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1. Introduction 
 

Thin plate is a common structural component, widely 

used in civil engineering, machinery, composite materials 

and other fields (Wang et al. 2018, Li et al. 2020, Dehghani 

et al. 2021). Compared with beams, columns and other 

components, thin plate structures are prone to out-of-plane 

deformation under the influence of external loads, 

temperature, humidity, uneven materials, residual stress, 

and other factors (Lederle and Hiller 2012, Ren and Wang 

2019, Xu et al. 2017, Zhu et al. 2020). Plate is a kind of 

spatial component with more complex mechanical 

properties. Out-of-plane deformation of plates is often 

accompanied by the warping phenomenon. The warping 

deformation is an important out-of-plane deformation, 

which is of great significance to the study of plate problems 

(Taylor 1933, Loredo 2016, Polizzotto 2018). Compared 

with conventional plane deformations (tensile, compression, 

shear, etc.), the spatial warping deformation is more 

complex and has an impact on the mechanical properties of 

the plate (Kordolemis and Weaver 2017), which brings 

more difficulties to the analysis and design of the plate 

structure. Although not the main deformation, the 

proportion of warping deformation cannot be ignored 

(especially at the corners of the plate). Especially in 

engineering, it is a common measure to set additional 
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reinforcement at the corners of the plate to prevent cracking 

(ACI 2011).  

In practical engineering, due to the needs of use, it is 

often necessary to form holes of different sizes on the thin 

plate. Compared with the thin plate without opening, the 

deformation performance of the thin plate with a hole is 

more complicated. In most cases, the presence of the hole 

only produces stress changes on a local area around the hole 

(Wang and Spencer 2021). However, the appearance of the 

hole will also change the original force transmission 

mechanism of the plate structure, thereby affecting its 

deformation performance (Kalaycioglu et al. 2019). At the 

same time, the hole impairs the ability of the plate to resist 

warping deformation, resulting in a sudden increase in 

stress concentration near the hole and warping deformation 

(Jafari and Ardalani 2016, Tuna and Trovalusci 2020), 

which eventually leads to cracking of the plate (Yan 2006). 

Therefore, it is an important subject to study the out-of-

plane warping deformation properties of thin plates 

(especially the thin plate with a hole).  

As a powerful numerical method, finite element analysis 

has become the focus of researchers and engineers. Many 

scholars have developed plate elements that can account for 

the warping deformation (Piltner 1992, Katili et al. 2015, 

Shang et al. 2016), and then identify warping deformation 

based on the nodal displacements of the thin plate model. 

However, the deformation obtained by the nodal 

displacement cloud map is actually a comprehensive out-of-

plane deformation, which consists of deformations such as 

warping, torsion, and bending (Piana et al. 2021). In 

engineering, it is usually necessary to implement different 

reinforcement measures for different deformations (Hwang 

et al. 2019, Saliba and Gardner 2018). Although 

reinforcement at large deformation locations can reduce 

various deformations including warping, this method is not  
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(a) Schematic diagram (b) Comprehensive deformation 

Fig. 1 Four-node square thin plate element 

 

 

economical and sometimes it is difficult to achieve the 

desired effect. Therefore, it is necessary to decompose the 

comprehensive deformation of the thin plate into basic 

deformations to achieve the purpose of guiding targeted 

reinforcement. However, the solution object of traditional 

finite element strain analysis is the strain of each element, 

and it is difficult to obtain complete basic deformation 

information and effectively distinguish warping 

deformation from comprehensive deformation.  

As a powerful statistical tool, Proper Orthogonal 

Decomposition (POD) is widely used in fluid mechanics, 

image recognition, optimal control and other fields (Tang et 

al. 2015, Janiga 2019, Ali et al. 2021). The basic principle 

of the POD method is to obtain several linearly independent 

orthonormal bases by processing the physical field data 

obtained by numerical simulation or experiment. By 

representing the physical field under arbitrary design 

parameters as a linear combination of orthonormal bases 

and its corresponding coefficients, dimensionality reduction 

and decoupling of the physical field can be achieved. 

Therefore, POD can be applied to decompose the 

comprehensive deformation represented by the nodal 

displacement field. However, for displacement fields with a 

large number of meshes, it is difficult for traditional POD 

methods to solve the orthonormal basis. Even if an auxiliary 

algorithm (Girfoglio et al. 2021) is used in the solution, 

there is no guarantee that the obtained basis matrix 

conforms to the characteristics of the basic deformation. 
Therefore, on the basis of satisfying mathematical 

orthogonality and mechanical equilibrium, a deformation 

decomposition method of the four-node square thin plate 

element is proposed and applied to the deformation analysis 

of thin plate structures. By quantitatively identifying the 

basic deformation of the four-side-fixed thin plate under a 

uniformly distributed load, the deformation decomposition 

diagram and the warping deformation proportion cloud 

diagram are obtained. The correctness of the method is 

verified by comparing the results with the traditional finite 

element strain analysis. Then on this basis, the deformation 

properties of the bidirectional thin plates with different sizes 

of central holes are analyzed. 

