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Abstract.  This paper provides a practical stochastic method by which the maximum equilibrium scour depth 
below a pipeline exposed to random waves plus a current on mild slopes can be derived. The approach is 
based on assuming the waves to be a stationary narrow-band random process, adopting the Battjes and 
Groenendijk (2000) wave height distribution for mild slopes including the effect of breaking waves, and using 
the empirical formulas for the scour depth on the horizontal seabed by Sumer and Fredsøe (1996). The present 
approach is valid for wave-dominant flow conditions. Results for random waves alone and random wave plus 
currents have been presented and discussed by varying the seabed slope and water depth. An approximate 
method is also proposed, and comparisons are made with the present stochastic method.  For random waves 
alone it appears that the approximate method can replace the stochastic method, whereas the stochastic method 
is required for random waves plus currents. Tentative approaches to related random wave-induced scour cases 
for random waves alone are also suggested. 
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1. Introduction 
 

The present work addresses the scour below a pipeline on a mild-sloped seabed due to random 

waves alone and random waves plus a current. A pipeline resting on the seabed is situated within the 

boundary layer of the flow close to the bed. In deep water, the flow can be considered as steady, 

while in shallow and intermediate water depths, there is commonly combined wave-current flow. A 

typical design condition for a pipeline in the vicinity of the seafloor in, e.g., the North Sea is that the 

flow is wave-dominated and that the seabed consists of fine sand. When a scour hole develops, this 

may have considerable effect on the dynamic behaviour and the on-bottom stability of the pipeline. 

After installation, for example, on a plane or sloped seabed consisting of fine sand, it may experience 

different seabed conditions, e.g., the seabed may be flat or rippled. This is mainly due to the 

complicated flow generated by the interaction between the incoming flow, the pipeline, and the 

seabed. The result will depend on the incoming flow velocity, the geometry of the bed and the bed 

material, as well as on the ratio between the near-bed oscillatory fluid particle excursion amplitude 
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and the pipeline diameter. Additional details on the background and complexity as well as reviews 

of the problem are given in, e.g., Whitehouse (1998) and Sumer and Fredsøe (2002). Myrhaug and 

Ong (2011a) gave a review of the authors’ studies on two-dimensional (2D) random wave-induced 

equilibrium scour characteristics around marine structures including comparison with data from 

random wave-induced scour experiments. Recently the authors have also provided practical 

stochastic methods for calculating the maximum equilibrium scour depth around vertical piles on 

horizontal beds (Myrhaug and Ong 2013 a, b, Ong et al. 2013); below pipelines on horizontal beds 

(Myrhaug and Ong 2011b) due to 2D and three-dimensional (3D) nonlinear random waves; around 

vertical piles on mild slopes due to 2D and 3D nonlinear random waves alone (Ong et al. 2016a) 

and due to 2D and 3D nonlinear random waves plus current (Ong et al. 2016b). To our knowledge, 

no studies are available in the open literature dealing with random wave-induced scour below 

pipelines on mild slopes. 

The purpose of this study is to provide an engineering approach by which the maximum 

equilibrium scour depth below a pipeline exposed to random waves alone and random waves plus a 

current, respectively, on mild slopes can be derived. The approach is based on assuming the waves 

to be a stationary narrow-band random process, adopting the Battjes and Groenendijk (2000) wave 

height distribution for mild slopes including the effect of breaking waves, and using the empirical 

formulas for the scour depth by Sumer and Fredsøe (1996). Wave-dominant flow conditions are 

considered in this study. Results are presented and discussed by varying the seabed slope and water 

depth. An approximate method is proposed and compared with the present stochastic method. 

Tentative approaches to related random wave induced scour cases for random waves alone are also 

suggested. 

