where 𝑉𝑘 (𝑚)  is the volume of the 𝑘th sub-triangle of the 

element 𝑚  and 𝐂(𝑚)  is the material law matrix for the 

element 𝑚 . To calculate the stiffness matrix, three-point 

 

 

Gauss integration is used for each sub-triangle domain. 

Since the strain-smoothed elements have more nodes for 

strain calculation than standard elements, the size of the 

stiffness matrix of the strain-smoothed elements (𝐊(𝑚)) is 

larger than that of the standard elements. Therefore, when 

the strain-smoothed elements are used, the bandwidth of the 

corresponding global stiffness matrix becomes wider. 

The proposed polygonal elements are suitable for 

convex and weakly concave polygonal meshes satisfying 

the following condition 

( )

1 1 1 1

1
(

2

m

k c k k c k k k kA x y x y x y x y− − − −= − + −  

) 0k c c kx y x y+ −  , 

(19) 

where 𝐴𝑘
(𝑚)

 is the signed area (Lien and Kajiya 1984) of 

the 𝑘th sub-triangle of the target element 𝑚, and (𝑥𝑖 , 𝑦𝑖) are 

the coordinates of the three nodal positions of the k th sub-

triangle ( 𝑖 = 𝑐, 𝑘 − 1, 𝑘 ), as shown in Fig. 5. When the 

center point is located within the element and the sub-

triangles of the element do not overlap each other (as shown 

in Fig. 5(a)), the condition is satisfied. On the other hand, 

the condition is not satisfied when two neighboring nodes 

and the center point are located in a straight line (as shown 

in Fig. 5(b)) or when the sub-triangles overlap each other  

 
Fig. 4 Strain smoothing procedure in the strain-smoothed polygonal elements: (a) Triangulation of the polygonal element. The 

smoothed strain 𝛆̂(𝑘)  corresponding to the kth sub-triangle. (b) Quadrangulation of the polygonal element. The smoothed 

strain 𝛆̄𝑘 assigned to the center point of the kth sub-quadrilateral. (c) Calculation of the nodal strains 𝛆̄𝑛1
(𝑘)

 and 𝛆̄𝑛2
(𝑘)

 for the 𝑘th 

sub-triangle 
 

 

Fig. 5 Signed area of a sub-triangle when (a) 𝐴𝑘
(𝑚) > 0, (b) 𝐴𝑘

(𝑚) = 0, and (c) 𝐴𝑘
(𝑚) < 0 
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Fig. 7 Polygonal meshes used for the zero-energy mode test 

 

 

(as shown in Fig. 5(c)). 

 

 

3. Basic numerical tests 
 

We conduct basic numerical tests (isotropic element, 

zero-energy mode, and patch tests) on the strain-smoothed 

polygonal elements (Bathe 1996). 

To pass the isotropy test (Lee and Bathe 2004, Lee et al. 

2012, Lee et al. 2014, Ko et al. 2016, Ko and Lee 2017, Ko 

et al. 2017a, b), the same response must be obtained for all 

identical elements with different node numbering 

sequences, as shown in Fig. 6. The proposed elements yield 

 

 

Fig. 8 A polygonal mesh used for the patch tests 

 

 

the same results regardless of the element node numbering 

sequences; hence, they pass the isotropic element test. 

If no constraint exists on a single 2D solid element, then 

the stiffness matrix of the element must contain only three 

zero-energy modes corresponding to the rigid body modes 

(Ko et al. 2017a). The zero-energy mode tests are 

performed using the polygons from triangle to hexagon, as 

shown in Fig. 7. The proposed elements pass the zero-

energy mode tests. 