 

 
2. Deformation decomposition method based on 
orthogonal theory 

 

2.1 The construction of complete orthogonal 
mechanical bases 

 
The schematic diagram of the four-node square thin 

plate element is shown in Fig. 1. Based on the linear finite  
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(a) X-axis direction in the 

XOY plane 

(b) Y-axis direction in the 

XOY plane 
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(c) Z-axis direction 

Fig. 2 Rigid body linear displacements 

 

 

element theory, under the assumption of small deformation, 

the comprehensive deformation of the element can be 

represented by 12 nodal linear displacements of the 4 nodes 

of the element, and the deformation space formed by 12 

nodal linear displacements can be linearly represented by 12 

completely orthogonal basic rigid body displacement or 

elastic deformation basis vectors (Hassani 2013). 

The basic displacements of the four-node square thin 

plate element include the displacement of the rigid body in 

the X-, Y-, and Z-axis directions and the rotation of the 

rigid body in the XOY, YOZ, and XOZ planes. The basic 

deformations of the element include tensile and 

compressive deformations in the X- and Y-axis directions 

of the XOY plane, bending deformation in the X- and Y-

axis directions of the XOY plane, shear deformation in the 

XOY plane, and warping deformation in the Z-axis 

direction. 

On the four nodes of the four-node square thin plate 

element, loads of equal magnitude and the same direction 

are applied along the X- and Y-axis directions, respectively, 

resulting in rigid body linear displacements in the X-, Y-, 

and Z-axis directions, as shown in Fig. 2. Then, for the rigid 

body linear displacement in the X-, Y-, and Z- axis 

directions, the construction of three basis vector is 

performed. 

Basis vector of rigid body linear displacement in the X-

axis direction of the XOY plane (as shown in Fig. 2(a)) is 

1

T

0.5000 0 0 0.5000 0 0

0.5000 0 0 0.5000 0 0

=P （

）
 (1) 

Basis vector of rigid body linear displacement in the X-

axis direction of the XOY plane (as shown in Fig. 2(b)) is 

2

T

0 0.5000 0 0 0.5000 0

0 0.5000 0 0 0.5000 0

=P （

）
 (2) 

Basis vector of rigid body linear displacement in the Z-

axis (as shown in Fig. 2(c)) is 

3

T

0 0 0.5000 0 0 0.5000

0 0 0.5000 0 0 0.5000

=P （

）
 (3) 

On the four nodes of the four-node square thin plate  
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(a) X-axis direction (b) Y-axis direction 

Fig. 3 Tensile and compressive deformations in the XOY 

plane 

 

 

element, loads of equal magnitude and opposite directions 

are applied along the X- and Y-axis directions, respectively, 

resulting in tensile and compressive deformations in the X- 

and Y-axis directions, as shown in Fig. 3. At this time, the 

force condition satisfies both the force balance condition 

and the moment balance condition.  

The basis vector of tensile and compressive deformation 

in the X-axis direction of the XOY plane is constructed (as 

shown in Fig. 3(a)) as 

4

T

0.5000 0 0 0.5000 0 0

0.5000 0 0 0.5000 0 0

= −

−

P （

）
 (4) 

Similarly, the basis vector of tensile and compressive 

deformation in the Y-axis direction of the XOY plane is 

constructed (as shown in Fig. 3(b)) as 

5

T

0 0.5000 0 0 0.5000 0

0 0.5000 0 0 0.5000 0

=

− −

P （

）
 (5) 

Between the basis vectors of tension-compression 

deformation, and between the basis vector of tension-

compression deformation and the basis vector of rigid body 

linear displacement, the orthogonal and normalization 

conditions are satisfied. 

According to the established force system balance and 

moment balance conditions, the basis vectors of other basic 

deformations and rotations can be constructed. These basis 

vectors, as well as the basis vectors of the above-mentioned 

rigid body linear displacement and tension-compression 

deformation, satisfy mutual orthogonalization and 

normalization conditions. The corresponding force 

conditions, deformations or rotations are shown in Fig. 4. 

Basis vector of bending deformation in the X-axis 

direction of the XOY plane (as shown in Fig. 4(a)) is 

6

T

0.5000 0 0 0.5000 0 0

0.5000 0 0 0.5000 0 0

= −

−

P （

）
 (6) 

Basis vector of bending deformation in the Y-axis 

direction of the XOY plane (as shown in Fig. 4(b)) is 

7

T

0 0.5000 0 0 0.5000 0

0 0.5000 0 0 0.5000 0

= −

−

P （

）
 (7) 

Basis vector of shear deformation in the XOY plane (as 

shown in Fig. 4(c)) is 

8

T

0.3536 0.3536 0 0.3536

0.3536 0 0.3536 0.3536

0 0.3536 0.3536 0

=

− − −

−

P （

）

 (8) 
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(a) Bending deformation in 

the X-axis direction of the 

XOY plane 

(b) Bending deformation in 

the Y-axis direction of the 

XOY plane 

X

O

Z

4

1

2

Y

3

 