 

 
2. Scour in regular waves alone and regular waves plus currents 

 
The 2D scour below a fixed pipeline on a horizontal seabed in regular waves was investigated in 

laboratory tests by Sumer and Fredsøe (1990). They obtained the following empirical formula for 

the equilibrium scour depth S below the pipeline with diameter, D (see Fig. 1) 

     
0.50.1

S
KC

D
              (1) 

where the Keulegan-Carpenter number KC is defined as 

  
UT

KC
D

                              (2) 

Here U is the undisturbed linear near-bed orbital velocity amplitude, T is the wave period, and 

Eq. (1) is based on data for which 2 ≤ 𝐾𝐶 ≤ 1000. The threshold of sediment motion should be 

exceeded for scouring to occur, which may not be the case for small values of KC. 

Eqs. (1) and (2) are valid for live-bed scour, for which 𝜃 > 𝜃𝑐𝑟  where 𝜃  is the undisturbed 

Shields parameter defined by 
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Fig. 1 Definition sketch of the scour depth (S) below a pipeline with diameter (D) 

 

where w  is the maximum bottom shear stress under the waves,   is the density of the fluid, g 

is the acceleration due to gravity, s is the sediment density to fluid density ratio, d50 is the median 

grain size diameter, and cr is the critical value of the Shields parameter corresponding to the 

initiation of motion at the bed, i.e., 𝜃𝑐𝑟 ≈ 0.05. It should be noted that this is only correct for high 

grain Reynolds numbers (see Soulsby (1997, Ch. 6.4) for more details). One should note that the 

scour process attains its equilibrium stage through a transition period. Thus, the approach is valid 

when it is assumed that the storm generating random waves has lasted longer than the time-scale of 

the scour. Further details on the time-scale of the scour are given in Sumer and Fredsøe (1996). 

The maximum bottom shear stress within a wave cycle is taken as 

      
w

wf U



 21

2
                 (4) 

where wf  is the friction factor, which here is taken from Myrhaug et al. (2001), and is valid for 

waves plus currents for wave-dominated situations (see Myrhaug et al. (2001), Table 3) 
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Table 1 Parameters for the four locations 

 Location 1 Location 2 Location 3 Location 4 

x (m) 0 200 400 600 

kph 0.77 0.70 0.64 0.57 

KCrms 12.73 13.33 13.91 14.57 

 

 

where /A U   is the near-bed orbital displacement amplitude, / T 2  is the angular wave 

frequency, and z0 = d50/12 is the bed roughness (see e.g., Soulsby (1997)). The advantage of using 

this friction factor for rough turbulent flow is that it is possible to derive the stochastic approach 

analytically.  

It should be noted that the KC number can alternatively be expressed as 

      
A

KC
D



2

                   (9) 

Moreover, A is related to the linear wave amplitude a by 

      
sinh

a
A

kh
                 (10) 

where h is the water depth, and k is the wave number determined from the dispersion relationship 

tanhgk kh 2 .  

Sumer and Fredsøe (1996) presented results of an experimental study on scour below pipelines 

subject to combined colinear irregular waves and currents acting on a perpendicularly oriented 

pipeline with KC ranging from 5 to about 50, and sand with 𝑑50 = 0.16 mm. Therefore the proposed 

method is strictly not applicable to other orientations between waves, current and pipeline. Sumer 

and Fredsøe (1996) found that their empirical formula for the equilibrium scour depth for regular 

waves given in Eqs. (1) and (2) can be used for irregular waves provided that the KC number is 

calculated by 𝐾𝐶𝑟𝑚𝑠 = 𝑈𝑟𝑚𝑠𝑇𝑝/𝐷. Here 𝑈𝑟𝑚𝑠 = √2𝜎𝑢 is the root-mean-square (rms) value of the 

near-bed wave induced velocity amplitude, and Tp is the spectral peak period. Moreover, 

 2

0

u uS d  


   where  uS  is the spectrum of the instantaneous near-bed wave induced velocity 

 u t . It should be noted that 𝑈𝑟𝑚𝑠 corresponds to 𝑈𝑚 defined by Sumer and Fredsøe (2002). 

