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1. Introduction 
 

Steel-concrete composite structures have been 

extensively used in building, bridges, and other civil 

engineering infrastructure, making an effective utilization 

of concrete in the compression zone and steel in the tension 

counterpart, offering several advantages. The primary one is 

the high strength-to-weight ratio as compared to 

conventional reinforced concrete (RC) structures. They also 

offer greater flexural stiffness, speedier and more flexible 

construction, ease of retrofitting and repair, and higher 

durability (Chen 2005, He et al. 2010, 2017, 2020a, b, Lin 

et al. 2014a, b).  

In steel-concrete composite structures, shear connectors 

between steel and concrete (e.g., angles, channel sections, 

headed studs, perforated ribs) are essential in all composite  
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members in order to guarantee the effectiveness of their 

behavior in terms of strength and deformability. Those 

connectors, located in the steel-concrete interface, must be 

able to effectively transfer the stresses occurring between 

both materials (Lam and El-Lobody 2005, Colajanni et al. 

2014, He et al. 2014, 2019). 

Headed stud connector is one of the most popular shear 

connectors owing to its simple and quick installation using 

a stud-welding gun and superior ductility. Headed steel 

studs welded to the flange of the steel beam and embedded 

in concrete solid slab, or in composite slab using profiled 

steel sheeting, have been the most common procedure to 

transfer longitudinal shear forces between the steel beam 

and concrete slab in composite girders (Oehlers and 

Coughlan 1986, An and Cederwall 1996, Lee et al. 2005, 

Pallarés and Hajjar 2010, Shim et al. 2004, Xue et al. 2012, 

Suwaed and Karavasilis 2018). 

Recently a number of researchers have focused on the 

different aspects of headed stud connectors. An extensive 

experimental research on shear behaviors of stud connectors 

under static or cyclic loading (Gattesco and Giuriani 1997, 
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Abstract.  Steel-concrete composite structures have been extensively used in building, bridges, and other civil engineering 

infrastructure. Shear stud connectors between steel and concrete are essential in composite members to guarantee the 

effectiveness of their behavior in terms of strength and deformability. This study focuses on investigating the shear stiffness of 

headed studs embedded in several types of concrete with wide range of compressive strength, and their effects on the elastic 

behavior of steel-concrete composite girders were evaluated. Firstly, totally 206 monotonic push-out tests from the literature 

were reviewed to investigate the shear stiffness of headed studs embedded in various types of concrete (NC, HPC, UHPC etc.). 

Shear stiffness of studs is defined as the secant stiffness of the load-slip curve at 0.5Vu, and a formulation for predicting defined 

shear stiffness in elastic state was proposed, indicating that the stud diameter and the elastic modulus of steel and concrete are 

the main factors. And the shear stiffness predicted by the new formula agree well with test results for studs with a diameter 

ranging from 10 to 30 mm in the concrete with compressive strength ranging from 22.0 to 200.0MPa. Then, the effects of shear 

stiffness on the elastic behaviors of composite girders with different sizes and under different loading conditions were analyzed, 

the equations for calculating the stress and deformation of simply supported composite girders considering the influence of 

connection’s shear stiffness were derived under different loading conditions using classical linear partial-interaction theory. As 

the increasing of shear stiffness, the stress and deflection at the most unfavorable section under partial connected condition tend 

to be those under full connected condition, but the approaching speed decreases gradually. Finally, the connector’s shear stiffness 

was recommended for fully connection in composite girders with different dimensions under different loading conditions. The 

findings from present study may provide a reference for the prediction of shear stiffness for headed studs and the elastic design 

of steel-concrete composite girder. 
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Shim et al. 2004, Civjan and Singh 2003) and fatigue 

loading (Dogan and Roberts 2012, Lee et al. 2005) were 

carried out, considering the influence of concrete strength 

and types (An and Cederwall 1996, Valente and Cruz 2009, 

Kim et al. 2015; Han et al. 2017), such as crumb rubber 

concrete (Han et al. 2015, 2017), high-performance 

concrete (HPC) (Cao et al. 2017, Kim et al. 2015, Tian and 

Du 2016), steel fiber-reinforced cementitious composites 

(SFRCCs) (Luo et al. 2016, Xu et al. 2017); the diameter of 

studs (Badie et al. 2002, Shim et al. 2004), the biaxial 

loading effect on group studs (Xu et al. 2018, Lin et al. 

2014), the quantity of studs (Xue et al. 2008, Xue et al. 

2012, Spremic et al. 2013, 2018) and the restrained 

conditions and loading conditions (Lin et al. 2015, 2016). 

These researches indicate that the shear capacity of studs 

depends on many factors, including the material and 

diameter of the stud itself and properties of the surrounding 

concrete slab, and these factors are considered for 

predicting shear capacity of stud connectors in several 

national design codes (AISC, 2005; BS5400, 1978; CEN-

Eurocode 4, 2005; AASHTO LRFD, 2014; JTG/T D64-01-

2015). 

However, according to the aforementioned research 

works, most have focused on the shear strength of headed 

stud, and only a few efforts have been made on 

investigating the deformation behavior (stiffness) of the 

stud, especially for headed studs using high strength steel 

and embedded in above mentioned new types of concrete. 

Shear stiffness of the headed stud connection affects the 

distribution of the shear flow of the studs in composite 

structures and hence indirectly affects the strength and 

fatigue life of the structures (Oehlers and Bradford 1999). 

Meanwhile, researchers have recognized that it is necessary 

to utilize accurate constitutive model (i.e., the relation 

between shear load and slip) of headed stud for analyzing 

the structural behavior of composite constructions in the 

whole service life by nonlinear finite element simulation or 

theoretical calculation (Ranzi et al. 2013, Spacone and El-

Tawil 2004). Therefore, more attentions on the stiffness and 

ductility of headed studs are thought to be required. 

Theoretical equation that is easy to assess the shear stiffness 

of headed studs should be developed for design 

applications. 