For the patch tests, the minimum number of DOFs is 
constrained to prevent rigid body motions, and appropriate 

loadings are applied to obtain a constant stress field. The 

same stress value should be obtained at all points on the 

elements to pass the patch tests. The mesh shown in Fig. 8 

is used to perform the normal and shear stress patch tests, 

and the stress values are obtained from all Gauss integration  

 

Fig. 6 Different node numbering sequences for a polygonal element 

Table 1 Minimum and maximum stress values for all Gauss integration points in the patch tests (minimum 

stress/maximum stress) 

  𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑥𝑦 

Normal stress 

(in x-direction) 

Wachspress 0.99987/1.00010 -0.00004/0.00004 -0.00004/0.00009 

Mean value 0.99973/1.00030 -0.00011/0.00010 -0.00023/0.00009 

CS-FEM 1.00000/1.00000 -0.00000/0.00000 -0.00000/0.00000 

ES-FEM 1.00000/1.00000 -0.00000/0.00000 -0.00000/0.00000 

SSE 

(proposed) 
0.99241/1.00370 -0.00183/0.00114 -0.00155/0.00190 

Reference 1.00000 0.00000 0.00000 

Shear stress 

Wachspress -0.00170/0.00211 -0.00044/0.00056 0.99947/1.00050 

Mean value -0.00425/0.00322 -0.00115/0.00092 0.99881/1.00100 

CS-FEM -0.00000/0.00000 -0.00000/0.00000 1.00000/1.00000 

ES-FEM -0.00000/0.00000 -0.00000/0.00000 1.00000/1.00000 

SSE 
(proposed) 

-0.01404/0.00945 -0.00819/0.00496 0.99488/1.01180 

Reference 0.00000 0.00000 1.00000 
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Fig. 9 Infinite plate with a circular hole (𝐸 = 3 × 107 and 

𝜈 = 0.3). Only shaded domain is meshed due to symmetry 

 

 

points. The proposed polygonal elements practically pass 

the patch tests as shown in Table 1. 

 

 

4. Numerical examples 
 

We investigate the performance of the strain-smoothed 

polygonal finite elements by solving the four numerical 
examples: an infinite plate with a circular hole, Cook’s 

skew beam, a dam problem, and a ring problem. The unit 

thickness is considered for all the 2D solid problems. 

The performance of the strain-smoothed polygonal finite 

elements (SSE) is compared with those of the polygonal 

finite elements based on Wachspress coordinates 

(Wachspress) (Wachspress 1975) and mean value 

coordinates (Mean value) (Floater 2003). In addition, the 

edge-based smoothed polygonal finite elements (ES-FEM) 

(Nguyen-Thoi et al. 2011) and the cell-based smoothed 

polygonal finite elements (CS-FEM) are considered for 

comparison. The CS-FEMs are segmented into triangular 

cells for strain smoothing; however, if the polygonal 

element is a quadrilateral, then this element is segmented 

into four quadrilateral cells (Liu et al. 2007, Dai et al. 

2007). 

The convergence of the elements is evaluated through 

their displacements at specific locations and stress 
distributions. Reference solutions are obtained using 

sufficiently fine meshes of 9-node quadrilateral finite 

elements. 

The relative error in strain energy 𝐸𝑟  is measured as 

follows 

ref

ref

h

r

E E
E

E

−
= , (20) 

where 𝐸ref  is the reference strain energy and 𝐸ℎ  is the strain 

energy calculated from the finite element solutions. The 

optimal convergence behavior for linear elements is 

expressed as 

2

rE ch , (21) 

where 𝑐  is a constant and ℎ  is the element size (Bathe 

1996). 

 

Fig. 10 Polygonal meshes used for the infinite plate with a 

circular hole 

 

 

Fig. 11 Convergence curves for Cook’s skew beam. The 

bold line represents the optimal convergence rate 

 

 

4.1 Infinite plate with a circular hole 
 

We solve the problem of infinite plate with a circular 

hole shown in Fig. 9 (Liu et al. 2007, Lee and Lee 2018).  

