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Abstract.  RTI (Rayleigh-Taylor instability) is investigated by a multi-liquid MPS (Moving Particle 
Semi-implicit) method for both viscous and inviscid flows for various density differences, initial-disturbance 
amplitudes, viscosities, and surface tensions. The MPS simulation can be continued up to the late stage of 
high nonlinearity with complicated patterns and its initial developments agree well with the linear theoretical 
results. According to the relevant linear theory, the difference between inviscid and viscous fluids is the 
rising velocity at which upward-mushroom-like RTI flow with vortex formation is generated. However, with 
the developed MPS program, significant differences in both growing patters and developing speeds are 
observed. Also, more dispersion can be observed in the inviscid case. With larger Atwood (AT) number, 
stronger RTI flows are developed earlier, as expected, with higher potential-energy differences. With larger 
initial disturbances, quite different patterns of RTI-development are observed compared to the 
small-initial-disturbance case. If AT number is small, the surface tension tends to delay and suppress the RTI 
development when it is sufficiently large. Interestingly, at high AT number, the RTI-suppressions by 
increased surface tension become less effective. 
 

Keywords:  RTI (Rayleigh-Taylor instability); MPS (Moving Particle Semi-implicit) simulation; Atwood 

number; viscous vs. inviscid; initial disturbance; surface tension; RTI speed/pattern; mushroom-like RTI 

flows; comparison to linear theory 

 
 
1. Introduction 
 

Rayleigh-Taylor instability (RTI) is one of prominent phenomena for multi-phase flows. It 

occurs due to the gravitational instability of a heavy fluid overlying a lighter fluid. Examples 

include the behavior of water suspended above oil and mushroom clouds from atmospheric 

nuclear explosions. Under that condition, RTI tends to be generated with small initial perturbation. 

When lighter fluids move upward, the potential energy of the configuration becomes lower than 

the initial state. Thus the disturbance will grow and lead to a further release of potential energy. At 

the early stage, flow is generated from the small initial perturbations, which can be described by 
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the linearized equations, and then the instability grows exponentially. Later, with the rise of lighter 

fluid, the grown interface evolves to a mushroom-like curly form (called mushroom flows) and 

continues to further penetrate into the heavier fluid. The shape and size of initial perturbation is an 

important factor for the size and growth of RTI flows. However, the RTI is a mathematically 

ill-posed problem and the dependence on the initial condition is still an abstruse problem. 

As aforementioned, at the early stage, the RTI can be described by linear equations when fluid 

is incompressible. The linear equations are based on a small-amplitude assumption and it predicts 

the exponential growth of the original disturbance (Taylor 1950). The results from the linear 

equations are shown to agree well with the relevant experiments in an early stage with 

small-amplitude perturbations (Chandrasekhar 2013, Waddell et al. 2001). However, the theory 

has limitations of predicting nonlinear phenomena associated with later-stage flows and large 

initial perturbations. The viscous effects are typical nonlinear term of Navier-Stoke’s equation. 

According to (Sharp 1984), it was pointed out that numerical methods can often break down due to 

singularities on the interface. This singularities were investigated by (Moore 1979) by giving an 

asymptotic estimate of the critical time at the curvature along the interface which becomes infinite. 

(Cowley et al. 1999) further investigated the critical time by showing the singularities formed 

spontaneously in the complex plane at early times and then moved to intersect the real plane 

producing the curvature singularities. 

(Krasny 1986) introduced a “vortex blob” method to make their numerical method compute 

beyond critical time of inviscid singularity formation. The idea is that the curvature singularity 

formed at the interface between inviscid fluids may trigger roll-up when the viscosity was 

considered. (Tryggvason et al. 1991) considered the effect of vortex-blob approach to the inviscid 

problem and then compared with viscous flow problem by solving Navier-Stokes’ equation. 

(Tryggvason and Unverdi 1990) extended the numerical simulation into more complex geometry 

for RTI simulation. 

As aforementioned, many numerical methods with fixed grid system may not compute RTI 

after the critical time. In this regard, the newly developed multi-liquid MPS is imposed to simulate 

RTI for much longer time. The MPS was originally introduced by (Koshizuka and Oka 1996) for 

the free-surface incompressible-fluid dynamics problems. It was subsequently developed by 

(Gotoh 2009) by improving the algorithm of particle interaction models. (Lee et al. 2011) adopted 

the new method of finding free-surface particle and further improved pressure-related algorithms. 