This study firstly reviewed totally 206 monotonic push-

out tests from the literature to investigate the shear stiffness 

of headed studs embedded in various types of concrete (NC, 

HPC, UHPC etc.). The definition and prediction of shear 

stiffness for headed studs with a diameter ranging from 10 

to 30 mm in various types of concrete with compressive 

strength ranging from 22.0 to 200.0 MPa was proposed and 

compared with push-out test results. Then, the effects of 

shear stiffness on the elastic behaviors of composite girders 

with different sizes and under different loading conditions 

were analyzed, the equations for calculating the stress and 

deformation of simply supported composite girders 

considering the influence of connection’s shear stiffness 

were derived under different loading conditions using 

classical linear partial-interaction theory. Finally, the 

connector’s shear stiffness was recommended for fully 

connection in composite girders with different dimensions 

under different loading conditions. The findings from 

present study may provide a reference for the prediction of 

shear stiffness for headed studs and the elastic design of 

steel-concrete composite girder. 

 

 

2. Shear stiffness definition and prediction 
 

2.1 Shear mechanism of headed studs 
 

Generally, the shear behaviors of headed studs are 

investigated through standard push-out tests. According to 

the observed failure modes and deformation properties (Lin 

et al. 2016, Xu et al. 2014, Xu and Liu 2016, 2019), the 

shear mechanism of the headed stud can be obtained and is 

described in Fig. 1, the stud is subjected to the combination 

of bending moment (M), axial force (N), and shear force (V) 

at the welding root at the same time in the push-out tests. 

The applied load (P) is transferred to the shear force (V) of 

stud and in equilibrium with the reaction forces from 

concrete (qcon). Due to the splitting tendency of concrete 

slab from the steel section, an axial force (N) at the root of 

headed stud is induced and resisted by the friction force 

along the stud and the reaction at the head of the stud. At 

the same time, the studs bend near the root, and moments 

(M) at the root and head of the stud are induced to satisfy 

rotation equilibrium. 

 

2.2 Shear stiffness definition 
 

Typically, the shear behaviors of headed studs in push-

out test are expressed by the load-slip curves, which can be 

divided into three stages, as shown in Fig. 2: Stage I, the 

load increases linearly with the slip at initial loading stage 

(load generally less than 0.2~0.5 times of ultimate load). 

Then, in Stage II, the slope of the load-slip curve decreases 

with gradual deterioration of concrete due to cracking or 

crushing. Finally, the specimens fail after a rapid increase in 

slip due to the yield of the stud or the fracture of the 

concrete in Stage III. 

The first deformation stage can be characterized by 

shear stiffness (ks) which is defined as the secant stiffness of 

the load-slip curve at a certain load (Ve) or slip (se). 
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Fig. 1 Shear transfer mechanism in push-out test 
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Fig. 2 Typical load-slip curve for studs in push-out test 

 

 

At this stage, concrete and steel can be taken as elastic 

material. However, there is no unified definition of the 

shear connector stiffness. Till now, based on the 

experimental data of push-out tests, several equations for 

shear stiffness of headed stud in normal strength concrete 

(NC) were proposed. Johnson and May (1975) defined the 

shear stiffness of stud as the secant stiffness at 0.5 Vu. Wang 

(1998) conservatively calculated the stiffness of a shear 

connector by assuming that at design strength (0.8Vu), the 

shear connector has an equivalent slip of 0.8 mm. Eurocode 

4 (CEN 2005) suggests the stiffness to be taken as the 

secant stiffness at 0.7VRk, in which VRk is the characteristic 

resistance of the shear connector (VRk=0.9Vu). Alternatively, 

an approximate value of 100 kN/mm was assumed for 

headed stud with diameter of 19 mm. JSCE (2009) uses the 

secant stiffness at (Vu/3) as the shear stiffness. Based on 

relation between slip and head stud’s diameter provided by 

Oehlers and Coughlan (1986), Shim et al. (2004) gave the 

equation of shear stiffness as the following equation 

 0.5

0.5

0.16 0.0017
u

u u
s

V cu s

V V
k

s f D
 

 
 (1) 

where, Ds is the stud diameter (mm); and fcu is the cubic 

compressive strength of concrete (MPa). The value of 0.16 

can be substituted by 0.08 and 0.24 for the upper and lower 

characteristic stiffness, respectively. 

However, it was reported by Shim et al. (2004) that for 

studs with diameter larger than or equal to 25 mm, the 

measured values from Eq. (1) were about two times larger 

than the calculated ones, indicating that the formula is much 

conservative. Meanwhile, the formula cannot predict the 

shear stiffness of studs in high-strength concrete or UHPC 

because the denominator in this equation, (0.16-0.0017fcu), 

would be zero or negative if the concrete strength is larger 

than 94.1MPa. Meanwhile, the influence of Ec was not 

considered in this formula. Hence, it would fail to explain 

why studs have different stiffness in concrete with different 

Ec when the concrete strengths are the same, such as crumb 

rubber concrete (Han et al. 2015). Through the above 

analysis, it can be concluded that the application of Eq. (1) 

is limited. 

 

Except for the definition of shear stiffness at a certain 

load, Lin et al. (2016) defined shear stiffness as the secant 

slope of shear load-slip curve at the slip of 0.2 mm, while 

the shear force at the slip of 0.2 mm is about 40% of the 

ultimate shear force. 