Based on their data Sumer and Fredsøe (1996) found the following empirical expressions for the 

scour depth S below pipelines exposed to random waves plus currents 

 curS S
F

D D
  (11) 

Here 𝑆𝑐𝑢𝑟/𝐷 = 0.6   is the non-dimensional scour depth for current alone with a non-

dimensional standard deviation / 0.2D   i.e., reflecting the scatter in the data, and F is given 

by the following empirical equations 
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5

exp(2.3 )  for  0 0.7
3

a

rms cwrmsF KC b U    (12) 

 1  for  0.7< 1cwrmsF U   (13) 

where  

 c
cwrms

c rms

U
U

U U



 (14) 

and cU  is the current velocity. 

For 0 ≤ 𝑈𝑐𝑤𝑟𝑚𝑠 ≤ 0.4  the coefficients a and b are given by 

 
20.557 0.912( 0.25)cwrmsa U    (15) 

 
21.14 2.24( 0.25)cwrmsb U     (16) 

For 0.4 ≤ 𝑈𝑐𝑤𝑟𝑚𝑠 ≤ 0.7 the coefficients a and b are given by 

 2.14 1.46cwrmsa U    (17) 

 3.3 2.5cwrmsb U   (18) 

It is noticed that Eqs. (11), (12), (15) and (16) reduce to Eq. (1) for random waves alone, i.e., for 

𝑈𝑐𝑤𝑟𝑚𝑠 = 0 . Moreover, also notice that Eqs. (15) and (17) as well as Eqs. (16) and (18) are 

discontinuous at 𝑈𝑐𝑤𝑟𝑚𝑠 = 0.4. However, since wave-dominated flow will be considered here, Eqs. 

(17) and (18) are not used, and thus this does not affect the present results. 

The stochastic method proposed here for random waves plus currents is valid for wave-

dominated flow. Moreover, it is based on assuming that Eqs. (11), (12), (15), (16) are also valid for 

regular waves if  𝐾𝐶𝑟𝑚𝑠 and 𝑈𝑟𝑚𝑠  are replaced by KC and U, respectively, i.e., if F is given by 

 
5

exp(2.3 )
3

aF KC b  (19) 

where 𝑈𝑐𝑤𝑟𝑚𝑠 is replaced by 

 c
cw

c

U
U

U U



 (20) 

and the coefficients a and b are given by 

 
20.557 0.912( 0.25)cwa U                          (21) 

                       
21.14 2.24( 0.25)cwb U               (22) 

The dispersion relationship for regular waves plus currents at an angle   to the direction of the 

wave propagation is  
1/ 2

cos tanhckU gk kh     (see e.g., Soulsby (1997)), which 

determines the wave number k for given values of 𝜔 , 𝑈𝑐  and h  . However, for wave-dominated 
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situations the effect of 𝑈𝑐  on k   is small, i.e., k   is determined from 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ , as 

previously given for waves alone. 

It should be noted that since Eq. (1) appears to be physically sound for KC=0, i.e., S equals zero 

for 0KC  , the formula can be taken to be valid from KC=0. This extension of Eq. (1) relies on the 

threshold of motion being exceeded, which for small values of KC may not be the case. It should 

also be noted that the assumption of transferring the results for random waves plus currents to regular 

waves plus currents is not obvious, although it is to some extent justified here by referring to the 

results for random and regular waves alone. 

 

 

3. Scour in random waves alone and random waves plus currents on mild slopes 
 

Here a tentative stochastic approach will be outlined following the approach presented in 

Myrhaug et al. (2009) and Myrhaug and Ong (2011b), except for the modification performed by 

adopting the Battjes and Groenendijk (2000) wave height distribution. As a first approximation, it is 

assumed that the scour formulas for the case of a horizontal bed described in Section 2 can be applied 

for the case of mild slopes as well. Fig. 2 shows the definition sketch of the scour below a pipeline 

on a mild slope. 

As mentioned the Battjes and Groenendijk (2000) distribution includes the effects of breaking 

waves. This will be discussed in Section 4.2, demonstrating that the effects of wave breaking on 

mild slopes are of minor importance. 

