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1. Introduction 
 

To obtain high strength and excellent fracture toughness, 

ships and offshore structures are primarily composed of 

steel. However, steel members are prone to failure by local 

buckling because, for optimal use of materials, they are 

generally designed to be thin-walled. Large steel structures 

are built using various steel members, and thus the 

resistance capacity of such structures highly depends on the 

stability of the local members. Clearly, local stability is a 

crucial consideration in structural design of steel structures. 

When a local part of a structure (local structure) loses 

stability, excessive local deformation occurs and the entire 

load resistance is significantly reduced. Progressive local 

buckling will lead to global failure of the structure. To 

maintain robust structural systems with desired capacity, it 

is important to ensure that local parts of global structures 

still contribute to the entire resistance. For this purpose, it is 

essential to accurately evaluate the critical load for local 

buckling. However, a global structure and its local parts are 

tightly connected to each other, and this makes the failure 

evaluation very difficult, especially for structures with 
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complicated geometries. 

The design standards for determining the resistance 

capacity of local parts of a large structure are based on 

design formulas for the buckling and ultimate strengths, 

which are specified in Codes and Rules (ABS 2018, AISC 

2016, API 2014, BV 2018, DNV 2010, DNVGL 2015, 

DNVGL 2017, DNVGL 2018). However, such design 

formulas are only applicable to several typical shape 

structures such as beam-columns, rectangular stiffened 

plates, and cylindrical shells. Further investigations for 

arbitrarily-shaped local parts are required to accurately 

predict critical loads for local buckling. 

There have been many attempts to assess the stability of 

local structures with various geometries. Theoretical studies 

have been conducted focusing on triangular and 

Quadrilateral plates (Jamshidi and Fallah 2019, Jaunky et 

al. 1995a, Jaunky et al. 1995b, Saadatpour et al. 1998, 

Tham and Szeto 1990, Wang and Liew 1994, Wu and Feng 

2003, Xiang 2002, Xiang et al. 1994), girders, and stiffened 

plates (Brubak et al. 2007, Brubak and Hellesland 2007, 

Kim et al. 2018b, Kim et al. 2019). Lee et al. (2015) 

conducted a series of numerical analyses to evaluate the 

ultimate strength of triangular brackets in ship structures. To 

analyze the buckling and ultimate strengths of perforated 

plates, several numerical and experimental studies were 

carried out (Kim et al. 2009, Kim et al. 2015, Komur and 

Sonmez 2008, Mohammadzadeh et al. 2018, Muhammad 

and Singh 2005, Saad-Eldeen et al. 2016). The global 

failures were numerically evaluated using the theoretical 

local buckling modes of periodically stiffened plates 

commonly used in aeronautical and marine structures 

(Bisagni and Vescovini 2009, Wang and Abdalla 2015, Pei 

et al. 2015). 
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However, previously developed methods have focused 

on certain specific geometries. It is very difficult to 

distinguish the resistance capacity of an arbitrarily-shaped 

local part of a global structure because local behaviors are 

closely linked to global behaviors, but the effects of local 

behaviors are overshadowed by global behaviors. To 

overcome these limitations, Zi et al. separated local and 

global behaviors and employed nonlinear FE (finite 

element) analysis for a local structure (Zi et al. 2017). An 

arbitrarily-shaped bracket girder of an offshore structure 

was considered, but coupling between the local and global 

structures was ignored. 

In this paper, we propose three practical methods to 

directly assess the stability of arbitrarily-shaped local parts 

of large structures considering the coupling between a target 

local part (local structure) and a global structure. After 

global nonlinear finite element analysis is performed, the 

local stability is assessed by investigating global load, local 

force, local strain energy, and local displacement. The three 

methods are based on the following three relations: 

• Global load-local strain energy relation: The critical 

global load and the damaged area of the structure are 

evaluated through the relation between global load and 

strain energy stored in a target local structure.  
• Global load-local force relation: The relation between 

global load and local force is plotted. The critical global 

load can be calculated. Also, the residual strength of the 

local structure can be evaluated through a local safety 

factor, which is suggested in this study. 

• Local force-local displacement relation: We can 

confirm whether local instability is caused by so-called 

softening, in which deformation increases but local 

force decreases. This is distinguished from simple 

unloading, in which deformation decreases as local 

force decreases. 

 

 

2. Practical assessments on local stability 
 

In this section, we present three new methods for 

evaluating the stability in a local structural part of a large 

structure by using nonlinear incremental finite element 

analysis of the entire structure. Through the proposed 

methods, the critical load at which the target local structure 

loses its stability is predicted. In addition, safety margin, 

damaged area, and deformation characteristics of the target 

local structure can be investigated. 