In order to understand the relation of shear force at the 

slip of 0.2 mm (Vs0.2) and the ultimate shear force (Vu) for 

different types of concrete (such as normal strength 

concrete-NC; Light weight concrete-LWC; crumb rubber 

concrete-CRC; engineered cementitious composite 

concrete-ECC; high performance concrete or ultra-high 

performance concrete-HPC/UHPC) with different 

compressive strength, totally 206 monotonic push-out test 

specimens were reviewed (Viest 1956, Davies 1967, 

Ollgaard et al. 1971, Shim et al. 2004, Xue et al. 2008, 

Valente and Cruz 2009, Wang 2013, Han et al. 2015, Kim 

et al. 2015, Luo et al. 2016, Tian and Du 2016, Lin 2016, 

Zhan et al. 2020, Qi et al. 2019, Wang et al. 2018, 2019, Xu 

et al. 2018, Liu et al. 2018, Dominic et al. 2018). Fig. 3 

shows the relation of Vs0.2/Vu and concrete strength for shear 

stud in various types of concrete. For concrete strength less 

than 80MPa, most of Vs0.2/Vu change from 0.2 to 0.6, no 

obvious trend for the change of Vs0.2/Vu with concrete 

strength, so the frequency distribution of Vs0.2/Vu for studs in 

concrete whose compressive strength is less than 80 MPa is 

plotted in Fig. 4, and it meets a normal distribution with 

mean of 0.39 and standard deviation of 0.1. As for the studs 

in high strength concrete (>80MPa), the value of Vs0.2/Vu 

increase with concrete strength, and most of the value is 

larger than 0.5, indicating that the stud is no longer in 

elastic state when slip at 0.2 mm, therefore, it is 

questionable still define elastic shear stiffness as the secant 

slope of shear load-slip curve at the slip of 0.2 mm.  

Therefore, in this study the shear stiffness of studs is 

defined as the secant stiffness of the load-slip curve at 0.5 

Vu, because it can not only consists with the definition at 

slip of 0.2 mm for concrete strength less than 80MPa, but 

also keeps the stud embedded in high strength concrete 

(>80MPa) still within elastic state. 
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Fig. 3 The relation of Vs0.2/Vu and concrete strength for 

shear stud in various types of concrete 
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Fig. 4 The frequency distribution of Vs0.2/Vu for studs in 

concrete (fc<80 MPa) 

 

 

x

y

M0

V0

y0

u

Elastic springs k

hs

ds

ds

M
V

M+dM

V+dV

(a) (b)

ky(x)

 

Fig. 5 Analytical model of stud in concrete: (a) stud on an 

elastic foundation and (b) differential element of length 

dx 

 

 

3. Analytical model for predicting shear stiffness 
 

Based on the shear mechanism of headed stud as shown 

in Fig. 1 (Lin et al. 2016, Xu and Liu 2016, 2019), the 

structural behavior of headed studs embedded in concrete 

under shear loading can be analogous to a beam on an 

elastic foundation, which supported by a series of 

continuous elastic springs.  

Fig. 5 shows an analytical model of headed stud under 

combined shear force V and bending moment M at the root 

of shrank, in which, the diameter and height of stud is ds 

and hs respectively; the elastic modulus and the inertia of 

moment of the steel stud is Es and Is, respectively; y(x) is 

the deflection of stud at the position x from the root. 

 

3.1 Basic assumption 
 

In order to simplify the theoretical derivation of the 

shear stiffness of headed stud, the following assumptions 

are made:            

(1) The flexural deformation of the stud conforms to the 

plane section assumption.             

(2) Perfect contact between the stud and concrete is 

assumed during the loading process.         

(3) Both steel and concrete are in elastic range.   

(4) The axial force of stud and frication force at 

interface are ignored. 

3.2 Differential equation 
 

Fig. 5(b) shows the equilibrium state of force for 

infinitesimal element (dx) from the beam on elastic 

foundation, the shear force V, V+dV, and the bending 

moment M, M+dM are act on two ends, and reaction 

distribution stress σ is at the bottom.  

According to the equilibrium of force and moment, the 

following equations can be obtained:        

dV

dx
  ; 

dM
V

dx
  (2) 

So, the relation between σ and M is expressed: 

2

2

d M

dx
   (3) 

Based on the assumptions (1) and (3), the bending 

moment is proportional to the curvature θ: 

dy

dx
   (4) 

2

2

1

s s

d y
M

E I dx
   (5) 

3

3

1

s s

d y
V

E I dx
   (6) 

Based on Winkler's hypothesis, the reaction force σ(x) is 

proportional to the deformation y of beam on elastic 

foundation. 

skyd   (7) 

where k is stiffness, which is determined as the resistance of 

concrete per area when unit deflection is applied to stud, 

k=CEc/ds. C is a constant related to the properties of 

concrete, and Ec is the elastic modulus of concrete. 

Therefore, deflection differential equation of beam on 

elastic foundation can be obtained from the above equations 

4

4
0s

s s

kdd y
y

dx E I
   (8) 

Define the flexibility coefficient 4 (4 )s s skd E I  , 

the general solution of the above Eq. (8) is 

1 2

3 4

( cos sin )

( cos sin )

x

x

y e A x A x

e A x A x





 

 

 

 
 (9) 

Considering the boundary condition at both ends: 

0 00 0

0 00 0

x x

x x

y y

M M V V

 
 

 

  


 

；

；
 (10) 

The deformation and forces can be expressed as follows 
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(11) 

where 

1

2

3

4

cos

sin cos

sin

sin cos

ch x x

ch x x sh x x

sh x x

ch x x sh x x

  
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  
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


 



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 (12) 

 

3.3 Solution 
 

Since the deformation and bending moment at the free 

end of stud (x=hs) is 0, then 

0

0

s

s

x h

x h

y

M





 





 (13) 

Substituting Eq. (13) into Eq. (11), get: 

0 0
0 1 22 3

0 0
0 3 42

2 4

+
2

s s s s

s s s s

M V
y n n

E I E I

M V
n n
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
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

 


 (14) 

where 

1 2 3 4
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(15) 

When the unit shear force acts on the fix end of stud: 

0 0

0 0
0 1

VV VMx x

x x

y

M V

  
 

 

   


 

；

；
 (16) 

When the unit moment acts on the fix end of stud: 

0 0

0 0
1 0

MV MMx x

x x

y

M V

  
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 
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；
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Combining the above equations (14,16,17), the solutions 

are 

2
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
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

 (18) 

Therefore, when both shear force (V) and bending 

moment (M) act on the fixed end, the deformation is: 

 
0

0

VV MV

VM MM

y V M

V M

 

  

 


  
 (19) 

Generally, there is no rotation at fixed end of stud, i.e., 

θ0=0 

1 4
0 23

3

( )
4

VV MV

s s

n nV
y V M n

E I n
 


     (20) 

Eq. (20) can be recognized as 

3

0
1 4

2

3

1
4

( )
s sV E I y

n n
n

n





 
(21) 

When αhs≥4.5时，the value of ni (i=1,2,3,4) converge 

to a constant, so 

3 3 1

4 4 4
00.267 s c sV d c E E y  (22) 

Thus, the shear stiffness can be determined as 

3 3 1 3 1

4 4 4 4 40.267s s c s s c sk d c E E Cd E E   (23) 

where, ks is the shear stiffness, kN/mm; Es is the elastic 

module of steel plate, MPa; Ec is the elastic module of 

concrete, MPa; ds is the diameter of stud, mm. 