The radius of the circular hole is 𝑎 = 1, and the infinite 

plate is subjected to a far-field traction 𝑝 = 1  (force per 

area) in the 𝑥 -direction. The plane strain condition is 

considered with Young’s modulus 𝐸 = 3 × 107  and 

Poisson’s ratio 𝜈 = 0.3. Owing to symmetry, one-quarter of 

the plate is modeled as shown in Fig. 9, and the 

corresponding boundary conditions are imposed as follows: 

𝑢 = 0  along BC  and 𝑣 = 0  along 𝐴𝐸 . Fig. 10 shows 

meshes used with the total numbers of elements 𝑁𝑒 =13,  

316



 

Strain-smoothed polygonal finite elements 

 

 

 

 

 

42, 148 and 552 (or the numbers of elements along the 

upper edge 𝑁 =2, 4, 8 and 16, respectively). The element 

size ℎ is defined as ℎ = 1/𝑁. 

The traction boundary conditions are imposed along 𝐶𝐷 

and 𝐷𝐸  using the following analytical solutions 

(Timoshenko 1970) 

2 4

2 4

3 3
( , ) 1 cos 2 cos 4 cos 4

2 2
xx

a a
r p

r r
    

  
= − + +  

  
, (22) 

2 4

2 4

1 3
( , ) cos 2 cos 4 cos 4

2 2
yy

a a
r p

r r
    

  
= − − −  

  
, (23) 

2 4

2 4

1 3
( , ) sin 2 sin 4 sin 4

2 2
xy

a a
r p

r r
    

  
= − + +  

  
, (24) 

 

 

 

 

where 𝑟 and 𝜃 are the distance from the origin (𝑥 = 𝑦 = 0) 

and counterclockwise angle from the positive 𝑥 -axis, 
respectively. 

The convergence curves obtained using 𝐸𝑟  in Eq. (20) 

are shown in Fig. 11. The relative errors in the horizontal 

displacement at point 𝐴  and the vertical displacement at 

point 𝐵  are listed in Tables 2-3, respectively. The 

distributions of the calculated stress component 𝜎𝑥𝑦  for the 

2.5 × 2.5 area around the hole are shown in Fig. 12. The 

reference solutions are obtained using an 8,192 element 

mesh of 9-node quadrilateral elements. The proposed 

elements provide improved convergence behaviors 

compared with the elements based on Wachspress 

coordinates and mean value coordinates, the cell-based 

smoothed elements, and the edge-based smoothed elements. 

 

 
Fig. 12 Stress distributions (𝜎𝑥𝑦 ) for the infinite plate with a circular hole. Only 2.5 × 2.5 area around the hole is 

plotted. The reference stress distribution is obtained using an 8,192 element mesh of 9-node quadrilateral elements 

Table 2 Relative errors in the horizontal displacement (|𝑢ref − 𝑢ℎ|/|𝑢ref| × 100) at point 𝐴 in the infinite plate 

with a circular hole 

𝑁𝑒  Wachspress Mean value CS-FEM ES-FEM SSE (proposed) 

13 12.831 13.566 19.302 16.419 6.324 

42 8.666 9.023 11.862 7.517 2.898 

148 5.694 5.913 7.442 2.604 0.729 

552 3.317 3.479 4.459 0.631 0.022 

Reference solution: 𝑢ref = 9.101 × 10−8 

Table 3 Relative errors in the vertical displacement (|𝑣ref − 𝑣ℎ|/|𝑣ref| × 100) at point 𝐵 in the infinite plate with a 

circular hole 

𝑁𝑒  Wachspress Mean value CS-FEM ES-FEM SSE (proposed) 

13 19.143 19.304 21.998 16.798 14.139 

42 16.809 17.156 19.225 10.158 8.187 

148 13.117 13.530 15.748 4.200 2.641 

552 8.387 8.785 10.896 1.029 0.428 

Reference solution: 𝑣ref = -3.034 × 10−8 
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Fig. 13 Cook’s skew beam (𝐸 = 3 × 107 and 𝜈 = 0.3) 

 

 

Fig. 14 Polygonal meshes used for Cook’s skew beam 

 
 
4.2 Cook’s skew beam 

 

The well-known Cook’s skew beam problem is solved, 

as shown in Fig. 13 (Cook 2007). The left side of the 

structure is clamped, and a distributed shearing force of 

total magnitude 𝑃 = 1  is exerted on the right edge. The 

plane stress condition is assumed with Young’s modulus 

𝐸 = 3 × 107  and Poisson’s ratio 𝜈 = 0.3 . Solutions are 

obtained for meshes with the total numbers of elements 

𝑁𝑒 =7, 22, 76 and 280 (or the numbers of elements along 

the upper edge 𝑁 =2, 4, 8 and 16, respectively), as shown 

in Fig. 14. The element size ℎ is defined by ℎ = 1/𝑁. 