Consider a target local part Ω𝐿 (local structure) in a 

large structure subjected to external load 𝒇𝑔  and 

displacement boundary conditions as shown in Fig. 1. To 

evaluate the stability of the target local structure, nonlinear 

incremental analysis is performed with multiple load steps 

for the entire structure. The following incremental 

equilibrium equation is solved using the Newton-Raphson 

scheme at each load step 𝑖 

𝑲𝑖Δ𝒖𝑖 = 𝒇𝑖
𝑔
− 𝒇𝑖

𝑖𝑛𝑡 with 𝒖𝑖 = 𝒖𝑖−1 + Δ𝒖𝑖, (1) 

where 𝑲𝑖  is the tangential stiffness matrix, Δ𝒖𝑖  is the 

incremental displacement vector, 𝒇𝑖
𝑔

 is the global external 

load vector, 𝒇𝑖
𝑖𝑛𝑡 is the internal force vector, and 𝒖𝑖 is the 

 

Fig. 1 Finite element model for global structure including 

target local structural part Ω𝐿. The red line represents the 

interface boundary between the local and global structures 

 

 

displacement vector at load step 𝑖. 
In Eq. (1), the global external load vector 𝒇𝑖

𝑔
 at load 

step 𝑖  can be represented by using global reference 

external load 𝒇𝑟
𝑔

 and global load ratio 𝜆𝑖
𝑔

 

𝒇𝑖
𝑔
= 𝜆𝑖

𝑔
𝒇𝑟
𝑔

 with 𝒇𝑟
𝑔
=

𝒇𝑔

𝑁
, (2) 

where 𝑁  is a sufficiently large number such that the 

structural behavior is within the linear response region with 

the global reference external load 𝒇𝑟
𝑔

. 

Utilizing the results of the nonlinear incremental FE 

analysis for the entire structure at each load step 𝑖, the 

stability of the target local structure is evaluated.  

 

2.1 Global load-local strain energy relation and 
identification of damaged areas 

 

First, we introduce a method to determine the critical 

global load and damaged area in the target local structure 

using the relationship between the global external load and 

the strain energy stored in the target local structure. 

The Lagrange-Dirichlet theorem states that the 

equilibrium state of a conservative system is determined by 

evaluating the sign of the second variation of the total 

potential energy Π, as follows (Bazant and Cedolin 1991) 

𝛿2Π{

> 0, Positive (stable equilibrium)      

= 0, Zero (neutral equilibrium)          
< 0, Negative (unstable equilibrium)

. (3) 

Based on this theorem, the stability of a local structural 

part in a large structure can be evaluated using the second 

variation of the strain energy stored in the local structure. 

Let us consider a structure at load step 𝑖 as shown in 

Fig. 2(a). The second variation of the strain energy in the 

target local structure Ω𝐿 is calculated using the following 

equation 

𝛿2Π𝑖 ≃
1

2
Δ𝒇𝑖

𝑙 ⋅ Δ𝒖𝑖
𝑙, (4) 

where Δ𝒇𝑖
𝑙  and Δ𝒖𝑖

𝑙  denote the distributions of 

incremental internal force and incremental displacement 

along the interface boundary of the target local structure 

(red line in Fig. 2(a)). 

Using Eq. (4), the relation between 𝛿2Π𝑖 and the global  
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load ratio 𝜆𝑖
𝑔

 at load step 𝑖 is obtained as illustrated in 

Fig. 2(b). When 𝛿2Π𝑖 = 0, the target local structure loses 

its stability, and the critical global external load can be 

calculated from the global load ratio at this point. 

The damaged area in the target local structure is 

determined by using the strain energy stored in the finite 

 

 

elements of the FE model. First, we calculate the second 

variation of strain energy 𝛿2Π𝑖
(𝑒) for each element 𝑒 

constituting the target local structure. Starting from the area 

that consists of unstable elements where 𝛿2Π𝑖
(𝑒)
< 0 (① 

in Fig. 3(a)), we calculate the sum of 𝛿2Π𝑖
(𝑒)

 in the area 

(② in Fig. 3(a)) while gradually expanding the considered  

 
(a)                                        (b) 

Fig. 2 Finite element model and second variation of strain energy at load step 𝑖: (a) target local structure (colored in 

yellow) when global structure is subjected to 𝒇𝑖
𝑔

 and (b) relationship between global load ratio (𝜆𝑖
𝑔

) and second 

variation of strain energy (𝛿2Π𝑖) 

 
(a) 

 
(b) 

Fig. 3 Identification of damaged area in target local structure: (a) evaluation process of damaged area and (b) global 

load ratio (𝜆𝑖
𝑔

) - second variation of strain energy (𝛿2Π𝑖) curves for cases ①, ②, and ③ 
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area to include the surrounding elements. The extent at the 

step immediately before, when ∑ 𝛿2Π𝑖
(𝑒)

𝑒 > 0 (③ in Fig. 