The MPS method has further been extended to multi-phase problems. (Khayyer and Gotoh 2013) 

solved high-density-ratio problem by introducing the interfacial averaged density. (Nomura et al. 

2001) and (Shirakawa et al. 2001) introduced surface tension and buoyancy correction to better 

represent physics and improve accuracy under the condition of multi-liquids. The surface tension 

and buoyancy correction was further improved by (Kim et al. 2014). (Jeong et al. 2013) 

investigated the RTI by MPS method with corrective matrix for pressure calculation, which was 

proposed by (Khayyer and Gotoh 2011). With the improved multi-liquid algorithms, Kim and Kim 

(2017) investigated the Kelvin-Helmholtz instability phenomena at various interfaces. It needs to 

be mentioned that the very similar approach by SPH (smoothed particle hydrodynamics) can also 

handle the similar interfacial problems (e.g., Bakti et al. 2016), the details of which are not given 

in this introduction. 

In this paper, a newly developed MPS method for multi-liquid systems with more robust 

algorithms including interface searching, self-buoyancy correction, and surface tension is applied 

to investigate the complex interfacial interactions and RTI instability phenomena. Various 

combinations of initial disturbance, surface tension, kinematic viscosity, and Atwood number 
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(density difference) were used to investigate the respective roles associated with the generation 

and development of RTI flows. 

 

 

2. Moving Particle Semi-implicit (MPS) method 
 

In order to simulate fluid dynamics numerically by Moving Particle Semi-implicit (MPS) 

Method, two equations which are continuity and Navier-Stokes equations are employed as 

governing equations. Two governing equations can be expressed as follows 

0
D

Dt


                   (1) 

 
21Du

p u n F
Dt

 


                  (2) 

where   is density of fluid, t  is time, u  is velocity of particle, p  is pressure,   is 

kinematic viscosity,   is surface tension coefficient,   is curvature of interface for surface 

tension, n  is normal vector of interface, F  is external force,   denotes gradient, and 
2  

represents Laplacian.  

Since MPS is based on Lagrangian approach, all terms of differential operators should be 

replaced with the form of particle interaction method. The particle interaction method represents 

influence of neighboring particle to center particle, thus special treatment for considering effects 

from neighboring particle. In this regard, kernel function is employed to measure the effects of 

neighboring particles with respect to the distance from center particle to them. In this study, the 

following kernel function is employed 
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where ijr  is distance between center and neighboring particle which can be calculated by 

ij j ir r r   , and er  is critical range which can be regarded as effective range of center particle. 

In this study, default value of er  is set to 2.1 by following (Lee et al. 2011). 
Another special variance of MPS is particle number density. The MPS uses kernel function to 

keep the system to continuum, the density should be expressed by form of kernel function. In the 

entire MPS system, the particle number density act as density of fluid. The particle number density 

can be calculated by following formula. 

  | r |i ij

j i

n w


                (4) 

Due to form of kernel function, the center particle is excluded from calculation unless it is 

necessary. 

169



 

 

 

 

 

 

Kyung Sung Kim and Moo Hyun Kim 

Aforementioned differential operators can be transferred by following particle interaction form 

and they can be expresses as follows 
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Above equations Eqs. (5)-(7) represent gradient, divergence, and Laplacian operators written 

by particle interaction model, respectively. Moreover, 0n  denotes particle number density at the 

initial arrangement and   is the parameter to make the increase of variance measured by 

distribution of particles equal to an increase of variance from unsteady diffusion equation. 

In the MPS calculation routine, there is special algorithm to predict pressure on particle which 

is incompressibility model. It is similar to SMAC (Simplified Marker-and-Cell) method consisting 

two steps. The first step, explicit step, measures intermediate velocity of each particle, 
*u , due to 

viscosity, surface tension, and gravitational force. 

  * 2u u n gz t                        (9) 

In this stage, the arrangement of particle can be moved with intermediate velocity, thus the 

satisfaction of the continuity equation can be violated. In this regard, concept of velocity corrector, 
'u  , which adjust particle arrangement in order to satisfy particle number density were introduced. 