The convergence curves for 𝐸𝑟  in Eq. (20) are depicted 

in Fig. 15. The convergences in the normalized horizontal 

displacement at point 𝐴 are shown in Fig. 16. The relative 

errors in the horizontal displacement at point 𝐴 are listed in 

Table 4. The reference solutions are obtained using a 

64 × 64 mesh of 9-node quadrilateral elements. Among the 

polygonal elements considered, the proposed elements 

provide the best solution accuracy. 

 

Fig. 15 Convergence curves for Cook’s skew beam. The 

bold line represents the optimal convergence rate 

 

 

Fig. 16 Normalized horizontal displacements (𝑢ℎ/𝑢ref)  at 

point A in Cook’s skew beam 

 

 
The computational efficiency of the considered elements 

is compared in Fig. 17. We plot the relations between 

computation times versus the errors in strain energy. The 

solutions are obtained using the meshes where the numbers 

of elements along the upper edge N = 8, 16, 32, 64 and 

128. In addition, a standard 3-node triangular element 

(named T3) is employed with meshes obtained by 

triangulation of polygons as shown in Fig. 18, and the 

computational efficiency of the T3 element is presented in 

Fig. 17. Computations are conducted using a personal 

computer with Intel Core i7-4790, 3.60 GHz CPU, and 8 

GB RAM. The skyline solver is used to solve a linear 

system of equations. As shown in Fig. 17, the proposed 

elements give more accurate solutions compared with other 

elements at similar computation time levels. In other words, 

the proposed elements exhibit the best computational 

efficiency among the elements considered in this problem. 

 

4.3 Dam problem 
 

A 2D dam structure is subjected to the following surface  
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Fig. 17 Computational efficiency curves for Cook’s skew 

beam. The computation times are measured in seconds 

 

 
                  (a)                                                 (b) 

Fig. 18 Mesh obtained by triangulation of polygons (𝑁 =
4): (a) Polygonal mesh (92 DOFs). (b) Triangular mesh 

(136 DOFs) 

 

 

force (force per length) on its left edge, as shown in Fig. 19 

(Lee et al. 2021) 

1/5

5 0 5

( 5) 5 10
S

y y
f

y y

−  
= 

−  
. (25) 

The clamped boundary condition is applied along the 

bottom edge. The plane strain condition is employed with 

Young’s modulus 𝐸 = 3 × 1010  and Poisson’s ratio 𝜈 =
0.2. We use meshes with the total numbers of elements 

𝑁𝑒 =13, 42, 148 and 552, as shown in Fig. 20. The element 

size ℎ  is ℎ = 1/𝑁 , where 𝑁  is  the number of elements 

along the left edge. 

The convergence curves are obtained using 𝐸𝑟  in Eq. 

(20), as shown in Fig. 21. The reference solutions are 

 

 

Fig. 19 Dam problem (𝐸 = 3 × 1010 and 𝜈 = 0.2) 

 

 

Fig. 20 Polygonal meshes used for the dam problem 

 

 

obtained using a 64 × 128  mesh of 9-node quadrilateral 

elements. The proposed elements demonstrate significantly 

improved convergence behaviors compared with the 

elements based on Wachspress coordinates and mean value 

coordinates, the cell-based smoothed elements, and the 

edge-based smoothed elements. 