3(a)), becomes the damaged area in the target local 

structure. Fig. 3(b) illustrates the global load ratio (𝜆𝑖
𝑔

) - 

second variation of strain energy (𝛿2Π𝑖) curves for cases 

①, ②, and ③. 

Since the proposed method requires only the strain 

energy values calculated during the FE analysis of the 

whole structure, the target local part can be easily switched 

without additional FE analysis. By partially reinforcing the 

identified damaged area in the target local structure, the 

strength of the entire structure can be reinforced cost-

effectively. 

 

2.2 Global load-local force relation and local safety 
factor 

 

Second, we introduce a method to determine the critical 

global load and local safety factor ( 𝐿𝑆𝐹 ) from the 

relationship between the global external load and the local 

force at the interface boundary of the target local structure. 

When global external load 𝒇𝑖
𝑔

 is applied to the whole 

structure at load step 𝑖, the interface boundary of the target 

local structure is subjected to local force 𝒇𝑖
𝑙, as shown in 

Fig. 4(a). By employing the local force ratio 𝜆𝑖
𝑙 , the local 

force 𝒇𝑖
𝑙 at load step 𝑖 can be approximated as 

𝒇𝑖
𝑙 ≃ 𝜆𝑖

𝑙𝒇𝑟
𝑙 , (5) 

where the local reference force 𝒇𝑟
𝑙  denotes the force at the 

interface boundary of the target local structure when the 

 

 

global reference load 𝒇𝑟
𝑔

 is acting on the structure. 

When the structural behavior is linear, the magnitude of 

the local force 𝒇𝑖
𝑙 changes in proportion to the increase in 

the global reference load 𝒇𝑟
𝑔

, while the shape of the local 

force distribution remains the same. However, in cases in 

which structure exhibits nonlinear behavior, the shape of the 

local force distribution changes as the global reference load 

𝒇𝑟
𝑔

 increases due to load redistribution inside the structure. 

For this reason, local force 𝒇𝑖
𝑙 at load step 𝑖 needs to 

be approximated using the least square fitting method, with 

the following squared error function 𝜑𝑖 

𝜑𝑖 = (𝒇𝑖
𝑙 − 𝜆𝑖

𝑙𝒇𝑟
𝑙 ) ⋅ (𝒇𝑖

𝑙 − 𝜆𝑖
𝑙𝒇𝑟
𝑙 ), (6) 

where 𝜆𝑖
𝑙  is the local force ratio. 

The error function in Eq. (6) is minimized when local 

force ratio 𝜆𝑖
𝑙  becomes 

𝜆𝑖
𝑙 =

𝒇𝑖
𝑙⋅𝒇𝑟
𝑙

𝒇𝑟
𝑙 ⋅𝒇𝑟

𝑙 , (7) 

and the local force 𝒇𝑖
𝑙 can be approximated using the local 

force ratio 𝜆𝑖
𝑙  in Eq. (7) with the local reference force 𝒇𝑟

𝑙 , 

as depicted in Fig. 4(b). 

Fig. 4(c) illustrates the relation between the local force 

ratio 𝜆𝑖
𝑙  and the global load ratio 𝜆𝑖

𝑔
 at load step 𝑖. The 

point at which the global load ratio 𝜆𝑖
𝑔

 increases but the 

local force ratio 𝜆𝑖
𝑙  begins to decrease becomes the critical 

point for the target local structure. The critical point 

indicates that the target local structure can no longer 

withstand the load transmitted from the surrounding areas. 

The local force ratio at this point becomes the critical local 

 
(a) 

 
(b)                                  (c) 

Fig. 4 Finite element models and local force ratios: (a) local node sequence of target local structure when global 

structure is subjected to 𝒇𝑖
𝑔

, (b) approximation of local force distribution along local node sequence using 𝜆𝑖
𝑙𝒇𝑟
𝑙 , 

and (c) local force ratio at service and critical loads 
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Fig. 5 Relationship between displacement index (𝑥𝑖) 
and local force ratio (𝜆𝑖

𝑙) 

 

 

force ratio (𝜆𝑐
𝑙 ). 

When the structure is subjected to a service load 𝒇𝑠
𝑔

, a 

usage factor 𝜂 for the target local structure is obtained as 

𝜂 =
𝜆𝑠
𝑙

𝜆𝑐
𝑙  with 0 ≤ 𝜂 ≤ 1, (8) 

where 𝜆𝑠
𝑙  is the local force ratio corresponding to the 

service load. 

The local safety factor (LSF) value, which represents the 

degree of safety in the target local structure, is defined as 

the reciprocal value of the usage factor 

𝐿𝑆𝐹 =
1

𝜂
. (9) 

The larger the LSF value, the more safety in the target 

local structure is guaranteed. 