Eq. (23) shows that the main factors affecting the shear 

stiffness are the elastic modulus of concrete, the elastic 

modulus of the stud, the diameter of stud, which are in good 

agreement with test and FEA results (Wang 2013, Lin 

2016).  

The parameter C is a constant related to the properties of 

concrete. The value of parameter C can be fitted by the test 

and FEA data. A total of 169 push-out tests data for studs in 

normal-strength concrete (<80 MPa) and 37 tests in 

HPC/UHPC (>80 MPa) were used for a linear regression 

analysis to get the value of C, as shown in Fig.6. The value 

of C is fitted as 0.374 for studs in NC and HPC/UHPC. The 

value of C for studs in present study is slightly larger than 

that (0.32) proposed previously by Lin (2016), because the 

equation of shear stiffness of headed stud proposed by Lin 
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(2016) did not include the studs embedded in HPC/UHPC. 

Fig. 7 shows the comparison of shear stiffness from 

prediction using Eq. (23) and that from push-out tests. The 

mean ratio of predicted shear stiffness to test ones is 1.03 

for studs in NC and HPC/UHPC, with the standard 

deviation of 0.17, indicating that the shear stiffness of 

headed studs in NC and HPC/UHPC can be predicted 

accurately by Eq. (23) using parameter C of 0.374. 

 

 

4. Effect of shear stiffness of connectors on 
structural behavior of composite girder 

 
To understand the effect of the connector’s shear 

stiffness on the mechanical behavior of steel-concrete 

composite girder at serviceability limit state, the deflection 

and cross-sectional stress considering the influence of 

connection’s shear stiffness under different loading were 

derived theoretically and evaluated accordingly (Johnson 

2008). 

 

4.1 Geometric models and basic assumptions 
 

A simply supported girder with equal cross-section was 

selected to study the effect of connection’s shear stiffness 

on the elastic behavior of steel-concrete composite girder at 

serviceability limit state, as shown in Fig. 8. The total span 

is L, the concrete slab with width of wc and thickness of tc is 

connected to steel I-girder (in which fw, ft is the width and 

thickness of flange; wh, wt is the height and thickness of the 

web, respectively) with the help of shear connectors, such 

as headed studs. Ec and Ac is the modulus of elasticity and 

area of concrete deck; Ic is the moment of inertia with 

respect to its own centroid. Similarly, Es, As and Is are the 

modulus of elasticity, area and the moment of inertia of 

steel girder. The intersection points of the cross-sectional 

symmetry axis (central line) with the top and bottom of 

concrete deck are defined as point 1 and 2, and the 

intersection points with the top and bottom of steel girder 

are defined as point 3 and 4. 
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Fig. 6 Fitting of shear stiffness  
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Fig. 8 Simply supported steel-concrete girder  

 

 

The yc1 and yc2 are the distances from point 1 and 2 to the 

centroid of the concrete deck, respectively; while ys3 and ys4 

are the distances from point 3 and 4 to the centroid of steel 

girder, respectively. The total number of weld shear studs at 

steel-concrete interface is ns, and the shear stiffness of one 

stud is ks, which can be predicted by Eq. (23), then the shear 

stiffness per unit length at the interface is 

/s s sK n k L  (24) 

The following basic assumptions are made during the 

theoretical derivation:             

(1) The material is in elastic stage.             

(2) Concrete slab and steel girder satisfy the assumption 

of plane section, respectively.             

(3) The curvature of concrete deck and steel beam is 

consistent. 

The structural behaviors of steel-concrete composite 

girder were analyzed when subjected to different loading, 

such as uniformly distributed loading, concentrated loading, 

and temperature difference. The details of theoretical 

derivation for composite girder under uniformly distributed 

loading were described in the following. But, only the 

derivation results under other loading condition were listed 

due to the limited space. 

 

4.2 Structural behavior of composite girder under 
uniformly distributed loading 

 

It is assumed that the top surface of composite girder is 

subjected to a uniformly distributed load p. As shown in 

Fig. 9, the segment with the length of x (from support O) is 
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selected as the research object. The shear flow is assumed 

to be q(x) per unit length at steel-concrete interface. At 

section A, the axial force Nc(x), Ns(x) and bending moment 

Mc(x), Ms(x) are applied to the concrete slab and steel 

girder, respectively. 

At section A, from the equilibration of axial force and 

bending moment, the following equations can be obtained 

( ) ( ) 0c sN x N x   (25) 

2

0( ) ( ) ( ) / 2 / 2c s cM x M x N x h pLx px     (26) 

Since the concrete slab and the steel beam have the 

same curvature after deformation, then 

( ) ( )c s

c c s s

M x M x

E I E I
  (27) 

From the equilibration of axial force (in longitude 

direction) of concrete slab 

0
( ) ( )

x

cN x q t dt   (28) 

Under the applied load p, relative slip between point 2 

and 3 at steel-concrete interface may occur, resulting in the 

assumption of plane section for the composite section 

invalid. And the difference between these two points (ε2-ε3) 

is defined as the slip strain εslip 

slip 2 3

( )
( ) ( ) ( )

ds x
x x x

dx
      (29) 

In addition, the shear flow q(x) per unit length on the 

steel-concrete interface is the product of the shear stiffness 

per unit and the relative slip at the corresponding position 

( ) ( )sq x K s x  (30) 

The right term of Eq. (29) is calculated as 

 

2 3
slip 2 3

22
001 1

2

c s c c s s

c c s s c c s s

c

c c s s

N N M y M y

E A E A E I E I

h p Lx xh
N

E A E A EI EI

       

 
    

 

 (31) 

 

 

 

Fig. 9 Internal force and strain state for segment x under 

uniformly distributed load 

where, h0 is the distance between the centroid of concrete 

slab and steel beam, i.e., h0=yc2+yc3; EI is the sum of 

moment of inertia for concrete slab and steel beam, 

EI=EcIc+EsIs. 