The velocity corrector can be calculated by the pressure gradient and the pressure gradient was 

obtained by Poisson Pressure Equation (PPE) implicitly. (Lee et al. 2011) suggested multiple 

terms for poisson source to improve accuracy of prediction and to avoid nonphysical pressure 

fluctuation. The source term which is used in this study can be expressed as follow: 

  2 1 *0 0 0
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1
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n i
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n n
p u

t n t

 
  

    
 

         (10) 

where superscriptions 1nor n  denote physical quantity at time 1nor n ,   is relaxation 

parameter which is less than 0.001. More detail information can be found in (Lee et al. 2011).  

The fluid flow which has interface including free surface, the boundary condition is necessary 
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to satisfy boundary conditions. By tracing of particle, the kinematic boundary condition can be 

satisfied automatically. The dynamic boundary condition can be satisfied by taking reference 

pressure on the interface particles. For free surface particle, the reference pressure should be 

atmosphere pressure and the interface between fluid-fluid layers can be summation of interface 

particle with different phase within effective range.  

To apply the dynamic boundary condition, indication of interface particle should be established 

first. At the interface region, the particle number density with same fluid phase decreases since 

there is no particle for free surface or there are different types of particles. In this regard, the 

following simple conditions are employed to identify the interface particles 

1 0 2 0in n n                   (11) 

 3 0iN N                 (12) 

where 1 2 3, , and    are parameters below 1.0, iN  is number of particle within effective 

range for center particle I, and 0N  is maximum number of particle at the initial arrangement. In 

this formula, only particle with same type are involved. More detail information can be found in 

(Kim et al. 2014). In this study, 1 2 3, , and    set to 0.3, 0.97, and 0.85, respectively. By using 

boundary condition with interface particle tracing method can make MPS to simulate 

fragmentation and coalescence of interface including free surface. 

A repulsive force can be generated by local pressure, however, it may be improperly calculated 

when particles get close too much, especially large deformation due to coalescence or 

fragmentation of free surface and interface. As a result of large deformation, the particle number 

density may have sudden increase, which leads spatial instability of the pressure. Therefore, 

collision model was employed to stabilize the pressure field. 

 

 

 

Fig. 1 Schematic of Collision Model 
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The schematic of collision model is shown in Fig. 1. When the distance between any two 

particles gets smaller than criterion, the collision model is applied. The criterion is 0al , where 0l  

is particle distance at initial arrangement, and a  is arbitrary number. The repulsive velocity can 

be calculated by using repulsive coefficient, b  , which is defined as the ratio of normal velocity 

to opposing particle, ' /r rb v v  , where the subscript r  denotes the velocity normal to the 

opposing particle. The parameters, a  and b  are set to 0.85 and 0.2 recommended by (Lee et al. 

2011). 
Since particle method is following Lagangian approach, it is easy to identify interface particle 

with indication method, however, in the view point of surface tension, the variance which is 

curvature cannot be measured due to complexation of drawing the interface layer. In this regard, 

two additional particle number density were adopted 
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Where 
st

er  is effective range for surface tension and it is set to 3.1 in this study. With newly 

adopted kernel function, the curvature for surface tension can be calculated by following formula: 
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Another unknown variance for surface tension is normal vector and it can be estimated by 

following formula 

 
| |

i
i n x n y i

i

a
a x y and n

a
   n n                (16) 

Involved particle in interface particles are same physical properties only. More detail 

information regarding to surface tension can be found in (Kim et al. 2014). 
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3. Simulation results and discussions  
 
3.1 Previous validation of the multi-liquid MPS program 
 
The developed MPS program for a single fluid has been verified by various CFD results and 

experimental results of a typical water-flow-by-broken-dam case (Bakti et al. 2016). It was also 

extensively verified for liquid sloshing against many experimental results (Kim and Kim 2014, 

Bakti et al. 2016). The multi-liquid-sloshing cases with multiple interfaces including interfacial 

Kelvin-Helmholtz instability have been verified against Molin’s experimental results in Kim and 

Kim (2014, 2017) and Kim et al. (2015). 