Unlike previously developed methods that did not 

consider effects of interactions between the target local 

structure and the surrounding global structure, the proposed 

method is based on FE analysis of the entire structure, 

including interactions between them. This makes it possible 

to provide a more accurate and reasonable evaluation of the 

safety margin and residual strength of the target local 

structure. 

 
2.3 Local force-local displacement relation and 

deformation characteristics 
 

Finally, we introduce a method to determine the critical  

 

 

global load and deformation characteristics of a local 

structure through the relationship between the local force 

and the displacement of the local structure. To represent the 

magnitude of the displacement in the target local structure 

as a single variable, displacement index 𝑥𝑖 is calculated 

from the incremental strain energy at each load step 𝑖. That 

is, the local deformation is measured by a single value 𝑥𝑖. 
Assuming that the strain energy is a function of the 

variable 𝑥𝑖, the incremental strain energy Δ𝑈𝑖 at load step 

𝑖 is obtained by using the 2nd order Taylor expansion 

Δ𝑈𝑖 = 𝑈(𝑥𝑖 + Δ𝑥𝑖) − 𝑈(𝑥𝑖) ≃
𝑑𝑈

𝑑𝑥𝑖
Δ𝑥𝑖 + 0.5

𝑑2𝑈

𝑑𝑥𝑖
2 Δ𝑥𝑖

2, (10) 

where Δ𝑥𝑖 is the incremental displacement index at load 

step 𝑖. 
The derivative of the strain energy at load step 𝑖 in Eq. 

(10) with respect to 𝑥𝑖  is approximated using the local 

reference force 𝒇𝑟
𝑙  and local force ratio 𝜆𝑖

𝑙  

𝑑𝑈

𝑑𝑥𝑖
= |𝒇𝑖

𝑙| ≃ 𝜆𝑖
𝑙|𝒇𝑟

𝑙 |. (11) 

Substituting Eq. (11) into Eq. (10), the following 

equation is obtained 

Δ𝑈𝑖 ≃ 𝜆𝑖
𝑙Δ𝑥𝑖|𝒇𝑟

𝑙 | + 0.5
𝑑𝜆𝑖

𝑙

𝑑𝑥
Δ𝑥𝑖

2|𝒇𝑟
𝑙 |. (12) 

Substituting the derivative of the local force ratio (
𝑑𝜆𝑖

𝑙

𝑑𝑥𝑖
) 

in Eq. (12) for an incremental term (
𝛥𝜆𝑖

𝑙

𝛥𝑥𝑖
), we obtain 

Δ𝑈𝑖 ≃ (𝜆𝑖
𝑙Δ𝑥𝑖 + 0.5Δ𝜆𝑖

𝑙Δ𝑥𝑖)|𝒇𝑟
𝑙 |. (13) 

From Eq. (13), the incremental displacement index 𝛥𝑥𝑖 
is obtained 

Δ𝑥𝑖 =
Δ𝑈𝑖

|𝒇𝑟
𝑙 |(𝜆𝑖

𝑙+0.5Δ𝜆𝑖
𝑙)

, (14) 

and the displacement index 𝑥𝑖  at each load step 𝑖  is 

calculated by the total sum of Δ𝑥𝑖 

𝑥𝑖 = ∑ Δ𝑥𝑖𝑖 . (15) 

Fig. 5 shows the relation between the displacement 

index (𝑥𝑖) and local force ratio (𝜆𝑖
𝑙) at load step 𝑖. The area 

shaded in blue in Fig. 5 graphically represents the term 

 

 

 

Fig. 6 FE model of simply supported stiffened rectangular plate structure with 4 and 9 stiffeners in X- and Y-directions 

Transverse stiffener

630 MPa

630 MPa
Target local structure

Longitudinal stiffener

400 mm  30 mm 

200 mm  30 mm 

Y

X

Z
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Fig. 7 Stability limit determined by relation between global load ratio and second variation of strain energy and 

stress distribution at the critical point: (a) Normalized second variation of strain energy of target local structure and 

(b) von Mises stress distribution over deformed shape of entire plate at 𝜆𝑖
𝑔
= 4.85 

 
Fig. 8 Distributions of second variation of strain energy in target local structure: (a) when 𝜆𝑖

𝑔
= 4.0, (b) 𝜆𝑖

𝑔
= 4.5, 

(c) 𝜆𝑖
𝑔
= 4.85, and (d) 𝜆𝑖

𝑔
= 4.9 

Target local structure
von  (MPa)

(a)

(b)

(N mm)

2 ( )e

i 

(N mm)

2 ( )e

i 

(N mm)

2 ( )e

i 

(N mm)

2 ( )e

i 

(b)

(d)

(c)

(a)
4.0g

i =

4.5g

i =

4.85g

i =

4.9g

i =

Damaged area

(b) 

(a) 

(b) 

(c) 