Table 4 Relative errors in the horizontal displacement (|𝑢ref − 𝑢ℎ|/|𝑢ref| × 100) at point 𝐴 in Cook’s skew beam 

problem 

𝑁𝑒  Wachspress Mean value CS-FEM ES-FEM SSE (proposed) 

7 61.270 62.422 68.968 44.119 25.828 

22 33.579 34.823 42.504 12.452 6.089 

76 14.478 15.140 19.537 4.681 2.710 

280 5.879 6.136 7.879 2.127 1.301 

Reference solution: 𝑢ref = -6.301 × 10−7 
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Fig. 21 Convergence curves for the dam problem. The bold 

line represents the optimal convergence rate 

 

 

Fig. 22 Polygonal meshes constructed using the paving and 

cutting algorithm for the dam problem 

 

 

In addition, we evaluate the performance of the 

proposed elements for meshes constructed using the paving 

and cutting algorithm. Using the meshing algorithm, the 

interior of the problem domain is uniformly meshed for 
quadrilateral elements, but the boundary is meshed for 

polygonal elements (Biabanaki and Khoei 2012, Biabanaki 

et al. 2014, Ho-Nguyen-Tan and Kim 2018, Khoei et al. 

2015a). Fig. 22 shows the resulting meshes obtained by 

using the meshing algorithm for this problem. The uniform 

grid sizes used are ℎgrid = 2, 0.8, 0.4, and 0.2. For 

convergence studies, the element size ℎ is defined as ℎ = 

 

Fig. 23 Convergence curves for the dam problem when the 

meshes with the paving and cutting algorithm are utilized. 

The bold line represents the optimal convergence rate 

 

 

Fig. 24 Ring problem (𝐸 = 3 × 103  and 𝜈 = 0.3 ). Only 

shaded domain is considered for analysis owing to 

symmetry 

 

 

Fig. 25 Polygonal meshes constructed using the paving and 

cutting algorithm for the ring problem 

 

 

1/𝑁, with an equivalent number of elements 𝑁 = 𝐿𝑒/ℎgrid 

(characteristic length 𝐿𝑒 = 10  in this problem). Fig. 23 

shows the convergence curves obtained using 𝐸𝑟  in Eq. 

(20). The proposed elements provide improved solution 

accuracy, even when used with the paving and cutting 

algorithm. 
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Fig. 26 Convergence curves for the ring problem. The bold 

line represents the optimal convergence rate 

 

 

4.4 Ring problem 
 

A 2D ring structure is subjected to a surface force (force 

per length) in the direction normal to the surface as shown 
in Fig. 24. For this symmetric problem, one quarter of the  

 

 

 

 

ring is considered with the following boundary conditions: 

𝑢 = 0 along 𝐴𝐵, and 𝑣 = 0 along 𝐶𝐷, as shown in Fig. 24. 

The plane stress condition is assumed with Young’s 

modulus 𝐸 = 3 × 103 and Poisson’s ratio 𝜈 = 0.3. 

As shown in Fig. 25, meshes with the total numbers of 

elements 𝑁𝑒 =16, 56 and 205 are obtained by using the 

paving and cutting algorithm. Here, the uniform grid sizes 

are ℎgrid =1/2, 1/4, and 1/8 of the ring width 𝐿𝑒= 2. The 

element size h  is defined as ℎ = 1/𝑁, with an equivalent 

number of elements 𝑁 = 𝐿𝑒/ℎgrid. 

The convergence curves for 𝐸𝑟  in Eq. (20) are shown in 

Fig. 26. The von Mises stress distributions are shown in 

Fig. 27. The convergences in the normalized vertical 

displacement at point 𝐴 are shown in Fig. 28. The relative 

errors in the vertical displacement at point 𝐴 are listed in 

Table 5. The reference solutions are obtained using a 

64 × 64  mesh of 9-node quadrilateral elements. The 

proposed elements demonstrate significantly better 

convergence behaviors than the other elements considered. 

In all the numerical examples presented, the proposed 

elements consistently yield better convergence behaviors 

compared with the elements using Wachspress shape 

functions, the cell-based smoothed elements, and the edge- 

based smoothed elements. Additionally, the proposed 
elements are effective when used with the paving and 

cutting algorithm. 