 

3.2 RTI simulation examples: Vertical pipe with multi-liquids 
 
Next, let us consider the simulation of RTI by using newly developed MPS method and the 

schematic model is shown in Fig. 2. In the vertical pipe, two different fluids were located and in 

order to obtain spontaneous gravitational acceleration and heavier fluid was located over lighter 

fluid. For the repeatability, the initial perturbation exists at the interface between two fluids. The 

fluid is placid at the beginning, and then it starts to flow by an imposing destabilizing acceleration 

as time increases. In this situation, the pressure and density gradients are in opposite direction. In 

this simulation, 22,500 particles were used for lighter fluid, and same number was used for heavier 

fluid. The wall and dummy particle consumed 6,100 particles. 

 

3.3 Effect of Atwood number 
 

The selected simulation model for RTI has two fluids in vertical pipe and the heavier fluid is 

located over lighter fluid, so the rising flow can be generated spontaneously. In this regard, the 

density difference between two fluids are most important factor to generate momentum for 

subsequent flow. In this section, several sets of density differences are applied to observe the 

density-difference effects. The density difference can be expressed by Atwood number(AT), which 

is the ratio of densities as follows 

 

 

 

Fig. 2 Numerical Model for RTI 
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 1 2

1 2

| |
AT

 

 





                (17) 

Aforementioned, in this case, the density difference and gravity/buoyancy force is the main 

cause of RTI. To investigate the effects of RTI on density differences, various Atwood numbers 

are considered. The selected Atwood numbers were 0.2, 0.4, and 0.6 and the surface tension 

coefficient was set to 0.023 /N m . Fig. 3 shows the snapshots obtained from the simulation results at 

various times. In this simulation, the kinematic viscosity was fixed to 2 21.0 10 /m s . At much 

lower kinematic viscosity than that, it may have problems to simulate RTI (Forbes 2009). The 

simulation was started from the initial free-surface shape of cos( )A kx  where A is amplitude of 

disturbance. 
 

 

AT #  

(a) 

0.2 

 

(b) 

0.4 

 

(c) 

0.6 

 

Fig. 3 Evolution of Flow Development with various AT numbers 
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The first row of Fig. 3 [Fig. 3(a)] shows the time marching interface shapes for the lowest 

Atwood number. The split-peak rising flows were observed. However, Atwood #=0.4 and 0.6 

cases show the mushroom-like overturning flows, which is the typical pattern of RTI. At the 

highest AT #, the mushroom head becomes larger, rises faster, and is detached earlier from the 

main body. In general, the overturning flow called wake can be induced by the diffusion term of 

Navier-Stoke’s equation. The reason of not showing RTI at WT=0.2 is due to insufficient initial 

energy at the given initial profile. Another interesting point in this simulation is the breaking of 

interface was triggered at the singularities in the case of lowest AT while the breaking started at 

the concentration for other cases. Through the comparison of Atwood number of system, it is 

revealed that the density difference is prominent component to trigger RTI flows. 
 

 

Amplitude  

(a) 

0.025m 

 

(b) 

0.050m 

 

(c) 

0.100m 

 

Fig. 4 Evolution of Flow Development with various initial-disturbance amplitudes 
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3.4 Effects of the amplitude of initial disturbance 
 

In the previous section, it is shown that the density difference between fluids is a significant 

factor to generate RTI flow. In the case of the low Atwood number=0.2, the rising flow with split 

peaks were developed without mushroom-like overturning. For this case, the effects of 

initial-disturbance amplitudes are observed in Fig. 4. The range of initial amplitudes was set to 

0.025 m to 0.1 m. The other simulation conditions were exactly same as those of Fig. 3. When the 

initial amplitude is 0.025 m, rising flows were developed at the two singular points. On the 

contrary, with initial disturbance higher than 0.05 m, one column of rising flow is developed at the 

center position. The rising velocity increases with initial disturbance. In all cases, the 

mushroom-like RTI flow is not observed since the density difference is not large enough. In 

summary, with the increase of initial-disturbance amplitudes, the typical symmetric-tooth-like 

split-peak patters, which can be predicted by the linear theory, are not generated. Instead, one 

prominent center jet is generated. 