X

O

Z

4

1

2

Y

3  
(c) Shear deformation in the 

XOY plane 

(d) Warping deformation in 

the Z-axis direction 
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(e) Rigid body rotation in the 

YOZ plane 

(f) Rigid body rotation in 

the XOZ plane 
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(g) Rigid body rotation in the XOY plane 

Fig. 4 Other 4 basic deformations and 3 rotational 

displacements of the four-node square thin plate element 

 

 

Basis vector of warping deformation in the Z-axis 

direction (as shown in Fig. 4(d)) is 

9

T

0 0 0.5000 0 0 0.5000

0 0 0.5000 0 0 0.5000

= −

−

P （

）
 (9) 

Basis vector of rigid body rotational displacement in the 

YOZ plane (as shown in Fig. 4(e)) is 

10

T

0 0 0.5000 0 0 0.5000

0 0 0.5000 0 0 0.5000

=

− −

P （

）
 (10) 

Basis vector of rigid body rotational displacement in the 

XOZ plane (as shown in Fig. 4(f)) is 

11

T

0 0 0.5000 0 0 0.5000

0 0 0.5000 0 0 0.5000

= −

−

P （

）
 (11) 

Basis vector of rigid body rotational displacement in the 

XOY plane (as shown in Fig. 4(g)) is 

12

T

0.3536 0.3536 0 0.3536

0.3536 0 0.3536 0.3536

0 0.3536 0.3536 0

= − −

− −

P （

）

 (12) 
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The constructed 12 basis vectors satisfy the orthogonal 

and normalization conditions with each other, namely 

1
( , 1,2, ,12)

0

T

i j

i j
i j

i j

    =  
=             =

   
P P  (13) 

Based on the theoretical basis of orthogonal 

decomposition, the complete orthogonal mechanical basis 

matrix of the four-node square thin plate element is 

obtained as 

1 2 3 4 5 6 11 12[ ]=P P P P P P P P P  (14) 

The 12×12 basis matrix P satisfies completeness and 

P·PT=E, which can be used as the complete orthogonal 

mechanical basis matrix for deformation decomposition. E 

is the identity matrix. 

 
2.2 Deformation decomposition method based on the 

complete orthogonal mechanical basis matrix 
 

The nodal displacement vector of any comprehensive 

deformation of the four-node square thin plate element is 

1 1 1 1 1 1 2 2

2 2 2 2 3 3 3 3

T

3 3 4 4 4 4 4 4

' ' ' '

' ' ' '

' ' ' '

e x x y y z z x x

y y z z x x y y

z z x x y y z z

= − − − −

− − − −

− − − −

d （

）

 (15) 

The nodal displacement vector of the four-node square 

thin plate element can be projected onto the constructed 

complete orthogonal basis matrix P. 

e

T
•=d p P  (16) 

where 

1 2 3 4 5 6

7 8 9 10 11 12

p p p p p p

p p p p p p

=p （

）
 (17) 

where pi represents the projection coefficient on the 

corresponding basic displacement or basic deformation 

basis vector. 

Eq. (16) can be converted to 

e •=p d P  (18) 

The positive or negative of projection coefficients can 

represent the actual state of rigid body displacement or 

basic deformation. For p4 and p5, a positive value means the 

element is in tension, and a negative value means the 

element is in compression. Accordingly, the arbitrary 

comprehensive deformation of the element described by the 

element node displacement can be decomposed into 

orthogonal components such as rigid body linear 

displacement, basic deformation, and rigid body rotation. 

 

 

Furthermore, the separation of the rigid and flexible 

components of the element rigid body linear displacements, 

basic deformations and rigid body rotational displacements 

can be carried out for Eq. (19). 

L D R( )=p p p p  (19) 

where pL=(p1 p2 p3) is the projection coefficient vector of 

the rigid body linear displacements, pR=(p4 p5 p6 p7 p8 p9) is 

the projection coefficient vector of the basic deformations, 

pR=(p10 p11 p12) is the projection coefficient vector of the 

rigid body rotational displacements. 

If 𝒑𝒊
′ =

|𝑝𝑖|

∑ |𝑝𝑖|
9
𝑖=4

, the projection coefficients of the basic 

deformations can be normalized. 

D

4 5 6 7 8 9' ( ' ' ' ' '    ')p p p p p p=p  (20) 

where ( )4,  5,  ,  9'i ip =  represents the proportion of each 

basic deformation in the total basic deformation. 