(d) 

(a) 
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Fig. 9 Global load ratio-local force ratio curve obtained for 

stiffened rectangular side-wall plate problem 

 

 
Fig. 10 Comparisons between applied and approximated 

local forces in stiffened rectangular side-wall plate: (a) 

node sequence over interface boundary of target local 

structure, (b) X-directional components of applied and 

approximated local forces, and (c) Y-directional 

components of applied and approximated local forces 

 

 

(𝜆𝑖
𝑙Δ𝑥𝑖 + 0.5Δ𝜆𝑖

𝑙Δ𝑥𝑖) in Eq. (13). The point at which the 

value of the local force ratio 𝜆𝑖𝑙 does not increase even  

 

Fig. 11 Normalized displacement index-local force ratio 

curve obtained for stiffened rectangular side-wall plate 

 

 

though displacement index 𝑥𝑖  increases becomes the 

critical point. The proposed method has the advantage of 

not only being able to evaluate the critical point for the 

target local structure, but also being able to determine the 

deformation characteristics by examining the displacement 

index at each load step. It is possible to distinguish whether 

local instability is due to softening or unloading. In the 

softening case, the displacement index increases but the 

local force decreases. In the unloading case, the 

displacement index decreases as the local force decreases. 

 

 

3. Illustrative examples 
 

To demonstrate the proposed methods, we here present 

three numerical examples regarding practical engineering 

problems: a stiffened rectangular plate, a stiffened 

cylindrical shell structure, and a column-pontoon 

connection structure in a tension leg platform. FE models 

are constructed using 3- and 4-node shell elements (Lee and 

Bathe 2005, Lee et al. 2007, Lee and Bathe 2010, Lee et al. 

2014, Jeon et al. 2014, Jeon et al. 2015, Ko et al. 2016, Ko 

et al. 2017), and the nonlinear equilibrium equations are 

iteratively solved by the Newton-Raphson method (MSC 

Software 2018). 

For each problem, the second variation of strain energy 

(𝛿2Π𝑖) in the target local structure is calculated at each load 

step 𝑖, and the relation between the global load and local 

force ratios is plotted to determine the critical point. Using 

the critical values, the usage factor 𝜂  and local safety 

factor (𝐿𝑆𝐹) are obtained. Also, the displacement indexes 

𝑥𝑖  are calculated at each load step 𝑖  to investigate the 

deformation characteristics.  

In actual incremental nonlinear analysis, the load step 

size varies and thus the normalization of the second 

variation of strain energy by 𝛿2Π𝑖/(Δ𝒖𝑖
𝑙 ⋅ Δ𝒖𝑖

𝑙)  is 

necessary. The displacement index is also normalized as 
𝑥𝑖

𝑥𝑟
, 

where 𝑥𝑟  is the displacement index value when the 

reference global load is applied. 

The results obtained from the proposed methods are 

compared with those by the local FE analysis method (Zi et 

al. 2017) and the design rule (DNV 2010). Zi et al.  

(a)

(b)

26th

36th

1st 120th 96th

86th

Y

X

(c)

Node sequence

 l l

i r f

 l

if

 l l

i r f

 l

if

(a) 

(b) 

(c) 
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proposed a usage factor to measure the safety of local 

structures of non-typical geometry. The basic idea is to 

extract the local structure from the global structure and to 

perform nonlinear analysis of the local structure subjected 

to prescribed interface displacements. The usage factor is 

evaluated using the strain energies stored in the local 

structure. 

 

3.1 Stiffened rectangular side-wall plate 
 

We consider a stiffened rectangular side-wall plate, 

shown in Fig. 6, which has been widely used in ship 

structures. To simulate a plate subjected to hull girder 

bending condition, a linearly distributed load of 630 MPa 

is incrementally applied to both the left and right edges of 

the plate. The initial imperfection is applied as the form of 

five half sine waves in the longitudinal direction (X-

direction) with maximum out-of-plane (Z-direction) 

deflections of 5.73 mm (Kim et al. 2018a). The four edges 

of the plate are simply supported, and the constraint 

conditions are applied to them to enforce the straight edges 

during deformation. The plate is made of elastic-perfectly 

plastic high-tensile steel with Young’s modulus 𝐸 =
205.8 GPa, Poisson’s ratio 𝜈 = 0.3, and yield stress 𝜎𝑦 =

315 MPa.  

An area corresponding to 1/50 of the entire plate is 

chosen as the target local structure (see the area marked 

with a yellow line in Fig. 6). The reference global load 𝒇𝑟
𝑔

 

is selected as 1/10 of the final applied load (630 MPa).  

 

 

Note that, for the calculation of the usage factor and 

local safety factor, it is convenient to set the reference 

global load equal to the service load. The entire plate is 

modeled using 31,100 4-node shell elements, and 

incremental finite element analysis is performed. 