The left term of Eq. (29) is calculated as 

2

slip 2

d ( )( )
=

d

c

s

N xds x

dx K x
   (32) 

Combining Eq.(31) and Eq. (32), get 

 2

0'' 2( ) ( )
2

s

c c

h p Lx x K
N x N x

EI



    (33) 

where
2

sK  ; 

2

01 1

c c s s

h

E A E A EI


 
   
 

 

Eq. (33) is a second-order linear differential equation 

with constant coefficients, its general solution is 

   

 
1 2

2 2

0

2

( ) sinh cosh

2 /

2

c

s

N x C x C x

h pK Lx x

EI

 





 

 


 (34) 

According to the boundary conditions: x=0, Nc(0)=0, 

and s(L/2)=0, the coefficients C1 and C2 can be obtained 

 0

1 4

tanh / 2sh pK L
C

EI




 ; 0

2 4

sh pK
C

EI
  (35) 

Therefore 

 

 

2

0

2

2

2 2

2
tanh sinh

2
( )

2 2 2
cosh

s
c

L
x

h pK
N x

EI
x Lx x









 

  
   

  
  

    
  

 (36) 

 

   

0

2

2
tanh cosh

2
( )

2 2
sinh 2

s

L
x

h pK
q x

EI
x L x











  
   

  
 

  
 

 (37) 

 

   

0

2

2
tanh cosh

2
( )

2 2
sinh 2

L
x

h p
s x

EI
x L x











  
   

  
 

  
 

 (38) 

 

 

0
slip 2

2 tanh sinh
2( )

2
2cosh 2

L
xh p

x
EI

x









  
   

   
  

 (39) 

Based on the elementary beam theory, the stress at 

points 1, 2, 3 and 4 are calculated as follows 
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 

1
1

2

0 1/ 2 / 2

c c c
c

c c

c c c cc

c c

N M y

A I

pLx px N h E I yN

A I EI

  

 
 

 (40) 

 

2
2

2

0 2/ 2 / 2

c c c
c

c c

c c c cc

c c

N M y

A I

pLx px N h E I yN

A I EI

  

 
 

 (41) 

 

3
3

2

0 3/ 2 / 2

c s s
s

c s

c s s sc

c s

N M y

A I

pLx px N h E I yN

A I EI

  

 
 

 (42) 

 

4
4

2

0 4/ 2 / 2

c s s
s

c s

c s s sc

c s

N M y

A I

pLx px N h E I yN

A I EI

  

 
 

 (43) 

The deflection can be obtained through double integral 

of curvature along beam length: 

( ) ( ) c sM M
y x x dxdx dxdx

EI



    (44) 

 

 

3 4

2 4

0

2 3 4 2

4 2

3 4

12 24

2
tanh sinh

1 2
( )

2 2
cosh

6 12

s

pLx px

L
x

h pK
y x

EI EI Lx x x
x

C x C









 

 
  

 
    

   
     

  
     

 
  
  

 (45) 

According to the boundary conditions: x=0, y(0)=0, and 

the rotation at middle span y’(L/2)=0, the coefficients C3 

and C4 can be obtained: 

23 3

0
3 2 224 2 12

sh pKpL L L
C

EI 

  
     

  
; 

2

0
4 6

sh pK
C

EI
  (46) 

If concrete slab and steel beam are fully connected, the 

strain induced by relative slip is 0, i.e., εslip=0, the strain at 

top or bottom of concrete slab and steel beam can also be 

calculated by Eqs. (40)-(43), the axial force Nc(x) at 

centroid of concrete slab is: 

 2

0
( )

2
c

h p Lx x
N x

EI


  (47) 

 

And the corresponding deflection can be determined as 

follows 

23 4 3 4

0

5 6

1
( ) 12 24 2 6 12

h ppLx px Lx x

y x EI
EI

C x C



  
    

   
   

 

2 33

0
5

24 24

h pLpL
C

EI

 
   

 
; 6 0C   

(48) 

The theoretical derivation for composite girder under 

concentrated load P or temperature difference T (the 

difference between temperature at concrete slab and steel 

beam) is almost the same as that under uniform distributed 

load q, the stress and deflection at section x for composite 

girder under concentrated load P or temperature difference 

T are listed in Table 1, both the conditions of partial 

connected and “full connected” are considered for 

comparison. 
 

4.3 The effect of shear stiffness under different 
loading conditions 

 

In order to understand the structural behaviors of steel-

concrete girder under different loading conditions, the 

headed studs with different diameters and shear stiffness 

were considered. Also, the limit value of shear stiffness for 

the “full connection” design was provided to guide the 

selection of shear connectors. 

A case study was conducted for quantitatively and 

comparatively analysis on the effects of shear stiffness 

under different loading conditions including uniform 

distributed loading, concentrated loading and temperature 

difference. A simply supported steel-concrete composite 

girder with span (L) of 16m was selected as the research 

object. The width and depth of concrete slab is 2400 mm 

and 240 mm, respectively. The width and thickness of top 

flange for steel beam is 300 mm and 20 mm, while is 400 

mm and 20 mm of bottom flange. The height and thickness 

of web is 560 mm and 12 mm. The design compressive 

strength of concrete slab is 22.4 MPa with elastic modulus 

of 3.45×104 MPa, while the design strength of steel web and 

flange is 275 MPa and 270 MPa with elastic modulus of 

2.06×105 MPa. According to design specification JTG/T 

D64-01(2015) and proposed Eq. (23) for shear stiffness, the 

design shear strength of headed studs with diameter of 19 

mm, 22 mm and 25 mm is 87.5 kN, 117.3 kN and 151.4 kN, 

while the shear stiffness is 348 kN/mm, 403 kN/mm and 

458 kN/mm. 