Ignoring the effect of rigid body displacements, the 

absolute values of the projection coefficients on the six 

basic deformation basis vectors are compared. The basis 

corresponding to the projection coefficient with the largest 

absolute value represents the main basic deformation form 

of the element. For ease of analysis, each basic deformation 

corresponds to a colour and an abbreviation, and the tensile 

and compressive deformations are separated. The colour 

and abbreviation descriptions are shown in Table 1. Red 

represents that the element is dominated by X-axis 

compressive deformation (C-X), and blue represents that 

the element is dominated by shear deformation (S). 

 

2.3 Error analysis 
 

Rigid body rotational displacement is a nonlinear 

displacement, and its linear decomposition will produce 

errors, that is, the rigid body rotational displacement vector 

of the element will not only be projected onto the rigid body 

rotational displacement basis vector, but also onto other 

rigid body linear displacement and basic deformation basis 

vectors. Therefore, it is necessary to calculate the additional 

projection coefficients produced by the rigid body rotational 

displacement of the element on other rigid body linear 

displacement and basic deformation basis vectors, and 

analyse whether they affect the calculation accuracy. 

When the four-node square thin plate element with side 

length l rotates clockwise around the centre (i.e., the 

coordinate origin) in the plane, the displacement vector of 

its four nodes is 

e

2 2 2 2
sin( ) cos( ) 0 cos( ) sin( ) 0

2 4 2 2 4 2 2 2 4 2 4 2

2 2 2 2
        sin( ) cos( ) 0 cos( ) sin( ) 0

2 2 4 2 2 4 2 4 2 2 2 4

l l l l l l l l

l l l l l l l l

   
   

   
   


= − − − − − − − −




− − − − − − − − 



d

 

Table 1 Colours corresponding to basic deformations 

    
Tensile deformation in the X-

axis direction (T-X) 

Compressive deformation in the 

X-axis direction (C-X) 

Tensile deformation in the Y-

axis direction (T-Y) 

Compressive deformation in the 

Y-axis direction (C-Y) 

    
Bending deformation in the X-

axis direction (B-X) 

Bending deformation in the Y-

axis direction (B-Y) 

Shear deformation 

(S) 

Warping deformation 

(W) 
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e

2 2 2 2
sin( ) cos( ) 0 cos( ) sin( ) 0

2 4 2 2 4 2 2 2 4 2 4 2

2 2 2 2
        sin( ) cos( ) 0 cos( ) sin( ) 0

2 2 4 2 2 4 2 4 2 2 2 4

l l l l l l l l

l l l l l l l l

   
   

   
   


= − − − − − − − −




− − − − − − − − 



d

 

e

2 2 2 2
sin( ) cos( ) 0 cos( ) sin( ) 0

2 4 2 2 4 2 2 2 4 2 4 2

2 2 2 2
        sin( ) cos( ) 0 cos( ) sin( ) 0

2 2 4 2 2 4 2 4 2 2 2 4

l l l l l l l l

l l l l l l l l

   
   

   
   


= − − − − − − − −




− − − − − − − − 



d

 

e

2 2 2 2
sin( ) cos( ) 0 cos( ) sin( ) 0

2 4 2 2 4 2 2 2 4 2 4 2

2 2 2 2
        sin( ) cos( ) 0 cos( ) sin( ) 0

2 2 4 2 2 4 2 4 2 2 2 4

l l l l l l l l

l l l l l l l l

   
   

   
   


= − − − − − − − −




− − − − − − − − 



d

 
(21) 

The rigid body rotational displacement vector of the 

element is projected onto the constructed complete 

orthogonal mechanical basis matrix. The rigid body 

rotational displacement vector of the element has projection 

coefficients only on the rigid body rotational displacement 

basis vector, X-axis tensile-compressive deformation basis 

vector, and Y-axis tensile-compressive deformation basis 

vector. All other rigid body linear displacement and basic 

deformation basis vectors have projection coefficients of 0. 

Therefore, the equation system of the projection coefficient 

corresponding to the rigid body rotational displacement 

vector can be obtained as 

4 5 12

4 5 12

4 5 12

2
0.5 0 0.3536 sin( )

2 4 2

2
0 0.5 0.3536 cos( )

2 4 2

2
0.5 0 0.3536 cos( )

2 2 4

l l
p p p

l l
p p p

l l
p p p











+ + = − −




+ − = − −



− + + = − −


 (22) 

where p4 is the projection coefficient of the basis vector of 

tensile and compressive deformation in the X-axis direction 

of the XOY plane, p5 the projection coefficient of the basis 

vector of tensile and compressive deformation in the Y-axis 

direction of the XOY plane, p12 is the projection coefficient 

of the basis vector of rigid body rotational displacement in 

the XOY plane. 

Solving Eq. (22), we can get 

 

 

4 5

12

(cos 1)

2 sin

p p l

p l





= = −


= −

 (23) 

Taylor series expansion is taken for sinθ and cosθ in Eq. 