To assess the local stability of the plate structure, the 

normalized second variations of strain energy 

corresponding to the target local structure are calculated at 

each global load ratio 𝜆𝑖
𝑔

 (see Fig. 7(a)). From Fig. 7(a), 

we can observe that the local structure is stable until the 

global load ratio reaches about 𝜆𝑖
𝑔
= 4.85. Fig. 7(b) shows 

the distribution of the von Mises stress over the deformed 

shape of the plate structure at 𝜆𝑖
𝑔
= 4.85. 

Figs. 8(a)-(d) show the distributions of the second 

variation of the strain energy calculated over the target local 

structure when the global load ratios are 𝜆𝑖
𝑔
= 4.0, 4.5, 

4.85, and 4.9. The damaged area is determined at each load 

step 𝑖 by evaluating the sum of the second variation of the 

strain energy in the local area. The damaged area 

propagates from the right side of the target local structure, 

and gradually increases as the global external load increases 

(Figs. 8(b)-(c)). Finally, the target local structure is fully 

damaged at 𝜆𝑖
𝑔
= 4.9 (Fig. 8(d)). 

The local force ratios 𝜆𝑖
𝑙  corresponding to the global 

load ratio 𝜆𝑖
𝑔

 at each load step 𝑖 are plotted in Fig. 9. The 

critical global load ratio and critical local force ratio can be 

determined as 𝜆𝑐
𝑔
= 4.85 and 𝜆𝑐

𝑙 = 4.0, respectively. Fig. 

10(a) shows the node sequence over the interface boundary  

 

Fig. 12 FE model of stiffened cylindrical shell structure: (a) cylindrical hull structure in mono-column FPSO 

(floating production storage and offloading) unit and (b) stiffened cylindrical shell structure of height 

(a) 

(b) 
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Table 1 Local safety factors calculated for local plate 

structure in ship-shaped structure 

Direct evaluation through global FE analysis (Proposed) 4.00 

Evaluation through local FE analysis (Zi et al. 2017) 6.67 

Design formula (DNV 2010) 4.26 

 

 
Fig. 13 Stability limit determined by relation between 

global load ratio and second variation of strain energy and 

stress distribution at critical point, and plastic deformations 

in target local structure: (a) normalized second variation of 

strain energy of target local structure and (b) plastic regions 

over deformed shapes of target local structure when 

external pressure loads are 𝑝 = 1.0 MPa , 1.5 MPa , 

1.7 MPa, and 1.84 MPa 

 

 

of the target local structure. Figs. 10(b)-(c) compare the 

components of the applied local force ( 𝒇𝑖
𝑙 ) and the 

approximated local force (𝜆𝑖
𝑙𝒇𝑟
𝑙 ) on the nodes at the critical 

point. The approximated local force calculated using the 

proposed method exhibits good agreement with the applied 

local force. 

Assuming that the service load ratio 𝜆𝑠
𝑙  is equal to 1.0, 

the usage factor and local safety factor (LSF) are calculated 

using Eqs. (8) and (9) as 𝜂 = 0.25 and 𝐿𝑆𝐹 = 4.0. Table 

1 compares the local safety factors obtained from the 

proposed method, the design rule (DNV 2010), and the 

local FE analysis method (Zi et al. 2017). The proposed 

 

Fig. 14 Global load ratio-local force ratio curve obtained for 

stiffened cylindrical shell structure 

 

 

method and the design rule provide similar 𝐿𝑆𝐹 values, 

while the local FE analysis method produces a substantially 

larger LSF value. 

To investigate the deformation characteristics of the 

local structure near the critical point, the displacement 

indexes 𝑥𝑖  are calculated at each load step 𝑖 . Fig. 11 

shows the normalized displacement index-local force ratio 

curve. Softening slightly occurs in the target local structure 

after the local force ratio reaches the critical point (𝜆𝑐
𝑙 =

4.0). 

 

3.2 Stiffened cylindrical shell structure 
 

We consider a stiffened cylindrical shell structure of 

height ℎ = 1.0 m, the part of the main hull in a mono-

column FPSO (floating production storage and offloading) 

unit (Lei et al. 2018), as shown in Figs. 12(a). The hull 

structure is stiffened by radial bulkheads and horizontal 

stringers to resist external pressure loads. The outer and 

inner radii of the considered cylindrical shell structure are 

𝑟1 = 25 m, 𝑟2 = 37.5 m, and 𝑟3 = 50 m respectively; the 

width of the stringer is 𝑑 = 2.0 m, and the thicknesses of 

all the members are 𝑡 = 0.06 m . The hull is made of 

elastic-perfectly plastic high-tensile steel with Young’s 

modulus 𝐸 = 210 GPa, Poisson’s ratio 𝜈 = 0.3, and yield 

stress 𝜎𝑦 = 355 MPa. Uniform static pressure load 𝑝 =

10 MPa is incrementally applied to the external area of the 

hull. 