 

 

Table 5 Relative errors in the vertical displacement (|𝑣ref − 𝑣ℎ|/|𝑣ref| × 100) at point 𝐴 in the ring problem 

𝑁𝑒  Wachspress Mean value CS-FEM ES-FEM SSE (proposed) 

16 99.953 101.652 74.198 79.101 8.186 

56 31.261 32.001 22.724 23.946 2.754 

205 8.337 8.549 5.687 5.568 0.447 

Reference solution: 𝑣ref = 5.996 × 10−4 

 
Fig. 27 von Mises stress distributions for the ring problem. The reference stress distribution is obtained using a 
64 64  mesh of 9-node quadrilateral elements 
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Fig. 28 Normalized vertical displacements (𝑣ℎ/𝑣ref)  at 

point A in the ring problem 

 
 
5. Conclusions 

 

In this study, we proposed the strain-smoothed 

polygonal finite elements. Instead of using complex shape 

functions for polygonal elements, piecewise linear shape 

functions were employed to triangulate the elements for 
strain smoothing. We first calculated the smoothed strains 

for the elements using all the strains of all neighboring 

elements. Subsequently, smoothed strains were assigned to 

the vertices of the sub-triangles of the elements, which 

resulted in a piecewise linear strain field for the strain-

smoothed polygonal elements. 

The strain-smoothed polygonal elements passed the 

basic tests (i.e., isotropic element, zero-energy mode, and 

patch tests). In addition, the elements showed improved 

convergence behaviors compared with previously 

developed elements in various numerical examples. The 

strain-smoothed polygonal elements can be effectively used 

in various applications, such as contact problems on non-

conformal meshes (Biabanaki et al. 2014, Khoei et al. 

2015b) and crack analysis with minimal remeshing (Khoei 

et al. 2015a, Nguyen et al. 2020). 
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Appendix A. Calculation of natural coordinates in 
triangular domain 

 

Here, we explain the method for calculating the natural 

coordinates corresponding to a specified position in a 

triangular domain. This calculation is required to obtain 

(𝑟1 , 𝑠1) and (𝑟2 , 𝑠2) in Eq. (13). 

 

 

 

 

The position vector of a point 𝐱𝑘  in the triangular 

domain shown in Fig. A1 can be expressed using the shape 

functions of the standard isoparametric procedure as 

follows 

1 2 3(1 )k k k k kr s r s= + + − −x x x x , (26) 

where 𝐱1, 𝐱2, and 𝐱3 are the position vectors of the vertices 

of the triangular domain; 𝑟𝑘  and 𝑠𝑘  are the natural 

coordinates of 𝐱𝑘 to be determined. 

The natural coordinates 𝑟𝑘  and 𝑠𝑘  are unknown values, 

and the positions of vertices 𝐱𝑖(𝑥𝑖, 𝑦𝑖)  and point 𝐱𝑘  are 

specified. Eq. (26) can be expressed using the following 

matrix equation 

1 3 2 3 3

1 3 2 3 3

k k

k k

x x x x r x x

y y y y s y y

− − −     
=     

− − −     
, (27) 

where (𝑥𝑖, 𝑦𝑖)  is the coordinates of 𝐱𝑖  in the Cartesian 
coordinate system. 

Finally, the natural coordinates 𝑟𝑘  and 𝑠𝑘  are calculated 

as follows 

1

1 3 2 3 3

1 3 2 3 3

k k

k k

r x x x x x x

s y y y y y y

−
− − −     

=     
− − −     

. (28) 

In general, natural coordinates in the triangular domain 

are defined between 0 and 1; however, if the position 𝐱𝑘 is 

located outside the domain, the natural coordinates 𝑟𝑘  and 

𝑠𝑘  can be negative values. 

 

 

 

Fig. A1 Position vector of an arbitrary point 𝒙𝑘  in the 

triangular domain 
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