(23). Ignoring the higher-order small quantity, we can get 

2 2

4 5

12

54

12 12

(1 1)
2 2

2

2 2

l
p p l

p l

pp

p p

 






=  − − = −




= −

 = =


 (24) 

From Eq. (24), in the case of small deformations, p4 and 

p5 are higher-order small quantities with respect to p12, 

considering their relation to θ. Therefore, p4 and p5 can be 

ignored, and the error is acceptable. The rigid body 

rotational displacement vector can be approximated simply 

by projecting onto the basis vector of the rigid body 

rotational displacement in the XOY plane. 

 
 
3. Warping deformation analysis of bidirectional thin 
plates with four-side-fixed support 
 

According to the theory of elasticity, the vertical normal 

strain and vertical shear strain can be ignored in the strain 

analysis of thin plates (Landau and Lifshitz 2009).  

 

 

C-YT-Y
T-X C-X

S

Z
Y X

 

Fig. 5 Deformation decomposition diagram of model A1 

 

-4.17E-04 4.17E-040  -4.17E-04 4.17E-040  -1.69E-05 1.69E-050  
(a) Tensile and compressive 

deformation in the X-axis direction 

(b) Tensile and compressive 

deformation in the Y-axis direction 

(c) Bending deformation in the X-axis 

direction 

-1.69E-05 1.69E-050  -2.20E-04 2.20E-040  -4.02E-05 4.02E-050  
(d) Bending deformation in the Y-axis 

direction 
(e) Shear deformation (f) Warping deformation 

Fig. 6 Deformation cloud diagram of model A1 
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Therefore, in the finite element analysis of thin plates, the 

3D cube element can be simplified to a four-node square 

thin plate element. Furthermore, the four-node square thin 

plate element can be used to divide the thin plate and 

decompose its deformation. For all the thin plate models in 

this study, the length and width directions are set as the X 

and Y axes, respectively, and the thickness direction is the Z 

axis. 

 
3.1 Finite element verification of the deformation 

decomposition method 
 
Taking the thin plate A1 fixed on four sides as an 

example, its length and width are both 400 mm. The 
thickness is 5 mm. The elastic modulus E is 2.1×105 MPa. 
The density ρ=7850 kg/m3, and the Poisson’s ratio μ=0.3. 
A1 is subjected to a uniformly distributed load of 4 kN/m2 
perpendicular to the plate surface. The finite element model 
of A1 is established with SHELL181 elements, and the 
number of elements used in both the X- and Y- axis 
directions is 40. The deformation decomposition diagram of 
A1 can be obtained using the method mentioned in Section 
1, as shown in Fig. 5. According to the magnitude of the 
projection coefficient, the cloud diagram of specific 
deformation can be drawn, as shown in Fig. 6.  

Since the ratio of the plate thickness to the minimum 

characteristic length of the plate surface is 1/80, according 

to thin plate theory, secondary strains such as 𝜀𝑧 , 𝛾𝑥𝑧  and 

𝛾𝑦𝑧 can be ignored. It is only necessary to analyse the effect 

of the main strains 𝜀𝑥, 𝜀𝑦 and 𝛾𝑥𝑦 on the plate (Landau and 

Lifshitz 2009). The strain cloud diagram is shown in Fig. 7. 

Comparing Fig. 5 to Fig. 7, it can be seen that there are 

large normal strains 𝜀𝑥  in the centre, and left and right 

boundary areas of model A1, mainly manifested as tensile 

and compressive deformations in the X-axis direction 

(corresponding to the red and yellow areas in Fig. 5). The 

normal strain 𝜀𝑦  in the centre, and upper and lower 

boundary areas of model A1 is also large, mainly 

manifested as tensile and compressive deformations in the 

Y-axis direction (corresponding to the black and white areas 

in Fig. 5). At the four corners of model A1, the shear strain 

 

 

 

𝛾𝑥𝑦 of the XOY plane is large, which is mainly manifested 

as the shear deformation of the XOY plane (corresponding 

to the blue area in Fig. 5). In addition, the deformation 

cloud diagram and the strain cloud diagram also have a 

good correspondence (i.e., Figs. 6(a), 6(b) and 6(e) 

correspond to Figs. 7(a), 7(b) and 7(c), respectively). 

Hence, the deformation decomposition results of model 

A1 are consistent with the finite element strain analysis 

results, which verifies the correctness of the deformation 

decomposition method based on orthogonal theory. More 

importantly, the finite element strain analysis can only 

identify the normal strain and shear strain of the structure, 

while the deformation decomposition method can further 

obtain the macroscopic bending and warping deformation 

of the element on the basis of identifying the tensile, 

compressive and shear deformations. 

 

3.2 Verification of the warping deformation basis 
vector 

 

According to the theory of material mechanics, the 

cross-section of a circular rod of equal cross-section 

remains flat after torsion. However, the outer circumference 

of a rod with non-circular (square, rectangle, triangle, oval, 

etc.) cross-section no longer in the same plane as its original 

shape, resulting in warping (Gere and Timoshenko 1997). 