The elastic design method was used to design and 

arrange the welded studs at steel-concrete interface. The 

material properties of steel and concrete adopt design 

values. The maximum bending moment section of the 

composite girder reaches the elastic ultimate bending 

capacity when subjected to external loading was defined as 

elastic limit state. 

According to Eqs. (49) and (50), the number of shear 

studs (ns) can be determined. 
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( )
( ) c

eq

V x S
q x

I
  (49) 

s

d

ql
n

V
  (50) 

where, q(x) is shear flow per unit length on the steel-

concrete interface, V(x) is the shear force at section x, Sc is 

the is the first moment of conversion cross-section to the 

elastic neutral axis; Ieq is the second moment of conversion 

section, l is the length of calculation area, Vd is the design 

shear strength of a stud.  

When headed studs with diameter of 16 mm, 19 mm, 22 

mm and 25 mm are used respectively, a total of 115, 82, 61 

and 47 studs need to be arranged at the steel-concrete 

interface under concentrated load. Generally, two studs are 

installed in transversal direction at cross section, thus the 

equally spacing in longitude direction is 275 mm, 390 mm, 

516 mm and 666 mm for headed studs with diameter of 16 

mm, 19 mm, 22 mm and 25 mm, respectively. Under the  

 

 

 

action of concentrated load or uniform distributed load, the 

maximum bending moment appear at mid-span section. 

When the mid-span section reaches the elastic ultimate 

bending capacity, the total shear flow at interface under 

concentrated load is the same as that under uniform 

distributed load. Therefore, the total number and the 

arrangement of studs under uniform distributed load equal 

to that under concentrated load when using the same 

diameter of studs. For the sake of contrast, the arrangement 

of studs under temperature difference is chosen the same. 

When 19 mm-studs were used, the shear stiffness per unit 

length (Ks,19) at the interface is 1.38×106 kN/m2. 

In the analysis, 19mm-studs were used and KS,19 is taken 

as the benchmark to analyze the impact of shear stiffness at 

steel-concrete interface, and the shear stiffness 

corresponding to the arrangement of 16 mm, 22 mm and 25 

mm studs is KS,16 =1.188 KS,19, KS,22= 0.864 KS,19 and KS, 25 

= 0.760 KS,19, respectively. 

 
4.3.1 Under uniform distributed loading 
The applied uniform distributed loading is assumed to 

be 10 kN/m. Fig. 10 and Table 2 show the effects of shear  

Table 1 The stress and deflection at section x for composite girder 

Connect 

condition 

Item Under concentrated load P Under Temperature difference T 

Partial 

connected 

Stress  0 11

1

/ 2 c c c cc c c c

c

c c c c

Px N h E I yN M y N

A I A I EI

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stiffness on the normal stress on top (σc1) and bottom (σc2) 

surface of concrete slab, normal stress on top (σs3) and 

bottom (σs4) surface of steel beam, deflection at middle span 

(yL/2), and relative slip at end section. The stress in negative 

indicates compression while tension in positive. When the 

shear stiffness is small, the effects on the stress, deflection 

and slip is significant, as the increasing of shear stiffness, 

the effects reduce gradually, and the stress, deflection and 

slip at partial connected condition tend to be those at full 

connected condition. 

As the increasing of stud diameter, the shear stiffness at 

corresponding arrangement of studs decrease gradually, and 

the differences of stress and deflection between partially 

connection and fully connection become larger. For 

example, when installation of 19mm-studs, the difference of 

σc1, σc2, σs3, vs4 and yL/2 between partially connection and 

fully connection is 2.2%, 21.9%, 70.8%, 0.7% and 6.5%, 

respectively. The difference of stress at steel-concrete 

interface is obvious. It should be noted that although the 

difference of stress σs3 is large, the stress level is very low, 

which can be ignored in compression with the yield stress 

of steel. Although the value of stress σc2 is small, but is in 

tensile for concrete, which should be pay more attention.  

 

 

The difference of stress σc1, σs4 is less than 5%, which can 

be ignored. 

Under uniform distributed loading, in order to limit the 

difference of stress between partially connection and fully 

connection less than 5%, the shear stiffness should be more 

than 0.56×106 kN/m2; while to limit the difference of 

deflection less than 5%, the value should be more than 

1.69×106 kN/m2. 

 

4.3.2 Under concentrated loading 
The applied concentrated loading at mid-span is 

assumed to be 100 kN. Fig. 11 and Table 3 show the effects 

of shear stiffness on the normal stress on top (σc1) and 

bottom (σc2) surface of concrete slab, normal stress on top 

(σs3) and bottom (σs4) surface of steel beam, deflection at 

middle span (yL/2), and relative slip at end section. Similar 

to that under uniform distributed loading, when the shear 

stiffness is small, the effects on the stress, deflection and 

slip is significant, as the increasing of shear stiffness, the 

effects reduce gradually, and the stress, deflection and slip 

at partial connected condition tend to be those at full 

connected condition, but the speed approaches to the 

situation at full connected condition under concentrated 

loading is lower than that under uniform distributed 

loading. 
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Table 2 Structural response under uniform distributed loading 