The local area that consists of horizontal stringers is 

chosen as the target local structure (see the marked area in 

Fig. 12(b)). The entire cylindrical shell structure is modeled 

using 24,128 4-node shell elements over a 0.5 m  0.5 m 

element size. To apply the initial imperfection, the model 

geometry is modified by adding the first buckling mode 

shape, obtained from eigenvalue analysis, with a maximum 

deflection of 10.0 mm. The reference global load 𝒇𝑟
𝑔

 is 

selected as 1/10 of the final applied load (𝑝 = 1.0 MPa). 
Fig. 13(a) shows the normalized second variation of the 

strain energy corresponding to the target local structure 

calculated at each global load ratio 𝜆𝑖
𝑔

. The target local 

structure is stable until the global load ratio reaches 𝜆𝑖
𝑔
= 

(a)

1.84 MPap =

1.5 MPap =

1.7 MPap =

1.0 MPap =

Plastic region

(b)

(a) 

(b) 
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Fig. 15 Comparison between applied and approximated 

local forces in stiffened cylindrical shell structure: (a) node 

sequence over interface boundary of target local structure, 

(b) X-directional components of applied and approximated 

local forces, and (c) Y-directional components of applied 

and approximated local forces 

 

 

1.84  (𝑝 = 1.84 MPa ). Fig. 13(b) shows the deformed 

shapes and plastic regions in the target local structure when 

the external pressure loads are 𝑝 = 1 MPa , 1.5 MPa , 

1.7 MPa, and 1.84 MPa. The first yielding occurs at 𝑝 =
1.5 MPa; most of the corner areas directly subjected to 

pressure loads become plastic at 𝑝 = 1.84 MPa. 
Fig. 14 shows the local force ratio (𝜆𝑖

𝑙) with respect to 

the global load ratio (𝜆𝑖
𝑔

) at each load step 𝑖. The global 

load and local force ratios at critical point can be 

determined as 𝜆𝑐
𝑔
= 1.84   and 𝜆𝑐

𝑙 = 2.12 , respectively. 

Figs. 15(a)-(c) show the nodal sequence over the boundary 

of the target local structure, and the components of the 

applied local force (𝒇𝑖
𝑙) and the approximated local force 

𝜆𝑖
𝑙𝒇𝑟
𝑙  at the critical point. 

For the service load ratio 𝜆𝑠
𝑙 = 1.0, the usage factor and 

 

Fig. 16 Global load ratio-local force ratio curve obtained for 

stiffened cylindrical shell structure 

 

Table 2 Local safety factors calculated for local stringer 

structure in stiffened cylindrical structure 

Direct evaluation through global FE analysis (Proposed) 2.12 

Evaluation through local FE analysis (Zi et al. 2017) 2.84 

 

 

local safety factor are calculated using Eqs. (8) and (9) as 

𝜂 = 0.47 and 𝐿𝑆𝐹 = 2.12, respectively. Table 2 compares 

the local safety factors obtained from the present method 

and the local FE analysis method (Zi et al. 2017). 

Evaluation through local FE analysis shows a much higher 

safety factor than the proposed method. Note that the local 

FE analysis method provides local safety calculated using 

strain energies stored in the local structure. 

Fig. 16 shows the normalized displacement index-local 

force ratio curve. The local force ratio does not decrease 

after the local force ratio reaches the critical point (𝜆𝑐
𝑙 =

2.12). 

 

3.3 Column-pontoon connection structure in tension 
leg platform 
 

We consider a column-pontoon connection structure in a 

tension leg platform (TLP), as shown in Fig. 17(a) (Blarez 

2018). The main part of the TLP structure consists of four 

cylindrical columns on box-type pontoons. To stiffen the 

connection between the cylindrical columns and pontoons, 

bracket girders are used as shown in Fig. 17(b). Assuming 

the TLP structure is installed in a calm sea, we consider 

uniformly distributed external seawater pressure and 

internal tank pressure. The material properties of the 

column-pontoon connection structure are approximated as 

elastic-perfectly plastic high-tensile steel with Young’s 

modulus 𝐸 = 210 GPa, Poisson’s ratio 𝜈 = 0.3, and yield 

stress 𝜎𝑦 = 355 MPa. 