The thin plate element adopts SHELL181, which has 

only 4 nodes and cannot be exerted spatial torque. Hence, in 

order to analyse the out-of-plane deformation of the thin 

plate under torsional conditions, two solid element models 

B1 and B2 with rectangular equal-sections are established 

with eight-node SOLID45 elements, and thin plate C is 

established with four-node SHELL181 elements. The 

dimensional parameters and material properties of models 

B1, B2 and C are shown in Table 2. Then, models B1, B2 

and C are combined into a whole by applying binding 

contact constraint on them, as shown in Fig. 8. Equal and 

opposite torques of 2.3 kN/m are applied to the ends of 

models B1 and B2, respectively. 
Under the action of torques at both ends, the nodal 

displacement cloud diagrams of the Z-axis direction of  

-2.12E-04 2.12E-040  -2.12E-04 2.12E-040  -1.03E-04 1.03E-040  
(a) εx (b) εy (c) γxy 

Fig. 7 Strain cloud diagram of model A1 

Table 2 The size parameters and material properties of models B1, B2 and C 

Model Size /mm Elastic modulus /MPa Density /kg/m3 Number of elements 

B1 100×130×500 2.1×105 7850 20×26×100 

B2 100×130×500 2.1×105 7850 20×26×100 

C 100×100×1 2.1×105 7850 20×20 
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Table 3 The proportion of each basic deformation of 

element D 

p4′ p5′ p6′ 

0 0 0 

p7′ p8′ p9′ 

0 0 100% 

 
 

models B1, B2 and C can be obtained by using finite 

element software ANSYS, as shown in Fig. 8. In order to 

eliminate the effect of stress concentration, only the 

deformation of model C is analysed according to Saint 

Venant’s principle. For the convenience of analysis, the 

deformation scale factor of model C is enlarged to make the 

deformation more obvious. The entire model C is regarded 

as a large four-node square thin plate element and named 

element D, whose nodal displacement vector de is 

-5

1.18 1.18 1.15 1.18

1.18 1.15 1.18 1.18

1.15 1.18 1.18 1.15 10

e = −

− −

− − − 

d （

）

 (25) 

Deformation decomposition of element D is carried out, 

and the rigid body displacements are ignored. The 

proportion of each basic deformation are shown in Table 3. 

It can be seen from Table 3 that under the action of 

torque, the deformation of the thin plate in the middle of the 

span of the rectangular rod with equal cross-section is 

decomposed, and only the warping deformation can be 

obtained. This result is consistent with the material 

mechanics theory, which verifies the correctness of the 

warping deformation basis vector of the four-node square 

thin plate element. 

 
3.3 Analysis of warping deformation of the thin plate 
 

Based on the correctness of the warping deformation 

basis vector of the four-node square thin plate element, the 

warping deformation is analysed separately. The proportion 

of warping deformation of each element to the total 

deformation of model A1 is extracted, and the warping 

deformation proportion cloud diagram can be obtained, as 

shown in Fig. 9. 

 

0 19.05% 
 

Fig. 9 Warping deformation proportion cloud diagram 

of model A1 

 

Table 4 Warping deformation analysis results of models A1 

to A4 

Model A1 A2 A3 A4 

Thickness-to-span ratio 1:80 1:100 1:150 1:250 

Wm 19.05% 19.18% 18.76% 19.04% 

Wa 6.38% 6.38% 6.38% 6.38% 

 

 

It can be seen from Fig. 9 that the warping deformation 

in model A1 accounts for a large proportion at the corners 

of the thin plate, and its maximum value reaches 19.05%, 

which cannot be ignored. Hence, by changing the side 

length of model A1, thin plate models with thickness-span 

ratios of 1:100, 1:150 and 1:200 are constructed, named A2 

to A4. Models A2 to A4 use the same number of elements in 

each direction as model A1. Under a vertical uniformly 

distributed load of 4 kN/m2, the maximum value Wm and 

average value Wa of the warping deformation proportion in 

all elements of A1 to A4 are extracted, and the results are 

shown in Table 4. 

It can be seen from Table 4 that as the thickness-to-span 

ratio of the thin plate decreases, the maximum value of the 

warping deformation proportion in the total deformation of 

the element remains almost unchanged, which is about 

19.0%. The average is about 6.4%. For thin plates with 

different thickness-to-span ratios, the areas with large 

warping deformation occurs at the four corners of the plate, 

and the warping deformation at the centre and the four 

boundaries of the plate accounts for a small proportion of 

the total deformation of the element, even 0. Therefore, for 

thin plates, the warping deformation cannot be ignored. 

SOLID45

SHELL181

model C element D

model B1

model B2

model C

 

Fig. 8 Schematic diagram of warping deformation of thin plate under torsion condition 
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4. Performance analysis of bidirectional thin plates 
with a hole in the centre supported on four sides 
 

The size of the hole has a significant impact on the 

performance of the thin plate (Jafari and Ardalani 2016). In 

this section, the deformation decomposition method is used 

to analyse the deformation performance of the bidirectional 

thin plate with a square hole in the centre. Taking a square 

thin plate with a square hole in the centre under the action 

of uniformly distributed load as an example, the influence 

of holes of different sizes on its deformation performance is 

studied. All thin plates in this section are established using 

SHELL181 elements. 