Item Partially connection-stud diameter  Fully  

connection 

Partially connection/ Fully connection 

16 mm  19 mm  22 mm 25 mm 16 mm  19 mm  22 mm 25 mm 

σc1(MPa) -2.081 -2.088 -2.095 -2.102 -2.044 1.018 1.022 1.025 1.029 

σc2(MPa) 0.496 0.510 0.525 0.539 0.418 1.185 1.219 1.254 1.288 

σs3(MPa) 1.009 0.729 0.451 0.172 2.499 0.404 0.292 0.181 0.069 

σs4(MPa) 39.479 39.521 39.562 39.604 39.256 1.006 1.007 1.008 1.009 

yL/2(mm) 8.363 8.442 8.520 8.597 7.930 1.055 1.065 1.074 1.084 

Table 3 Structural response under concentrated loading 

Item Partially connection-stud diameter  Fully  

connection 

Partially connection/ Fully connection 

16 mm  19 mm  22 mm 25 mm 16 mm  19 mm  22 mm 25 mm 

σc1(MPa) -2.766 -2.785 -2.803 -2.819 -2.555 1.083 1.090 1.097 1.104 

σc2(MPa) 0.960 0.999 1.035 1.069 0.523 1.834 1.909 1.978 2.043 

σs3(MPa) -5.291 -6.048 -6.743 -7.397 3.124 -2.694 -2.936 -3.159 -3.368 

σs4(MPa) 50.329 50.442 50.546 50.644 49.070 1.026 1.028 1.030 1.032 

yL/2(mm) 8.424 8.510 8.594 8.677 7.930 1.062 1.073 1.084 1.094  

0.0 0.5 1.0 1.5 2.0

-5

-4

-3

-2

-1

0

1

2

3

4

5

Point 2

C
o

n
re

te
 s

tr
e

s
s
 (

M
P

a
)

K
s
/K

s,19

 Top slab (full connected)

 Top slab (partial connected)

 Bottom slab (full connected)

 Bottom slab (partial connected)

Point 1

 

0.0 0.5 1.0 1.5 2.0

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60
Point 4

S
te

e
l 
s
tr

e
s
s
 (

M
P

a
)

K
s
/K

s,19

 Top  (full connected)

 Top  (partial connected)

 Bottom  (full connected)

 Bottom  (partial connected)

Point 3

 
(a) Concrete stress (b) Steel stress 

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

S
lip

 (
m

m
)

K
s
/K

s,19

 End slip  (full connected)

 End slip  (partial connected)

 

0.0 0.5 1.0 1.5 2.0

0

5

10

15

20

D
e

fl
e

c
ti
o

n
 (

m
m

)

K
s
/K

s,19

 Mid deflection  (full connected)

 Mid deflection  (partial connected)

 

(c) End slip (d) Mid-span deflection 
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As the increasing of stud diameter, the shear stiffness at 

corresponding arrangement of studs decrease gradually, and 

the differences of stress and deflection between partially 

connection and fully connection become larger. For 

example, when installation of 19 mm-studs, the difference 

of σc1, σc2, σs3, vs4 and yL/2 between partially connection and 

fully connection is 9.0%, 90.9%, 293.6%, 2.8% and 7.3%, 

respectively. The difference of stress at steel-concrete 

interface is obvious. It should be noted that although the 

difference of stress σs3 is large, the stress level is very low, 

which can be ignored in compression with the yield stress 

of steel. Although the value of stress σc2 is small, but is in 

tensile for concrete, which should be pay more attention. 

The difference of stress and deflection induced by 

concentrated loading is larger than that by uniform 

distributed loading, under the condition of adopting the 

same shear stiffness. 

Under concentrated loading, in order to limit the 

difference of stress between partially connection and fully 

connection less than 5%, the shear stiffness should be more 

than 4.16 × 106 kN/m2; while to limit the difference of 

deflection less than 5%, the value should be more than 

1.95× 106 kN/m2. 

 

 
 
4.3.3 Under temperature difference loading 
The temperature difference between concrete slab and 

steel beam is assumed to be -15°C. Fig. 12 and Table 4 

show the effects of shear stiffness on the normal stress on 

top (σc1) and bottom (σc2) surface of concrete slab, normal 

stress on top (σs3) and bottom (σs4) surface of steel beam, 

deflection at middle span (yL/2), and relative slip at end 

section. Similar to that under uniform distributed loading, 

when the shear stiffness is small, the effects on the stress, 

deflection and slip is significant, as the increasing of shear 

stiffness, the effects reduce gradually, and the stress, 

deflection and slip at partial connected condition tend to be 

those at full connected condition, but the speed approaches 

to the situation at full connected condition under 

temperature difference loading is faster than that under 

uniform distributed loading. 

As the increasing of stud diameter, the shear stiffness at 

corresponding arrangement of studs decrease gradually, and 

the differences of stress and deflection between partially 

connection and fully connection become larger. For 

example, when installation of 19 mm-studs, the difference 

of σc1, σc2, σs3, vs4 and yL/2 between partially connection and 

fully connection is 0.1%, 0%, 0.1%, 0.1% and 2.9%, 

respectively. All the differences are less than 5%, which can  
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be ignored. The difference of stress and deflection induced 

by temperature difference loading is much less than that by 

uniform distributed loading, under the condition of adopting 

the same shear stiffness. Therefore, the reaction of 

composite girder subjected to temperature difference or 

shrinkage can be calculated on the assumption that steel 

beam and concrete slab is fully connected. 

Under temperature difference loading, in order to limit 

the difference of stress between partially connection and 

fully connection less than 5%, the shear stiffness should be 

more than 0.26×106 kN/m2; while to limit the difference of 

deflection less than 5%, the value should be more than 

0.76×106 kN/m2. 

 

4.4 The effect of shear stiffness for different 
composite girders 

 
Generally, the effects of shear stiffness on the structural 

behaviors of steel-concrete girder depend on the geometric 

properties of composite girder (i.e., the span and cross-

section). In bridge structure, the dimension of section is 

related to the span of composite girder, the height of the 

cross-section and the thickness of plate increase as the 

increase of the span. Therefore, this section will explore the 

influence of shear stiffness on the elastic behavior of 

composite girder with different geometry. For the 

convenience of comparison, the ratio of height to span of 

composite girder keep the same as 1/20, and the dimensions 

of four composite girders are shown in Table 5. 

Fig. 13 shows the effects of shear stiffness on structural 

behaviors of steel-concrete girders with different 

dimensions. The parameters αc1, αs4 and αy are the difference 

ratio of stress at top concrete slab and bottom steel flange, 

deflection at mid-span under condition of partial connection 

to that under full connection. From girders A to D, using  

 

 

 

 

19 mm-studs, the difference ratio of stress at top concrete 

slab is 0.127, 0.088, 0.011 and 0.02178, respectively, while 

the difference ratio of stress at bottom steel flange is 0.016, 

0.027, 0.030 and 0.016, respectively, the difference ratio of 

deflection at mid-span is 0.093, 0.070, 0.036 and 0.026, 

respectively. 