The bracket girder is selected as the target local 

structure. The bracket girder has non-typical geometry. Note 

that it is not possible to evaluate the local stability of the 

bracket girder using existing design formulas. The 

considered column-pontoon connection structure is 

modeled using 39,772 3- and 4-node shell elements. To 

apply the initial imperfection, the geometry of the FE model 

is modified by adding a buckling mode shape obtained from  
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the eigenvalue analysis with maximum deflection of 3.5 

mm in the out-of-plane direction (Z-direction). The 

reference global load 𝒇𝑟
𝑔

 is selected as 1/100 of the applied 

loads 

Fig. 18(a) shows the normalized second variation of the 

strain energy with respect to the target local structure 

calculated at each global load ratio (𝜆𝑖
𝑔

). The bracket girder 

is stable until the global load ratio reaches 𝜆𝑖
𝑔
= 3.5. Fig. 

18(b) shows the deformed shapes and plastic regions of the 

target local structure when the global load ratios are 𝜆𝑖
𝑔
=

1.0, 2.0, 3.1, 3.5, 3.8, and 4.0. The first yielding occurs at 

𝜆𝑖
𝑔
= 2.0 and more than 70% of the target local structure is 

subjected to plastic deformation at 𝜆𝑖
𝑔
= 4.0. 

Fig. 19 shows the local force ratio 𝜆𝑖
𝑙  with respect to 

the global load ratio (𝜆𝑖
𝑔

) at each load step 𝑖. The critical 

global load and local force ratios can be determined as 

𝜆𝑐
𝑔
= 3.5 and 𝜆𝑐𝑙 = 3.22, respectively. After the critical 

point, the local force ratio considerably decreases. Using 

Eqs. (8) and (9), the usage factor and the local safety factor 

are calculated as 𝜂 = 0.31 and 𝐿𝑆𝐹 = 3.22 when the 

service load ratio is considered to be 𝜆𝑠
𝑙 = 1.0. Fig. 20(a) 

shows the node sequence over the boundary of the target 

local structure, and Figs. 20(b)-(c) compare the components 

of the applied local forces (𝒇𝑖
𝑙) and the approximated local 

 

 

force (𝜆𝑖
𝑙𝒇𝑟
𝑙 ) at the critical point. 

The displacement index-local force ratio curve is plotted 

as illustrated in Fig. 21. After the critical point (𝜆𝑐
𝑙 = 3.22), 

softening occurs in the target local structure. For 

comparison, the global load ratio-normalized displacement 

index curve is plotted as shown in Fig. 22. The results in 

Fig. 22 indicate that the global structure is stable at the 

critical point ( 𝜆𝑐
𝑙 = 3.22 ) as the applied global load 

continuously increases as the displacement increases. 

Comparing Fig. 21 and Fig. 22, the locally unstable state 

cannot be observed by investigating the global response of 

the structure, but the proposed methods predict the local 

instability in the target local structure well. 

 

 

4. Conclusions 
 

In this study, we proposed three different methods to 

evaluate the stability of a local structural part belonging to a 

large structure. Through nonlinear FE analysis regarding the 

global structure, complicated interactions between the local 

and global structures are directly considered. The methods 

can be easily used to determine vulnerable areas in a large 

structure regardless of the shape of the target local structure. 

The critical point at which the local structure loses its  

 

Fig. 17 FE model of column-pontoon connection structure: (a) TLP structure consisting of four cylindrical columns 

on box-type pontoons and (b) column-pontoon connection structure with target local structure (bracket girder) 
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(b)
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Fig. 18 Stability limit determined by relation between 

global load ratio and second variation of strain energy and 

stress distribution at the critical point, and plastic 

deformations in target local structure: (a) normalized 

second variation of strain energy of target local structure 

and (b) plastic regions over deformed shapes of target local 

structure when global load ratios are 𝜆𝑖
𝑔
= 1.0, 2.0, 3.1, 

3.5, 3.8, and 4.0 

 

 

Fig. 19 Global load ratio-local force ratio curve obtained for 

column-pontoon connection structure of tension leg 

platform 
 

 
Fig. 20 Comparison between applied and approximated 

local forces in stiffened cylindrical shell structure: (a) node 

sequence over interface boundary of target local structure, 

(b) X-directional components of applied and approximated 

local forces, and (c) Y-directional components of applied 

and approximated local forces 

 

 

Fig. 21 Normalized displacement index-local force ratio 

curve obtained for column-pontoon connection structure of 

tension leg platform 
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Fig. 22 Normalized displacement index-global load ratio 

curve obtained for column-pontoon connection structure of 

tension leg platform 

 

 

stability can be explicitly found, even if the overall 

structural integrity is maintained. The resistance capacity of 

the local structure can be reasonably quantified using the 

local safety factor (LSF). 

In future studies, the proposed methods can be applied 

to demonstrate strength proofs of irregularly reinforced 

structures and weakened plate openings, which frequently 

need to be evaluated in the ship building industry but are 

not predefined in the design formulas. In addition, the 

residual strength of the local structure can be identified after 

structural damages occur from ship grounding or collision 

accidents. The methods can be practically used by engineers 

to consider various arbitrary shapes of local structural parts 

in ships and offshore structures. 
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