 
4.1 Effect of a small hole on the performance of the 

thin plate 
 

The length and width of the thin plate E1 are both 300 

mm, and the thickness is 5 mm. The 20 mm×20 mm area in 

the centre of the plate is called the H-area, and the rest is the 

P-area. A distributed load of 4 kN/m2 perpendicular to the 

plate surface is applied to the H- and P-areas of E1. For 

model E2, the model parameters, load magnitude and 

direction are the same as those of E1, except that the load 

acts only on the P-area. For model E3, a hole is made in the 

 

 

 

H-area of E1, while other parameters remain unchanged. 

The finite element models of E1 to E3 are established with 

SHELL181 elements, and the number of elements used in 

both the X- and Y- axis directions is 60. Models E1 to E3 

are decomposed to obtain their deformation decomposition 

diagrams and warping deformation proportion cloud 

diagrams under uniformly distributed load, as shown in 

Figs. 10 to 11. 

It can be seen from Fig. 10 that the deformation 

decomposition diagrams of E1 and E2 are the same, 

indicating that unloading in the H-area does not affect the 

main deformation properties of the thin plate. Moreover, 

after the introduction of the central hole, there is no shear 

deformation around the hole of E3, that is, when the ratio of 

the side length of the hole to the side length of the plate is 

1:15, there is no need to improve the shear resistance design 

around the hole. However, as can be seen by comparing 

Figs. 10(a) and 10(c), the presence of the hole increases the 

warping deformation of the thin plate in its vicinity. 

A comparative analysis of the warping deformation 

around the H-area of E1 to E3 is conducted. The location 

and number of elements are shown in Fig. 12(a), and the 

warping deformation proportion of each element is shown 

in Fig. 12(b). 

It can be seen from Figs. 11(a) to 11(c) and Fig. 12(b)  

C-YT-Y
T-X C-X

S

   
(a) E1 (b) E2 (c) E3 

Fig. 10 Deformation decomposition diagrams of models E1 to E3 

 

0 19.18%  0 19.23%  0 19.06%  
(a) E1 (b) E2 (c) E3 

Fig. 11 Warping deformation proportion cloud diagrams of models E1 to E3 
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Fig. 12 Proportion of warping deformation of elements around the H-area in models E1 to E3 
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that the warping deformation proportion cloud diagram of 

model E2 has little change compared with model E1, and 

the warping deformation proportions of the elements near 

the H-area are very similar, indicating that unloading of the 

H-area does not affect the warping deformation of the thin 

plate, while opening a hole leads to obvious warping 

deformation in the area near the hole of the plate, especially 

at the corners. Therefore, when a small hole is set in the 

centre of the thin plate, there is no need for shear 

deformation resistance design around the hole. However, it 

is necessary to carry out the warping deformation resistance 

design, and the corners of the hole should be given priority. 

Taking the thin plates E4 to E6 with hole as examples, 

the size parameters are presented in Table 5. E4 to E6 have 

the same material properties as A1 and subjected to a 

distributed load of 4 kN/m2. The decomposition results of 

E4 to E6 are shown in Figs. 13 and 14. 

By comparing Fig. 10(c) and Fig. 13, it can be seen that 

when the side length of the hole increases from 20 mm to 

30 mm, the areas dominated by shear deformation (blue 

areas) begin to appear at the corners of the central hole. 

Combining with Figs. 13 and 14, as the side length of the 

hole to the side length of the plate increases, the warping 

 

 

 

 

 

deformation resistance design should also be carried out 

with the shear deformation resistance design. 

 

4.2 Effect of a large hole on the performance of the 
thin plate 

 

This section continues to increase the side length of the 

hole and maintain the ratio of the side length of the hole to 

the side length of the plate at 1:6, thereby constructing the 

thin plate models E7-E9. The size parameters are presented 

in Table 6. The deformation decomposition results are 

shown in Figs. 15 to 16. 

By comparing Fig. 13 and Fig. 15, it can be seen that 

when the ratio of the side length of the hole to the side 

length of the plate is 1:6, the main area of shear deformation 

at the corner of the hole and the main area of shear 

deformation at the corner of the thin plate begin to be 

connected. Therefore, when the ratio of the side length of 

the hole to the side length of the plate is greater than 1:6, a 

shear deformation resistance design should be added along 

the connection lines between the corner of the hole and the 

corner of the plate. In addition, Fig. 16 shows that warping 

deformation resistance design should be added to the  

Table 5 Dimensional parameters of models E4 to E6 

Serial 

number 

Side length of 

plate/mm 

Thickness/ 

mm 

Thickness-to-

span ratio 

Side length 

of hole /mm 

Ratio of hole side length 

to plate side length 

Number of elements used 

in two directions 

E4 400 5 1:80 30 1:13.33 80×80 

E5 350 5 1:70 30 1:11.67 70×70 

E6 300 5 1:60 30 1:10 60×60 

  