 

3.5 Effects of viscosity 
 

Another prominent factor for RTI is viscosity. According to the Navier-Stoks’ equation, Eq. (2), 

the viscous effects can be measured by the diffusion term with Laplacian operator. In Fig.5, the 

same simulations as Fig. 3 was performed with inviscid-fluid condition i.e., the kinematic 

viscosity is set to zero. According to the investigation by Sharp (1984), the numerical methods 

with fixed-grid system broke down for this kind of case since the fixed-grid method may failed to 

calculate singularities. However, the present particle based Lagrangian approach does not have that 

kind of restriction and it is able to simulate inviscid flow RTI beyond the critical point. Similar 

behaviors may be observed in the cases with very low viscosity. 

The sequence of snap-shots of Fig. 5 coincides with that of Fig. 3, high viscosity vs. 

no-viscosity. Interestingly at WT=0.2 and A=0.025 m, the initial development pattern is similar 

between Figs. 3(a) and 5(a) but at later stage, the inviscid case shows RTI with horizontal 

mushrooms at both sides since the instability and curly flows are not limited by viscosity. With 

increased AT numbers in Figs. 5(b) and 5(c), similar patterns as Fig. 5(a) are developed with 

increased speed and in more widely spread patterns, which eventually leads to a very wide 

turbulence mixture region without clear pattern. The overall pattern with two horizontal 

mushrooms is quite different from the single vertical mushroom shape with viscosity. From the 

comparison, we can conclude that the viscosity is an important factor for the development and 

pattern of RTI. 

Baker et al. (1993) presented a formula to estimate critical time for calculation break down as 

follows 

1 1
logCt

At A

 
  

 
                          (18) 

where Ct  denotes critical time of calculation, and A  denotes amplitude of initial perturbation. In 

the simulation of AT=0.2 and A=0.025 m, the critical time equals to 3.58 sec. In this regard, Fig. 6 

represents snapshots after 2.0 sec in the cases of inviscid and viscous fluids with Atwood 

number=0.2. From the comparison of snapshots, it is seen that after the critical time, the form of 

flows was clearly distinguished. In the case of no-viscosity, the lighter fluid flew to lateral 
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direction to form mushroom shape. In this case, the low buoyancy force could not penetrate the 

heavier upper fluid and then the residue of energy developed the lateral flow. Eventually, the RTI 

flow was dissipated by convection. In contrast, the viscous fluid continuously flows upward, and 

then it turned into the RTI flows when the system has the energy to produce over-turning flows. 

Through this comparison, it is revealed that both inviscid and viscous fluids can generate typical 

RTI flows when the system met the conditions. However, due to the viscous effects, the initiation 

of RTI is delayed. 

In linear theory, the perturbation can grow exponentially and the maximum interfacial 

displacement can be measured by the following equation. 

   expt A t                  (19) 

 

 

AT #  

(a) 

0.2 

 

(b) 

0.4 

 

(c) 

0.6 

 

Fig. 5 Evolution of Flow Development for Inviscid Fluid 
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AT #  

(a) 

0.2 

Viscous fluid 

 

(b) 

0.2 

Inviscid Fluid 

 

Fig. 6 Evolution of Flow Development for Viscous and Inviscid Fluid after the Critical Time 

 

 

where   is displacement of interface,   is growth rate, A  is amplitude of initial disturbance, 

and t  is time. By taking positive roots, the growth rate of RTI for viscous fluid can be expressed 

as follows (Mikaelian 1996) 

 

2
2 2

2
2 1 0

c

k
k ATgk

k
  

 
    

 
           (20) 

where k  is wave number, 
ck  is reference wave number, ν is kinematic viscosity, and AT  is 

Atwood number. The reference wave number can be calculated by the following formula 

 
 2 1

c

g
k where T is surface tension

T

 
          (21) 

Since the scaled velocity and characteristic time are defined by g   and / g  , the 

relevant dimensionless parameters, dimensionless time  *

RT  and interface displacement  *

RT , 

can be expressed as follows 
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(a) (b) 

Fig. 7 Comparison of growth rate between theoretical and numerical values for (a) viscous fluid and (b) 

inviscid fluid 
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(c) 
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Fig. 8 Evolution of Flow Development for Viscous Fluid with various surface with tension coefficients 

(AT=0.2) 
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Properties  
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0.025

0.01 /

0.023
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m s


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
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Fig. 9 Evolution of flow development for viscous fluid with surface tension coefficient=2.3 and AT=0.6 
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By solving Eq. (20), the interface displacement can be measured and then the non-dimensional 

interface evolution can be calculated by using Eq. (22). According to the theory, the interface 

disturbance grows exponentially both in inviscid and viscous fluids. Those theoretical interface 

evolutions for viscous and inviscid fluids were compared with those of numerical simulations in 

Figs. 7(a) and 7(b). For viscous fluid, both theoretical and numerical results show exponential 

growth of interface with time although the growth rates can be different after some time. On the 

other hand, the results of inviscid fluids show different trend between theoretical and numerical 

solutions despite better initial agreement up to the extended period of time compared to Fig. 7(a). 