It can be found that the difference ratio of stress (αc1, 

αs4) and deflection (αy) show different change rules. The 

difference ratio of stress at top concrete slab and bottom 

steel flange did not show a consistent rule with the increase 

of composite girder size. Because the calculation of stress 

depends not only on the overall rigidity of composite girder, 

but also on the relative rigidity of concrete slab and steel 

beam. For composite girders with different sizes, the 

relative rigidity of concrete slab and steel beam changes 

irregularly. For large-size composite girders, the values of 

both difference ratio of stress and deflection are small when 

using 19-mm studs, which is less than 5%. Thus, the 

calculation error of the stress for large-size composite 

girders is smaller than that for small-size composite girders 

based on the assumption of full connection. For the 

difference ratio of deflection (αy), it mainly depends on the 

span and flexural rigidity of composite girder. With the 

increase of girder sizes, the flexural rigidity and span also 

monotonically increases, so the influence of connection’s 

shear stiffness for different girder sizes on the deflection of 

composite girder shows a certain change rule. With the 

increase of girder sizes, the difference ratio of mid-span 

deflection decreases gradually, indicating that the 

calculation error for the large-sized composite girder is 

smaller than that for small-sized one based on the 

assumption of full connection. 

For composite girders with different dimensions, in 

order to limit the difference of stress between partially 

connection and fully connection less than 5%, the shear 

Table 4 Structural response under temperature difference loading 

Item Partially connection-stud diameter  Fully  

connection 

Partially connection/ Fully connection 

16 mm  19 mm  22 mm 25 mm 16 mm  19 mm  22 mm 25 mm 

σc1(MPa) -0.593 -0.593 -0.593 -0.592 -0.593 1.000 0.999 0.999 0.999 

σc2(MPa) 1.224 1.223 1.223 1.222 1.224 1.000 1.000 0.999 0.999 

σs3(MPa) -21.057 -21.051 -21.043 -21.031 -21.062 1.000 0.999 0.999 0.999 

σs4(MPa) 3.528 3.527 3.525 3.523 3.529 1.000 0.999 0.999 0.999 

yL/2(mm) 6.850 6.817 6.785 6.753 7.022 0.975 0.971 0.966 0.962 

Table 5 Dimensions of four composite girders (unit: mm) 

Components Girder A Girder B Girder C Girder D 

 

Concrete slab 200×1800 240×2400 250×3000 260×3600 

Top steel flange 16×200 20×300 24×500 28×600 

Steel web 8×368 12×500 16×1352 20×1884 

Bottom steel flange 16×250 20×400 24×600 28×800 

Girder height  600 840 1650 2160 

Girder span 12000 16800 33000 43200 
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Fig. 13 Effect of shear stiffness for different composite 

girders  

 

 

 

stiffness should be more than 5.68×106 kN/m2; while to 

limit the difference of deflection less than 5%, the value 

should be more than 1.74 × 106 kN/m2. 

 

 

5. Conclusions 
 

The shear stiffness of headed studs embedded in various 

types of concrete (NC, HPC, UHPC etc.) was investigated 

using totally 206 push-out tests from the literature, and a 

formulation for predicting shear stiffness of headed studs in 

elastic state was proposed. The effects of shear stiffness on 

the elastic behaviors of composite girders with different 

sizes and under different loading conditions were further 

analyzed. The following conclusions can be drawn from the 

present study: 

• The shear stiffness of studs is defined as the 

secant stiffness of the load-slip curve at 0.5Vu, because it 

can not only consists with the definition at slip of 0.2 mm 

for concrete strength less than 80 MPa, but also keeps the 

stud embedded in high strength concrete (>80 MPa) still 

within elastic state. A new equation for shear stiffness was 

proposed based on the deformation and mechanic behavior 

of studs. The proposed formula indicates that the shear 

stiffness mainly depends on the stud diameter, and the 

elastic modulus of steel and concrete. And the shear 

stiffness predicted by the new formula agree well with test 

results for studs with a diameter ranging from 10 to 30 mm 

in the concrete with compressive strength ranging from 22.0 

to 200.0 MPa. 

• The equations for calculating the stress and 

deformation of simply supported composite girder 

considering the influence of connection’s shear stiffness 

were derived under different loading conditions using 

classical linear partial-interaction theory. As the increasing 

of shear stiffness, the stress and deflection at the most 

unfavorable section under partial connected condition tend 

to be those under full connected condition, but the 

approaching speed decreases gradually. 

• Using the same shear stiffness at steel-concrete 

interface, in term of the difference between the ultimate 

stress and the deflection of composite girder at mid-span for 

partial connected condition and those for fully connected 

condition, the value under the concentrated load is 

maximum, then under the uniform distrusted load, and 

under temperature difference (shrinkage) is the smallest. 

Under the action of temperature difference (shrinkage), the 

above-mentioned difference is less than 5% using common 

arrangement of headed studs, which can be designed as 

fully connection. However, under the action of concentrated 

load and uniform distrusted load, the difference is more 

than 5%, so the influence of connection’s shear stiffness 

should be considered. 

• In comparison with small-sized composite 

girders, the error for calculating the ultimate stress and the 

deflection at mid-span section based on the assumption of 

full connection is less for large-sized ones. 

• For composite girders with different dimensions 

under different loading conditions, in order to limit the 

difference of ultimate stress between partially and fully 

connection less than 5%, the shear stiffness should be more 

than 5.68×106 kN/m2; while to limit the difference of 

deflection less than 5%, the value should be more than 

1.95×106 kN/m2. The control factor should be the difference 

of ultimate stress at the most unfavorable section. 
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• On the premise of meeting the requirement of 

longitudinal shear force at steel-concrete interface, the 

arrangement of small-diameter headed studs provides more 

shear stiffness, results in less error for calculating the 

ultimate stress and the deflection at mid-span section based 

on the assumption of full connection. 
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