C-YT-Y
T-X C-X

S

 
(a) E4 (b) E5 (c) E6 

Fig. 13 Deformation decomposition diagrams of models E4 to E6 

0 19.03%  0 19.06%  0 18.92%  

(a) E4 (b) E5 (c) E6 

Fig. 14 Warping deformation proportion cloud diagrams of models E4 to E6 

Table 6 Dimensional parameters of models E7 to E9 

Serial 

number 

Side length of 

plate/mm 

Thickness 

/mm 

Thickness-to-

span ratio 

Side length 

of hole /mm 

Ratio of hole side length 

to plate side length 

Number of elements used 

in two directions 

E7 240 5 1:48 40 1:6 48×48 

E8 360 5 1:72 60 1:6 72×72 

E9 480 5 1:96 80 1:6 96×96 

461



 

Dongwei Wang, Kaixuan Liang and Panxu Sun 

 

 

 

 

 

 

 

corners and adjacent positions of the hole. 

For thin plates E10 and E11, the ratio of the side length 

of the hole to the side length of the plate is further increased 

to 1:3, as shown in Table 7. The deformation decomposition 

is carried out, and the deformation decomposition diagrams 

are shown in Figs. 17 to 18. 

By comparing Fig. 15 and Fig. 17, it can be seen that 

when the ratio of the side length of the hole to the side 

 

 

 

 

 

 

length of the plate is greater than 1:3, the area dominated by 

shear deformation begins to expand from the corners of the 

hole to both sides. Therefore, the ratio of the side length of 

the hole to the side length of the plate should not be greater 

than 1:3. The 1/3 of the side length of the plate should be 

taken as the upper limit of the side length of the hole. In 

addition, Fig. 18 shows that when the ratio of the side 

length of the hole to the side length of the plate is 1:3, the 

 C-YT-Y
T-X C-X

S

   

 

 (a) E7 (b) E8 (c) E9  

Fig. 15 Deformation decomposition diagrams of models E7 to E9 

 

0 18.83%  0 19.16%  0 18.81%  

 

 (a) E7 (b) E8 (c) E9  

Fig. 16 Warping deformation proportion cloud diagrams of models E7 to E9 

Table 7 Dimensional parameters of models E10 to E11 

Serial 

number 

Side length of 

plate /mm 

Thickness/ 

mm 

Thickness-to-

span ratio 

Side length 

of hole /mm 

Ratio of hole side length 

to plate side length 

Number of elements used 

in two directions 

E10 300 5 1:60 100 1:3 60×60 

E11 360 5 1:72 120 1:3 72×72 

 

C-YT-Y
T-X C-X

S

  

 

 (a) E10 (b) E11  

Fig. 17 Deformation decomposition diagrams of models E10 to E11 

 

0 18.89%  0 19.03%  

 

 (a)E10 (b) E11  

Fig. 18 Warping deformation proportion cloud diagrams of models E10 to E11 
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warping deformation is still not negligible. 

 

 
5. Conclusions 

 

Based on the orthogonality and mechanical balance, the 

deformation basis matrix of the four-node square thin plate 

element is constructed. Using the deformation basis matrix, 

the comprehensive deformation of the element can be 

decomposed into completely orthogonal basic deformations, 

and then applied to the finite element analysis of the thin 

plate structures. The correctness of the proposed 

deformation decomposition method is verified by 

comparison with the finite element strain results.  

Compared with the traditional finite element strain 

analysis, which can only solve the nodal displacement and 

strain value of the element, the basic deformation 

information of the four-node square thin plate element can 

be directly obtained based on the deformation 

decomposition method. Under the action of uniformly 

distributed load, the warping deformation cannot be ignored 

at the corners of the thin plate. The following conclusions 

can be drawn from the deformation decomposition of the 

four-side-fixed plate with a hole in the center： 

• With the increase of the hole size, the proportion of 

warping deformation is increasing at the corners of the 

central hole. In addition, the areas dominated by shear 

deformation begin to appear at the corners of the central 

hole. Therefore, warping deformation resistance design 

and shear deformation resistance design should be 

considered. 
• When the ratio of the side length of the hole to the side 
length of the thin plate is 1:6, the main area of shear 
deformation at the corner of the hole and the main area 
of shear deformation at the corner of the thin plate begin 
to be connected. The shear deformation resistance 
design and the warping deformation resistance design 
should be added along the connecting lines. 
• When the ratio of the side length of the hole to the side 
length of the plate is greater than 1:3, the area 
dominated by shear deformation begins to expand from 
the corners of the hole to both sides. 1/3 of the side 
length of the plate should be taken as the upper limit of 
the side length of the hole. At this time, the warping 
deformation is still not negligible. 
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