The theory is based on the linear theory and is to be valid only during the initial growth period of 

RTI before reaching highly nonlinear stage. 

 
3.6 Effects of surface tension 
 

In this section, the effects of surface tension on RTI are discussed. In the previous simulations, 

the surface tension coefficient was set as 0.023. Usually, the surface tension at the interface 

between water and air is 0.076. However, as hypothetical fluids, the surface tension was varied 

from 0.023 to 2.3 and 23 in Fig. 8 while fixing AT=0.2 and kinematic viscosity=0.01.  

Fig. 8 shows the progressive snapshots with time from each case. As shown in this comparison, 

the rising flow with two split peaks can be observed when surface tension=0.023. When the 

surface tension is increased to 2.3, the development of rising flows with dual sharp peaks is 

suppressed by much stronger surface tension and we can only observe dual rounded small 

disturbances at the interface. If we further increase the surface tension to 23, there is little 

difference compared to ST=2.3 case, which means that after the interface is sufficiently suppressed 
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Simulation of viscous and inviscid rayleigh-taylor instability with surface tension by using MPS 

and rounded, the surface-tension effects only play minor role for the interfacial disturbances. On 

the other hands, when Atwood number is high (e.g., 0.6), the momentum for RTI flow is large 

enough to overcome the surface tension force as shown in Fig. 9.  

 

 

4. Conclusions 
 

The Rayleigh-Taylor instability at the interface of two fluids of different densities is 

investigated with varying densities, initial disturbances, viscosities, and surface tensions by using 

the newly developed MPS method for multi-phase fluids. The classical RTI example for two 

different fluids interfaced in vertical pipe was examined. To generate destabilizing acceleration, 

the heavier fluid is located over the lighter fluid. Moreover, initial perturbations were applied at 

their interface to stimulate the subsequent flow development. 

With various Atwood numbers, it was seen that the typical RTI pattern, which is mushroom 

shape flow, was observed except the case of the lowest Atwood number. The development of RTI 

is also delayed with smaller initial disturbances and density differences. The density difference is 

prominent component to generate RTI flows and their strength.  When the fluid is inviscid, the 

typical RTI pattern is developed earlier than the case with viscosity but the boundary of interface 

becomes less clear due to more dispersion. Therefore, the viscosity is related to the strength of 

diffusion/dispersion and energy dissipation. In the general CFD method with fixed grid system, the 

calculation is broken down by the restriction of mesh structure. However, the present particle 

method can continue even after the critical time. As a result, the simulations for both inviscid and 

viscous fluids can be continued.  

Another investigation performed in this study was the effects of surface tension on the RTI. 

When AT is low, the surface tension tends to delay and suppress the development of RTI 

depending on its magnitude. However, after the interface was sufficiently rounded, its effects 

became less important. When AT is large enough to generate strong RTI flow, the surface tension 

effects play little role since it is hard to prevent the strong momentum of the penetration flow. 

The example RTI simulations for various cases demonstrated the role of density difference, 

initial disturbance, viscosity, and surface tension. The present two-fluid MPS can robustly continue 

the RTI flows even after later stage with high nonlinearity compared to the early breakdown of 

simulation by conventional grid-based CFD methods.  

 
 

Acknowledgements 
 

This research was supported by Basic Science Research Program through the National 

Research Foundation of Korea(NRF) funded by the Ministry of 

Education(NRF-2018R1D1A1B07048254) and Tongmyong University Research Grants 

2018(2018F026) 

 

 
References 
 
Baker, G., et al. (1993), “Singularity formation during Rayleigh–Taylor instability”, J. Fluid Mech., 252, 

51-78. 

181



 

 

 

 

 

 

Kyung Sung Kim and Moo Hyun Kim 

Bakti, F.P., Kim, M.H., Kim, K.S. and Park, J.C. (2016), “Comparative study of standard WC-SPH and 

MPS solvers for free-surface academic problems”, J. Offshore Polar., 26(3), 235-243. 

Chandrasekhar, S. (2013), Hydrodynamic and hydromagnetic stability, Courier Corporation. 

Cowley, S.J., et al. (1999), “On the formation of Moore curvature singularities in vortex sheets”, J. Fluid 

Mech., 378, 233-267. 

Gotoh, H. (2009), Lagrangian Particle Method-Advanced Technology for Numerical Wave Flume. The 

Nineteenth International Offshore and Polar Engineering Conference, International Society of Offshore 

and Polar Engineers. 

Jeong, S.M., et al. (2013), “Numerical prediction of oil amount leaked from a damaged tank using 

two-dimensional moving particle simulation method”, Ocean Eng., 69, 70-78. 

Khayyer, A. and Gotoh, H. (2011), “Enhancement of stability and accuracy of the moving particle 

semi-implicit method”, J. Comput. Phys., 230(8), 3093-3118. 

Khayyer, A. and Gotoh, H. (2013), “Enhancement of performance and stability of MPS mesh-free particle 

method for multiphase flows characterized by high density ratios”, J. Comput. Phys., 242, 211-233. 

Kim, K.S., et al. (2014), “Development of moving particle simulation method for multiliquid-layer sloshing”, 

Math. Probl. Eng. 

Kim, K.S. and Kim, M.H. (2017), “Simulation of Kelvin Helmholtz instability by using MPS method” 

Ocean Eng., 130, 531-541. 

Kim, K.S. and Kim, M.H. and Park, J.C. (2015), “Simulation of multi-liquid-layer sloshing with vessel 

motion by using moving particle simulations”, J. Offshore Mech. Arct., 137(5), 

Koshizuka, S. and Oka, Y. (1996), “Moving-particle semi-implicit method for fragmentation of 

incompressible fluid”, Nuclear Sci. Eng., 123(3), 421-434. 

Krasny, R. (1986), “Desingularization of periodic vortex sheet roll-up”, J. Comput. Phys., 65(2), 292-313. 

Lee, B.H., et al. (2011), “Step-by-step improvement of MPS method in simulating violent free-surface 

motions and impact-loads”, Comput. Method. Appl. M., 200(9), 1113-1125. 

Mikaelian, K.O. (1996), “Rayleigh-Taylor instability in finite-thickness fluids with viscosity and surface 

tension”, Phys. Rev., 54(4), 3676. 

Moore, D. (1979), “The spontaneous appearance of a singularity in the shape of an evolving vortex sheet”, 

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The 

Royal Society. 

Nomura, K., et al. (2001), “Numerical analysis of droplet breakup behavior using particle method”, J. 

Nuclear Sci. Technol., 38(12), 1057-1064. 

Sharp, D.H. (1984), “An overview of Rayleigh-Taylor instability”, Physica D: Nonlinear Phenomena, 12(1), 

3-18. 

Shirakawa, N., et al. (2001), “Analysis of the void distribution in a circular tube with the two-fluid particle 

interacthion method”, J. Nuclear Sci. Technol., 38(6), 392-402. 

Taylor, G. (1950), “The instability of liquid surfaces when accelerated in a direction perpendicular to their 

planes. I”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering 

Sciences, The Royal Society. 

Tryggvason, G., et al. (1991), “Fine structure of vortex sheet rollup by viscous and inviscid simulation”, J. 

Fluid. Eng., 113(1), 31-36. 

Tryggvason, G. and Unverdi, S.O. (1990), “Computations of three‐ dimensional Rayleigh–Taylor 

instability”, Phys. Fluids A: Fluid Dynam., (1989-1993) 2(5), 656-659. 

Waddell, J., et al. (2001), “Experimental study of Rayleigh–Taylor instability: low Atwood number liquid 

systems with single-mode initial perturbations”, Phys. Fluids., (1994-present) 13(5), 1263-1273 

Forbes, L.K. (2009), “The Rayleigh-Taylor Instability for inviscid and viscous fluids”, J. Eng. Math., 65(3), 

273-290 

 

 

PL 

182