 

 

 

Fig. 2 Definition sketch of the scour depth (S) below a pipeline with diameter (D) on a mild slope (α) 
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3.1 Theoretical background 
 

At a fixed point in a sea state with stationary narrow-band random waves consistent with regular 

linear waves in finite water depth h and wave height H = 2a, the near-bed orbital displacement 

amplitude, A, and the near-bed horizontal orbital velocity amplitude, U, can be taken as, respectively 

 
2sinh p

H
A

k h
                               (23) 

 
2sinh

p

p

p

H
U A

k h


    (24) 

where 2 /p pT   is the spectral peak frequency, pT  is the spectral peak period, and pk  is the 

wave number corresponding to p  determined from the dispersion relationship 

 
2 tanhp p pgk k h    (25) 

Moreover, A and U are made dimensionless by taking 𝐴̂ = 𝐴/𝐴𝑟𝑚𝑠  and  𝑈̂ = 𝑈/𝑈𝑟𝑚𝑠 , 

respectively, where 

 
2sinh

rms
rms

p

H
A

k h
   (26) 

 
2sinh

p rms

rms p rms

p

H
U A

k h


    (27) 

and Hrms is the rms value of H. By combining Eqs. (23), (24), (26) and (27) it follows that 

rms
p

rms

UU

A A
         (28) 

and consequently 

 
rms rms rms

U A H

U A H
    (29) 

Here the Battjes and Groenendijk (2000) parametric wave height distribution based on laboratory 

experiments on shallow foreshores is adopted. This cumulative distribution function (cdf) is 

composed of two two-parameter Weibull distributions of the non-dimensional wave height 

 𝐻̂ = 𝐻/𝐻𝑟𝑚𝑠 










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

tr

k

tr

k

HH
H

H
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H

H
HP

HP
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ˆ

ˆ
(exp[1)ˆ(
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where  1 2k   , 2 3.6k   , 
1 1

ˆ / rmsH H H  , 
2 2

ˆ / rmsH H H  , ˆ /tr tr rmsH H H  . The values of 

H1 and H2 can either be read from Table 2 in Battjes and Groenendijk (2000), or they can be solved 

by an iteration procedure solving two equations (see Eqs. (37) and (38)). Furthermore, 
trH  is the 

transitional wave height corresponding to the change of wave height where there is a change of the 

distribution associated with depth-induced wave breaking, given by 

(0.35 5.8tan )trH h                 (31) 

where α is the slope angle, and Hrms is related to the zeroth spectral moment 𝑚0 by 

 0 0(2.69 3.24 / )rmsH m h m      (32) 

It should be noted that the deep water value of Eq. (32) is  
02.69rmsH m  , corresponding to 

a 5% reduction of the factor 2.83 obtained from the Rayleigh distribution, accounting for finite 

bandwidth effects obtained by Goda (1979). 

The Battjes and Groenendijk (2000) distribution is a so-called point model, i.e., depending on 

local parameters regardless of the history of the waves in deeper water. It should be noted that the 

effect of the bottom slope is of a secondary nature compared to the effect of water depth (see Battjes 

and Groenendijk (2000) for more details). Although the cdf in Eq. (30) is a continuous function of 

H, but with an abrupt change of its shape at H = Htr  (i.e., the derivative and thus the pdf is 

discontinuous at this point), which is physically unrealistic, this feature is acceptable since all the 

integral statistical properties of the wave height are well defined. This change in the cdf (and pdf) is 

related to depth-induced breaking, and thus Htr is expressed as the limiting wave height for non-

breaking waves (i.e., defined as for purely depth-limited breaking, by excluding the steepness effect 

on wave breaking). Thus the effect of wave breaking is inherent in the cdf for H larger than Htr (see 

Battjes and Groenendijk (2000) for more details). 

The zeroth spectral moment, 0m , is obtained as 

 
0

0

( , )



 m S h d     (33) 

where ( , )S h   is the wave spectrum in finite water depth, which can be obtained by multiplying 

the deep water wave spectrum ( )S   with a depth correction factor ( , )h   as 

 ( , ) ( , ) ( )S h h S       (34) 

where, according to Young (1999) 

 
3

3

[ ( , )] ( , ) /
( , )

{[ ( , )] ( , ) / }kh

k h k h
h

k h k h

  
 

  







 


 
  (35) 

ensuring that the frequency part of the wave spectrum becomes proportional to 3k   irrespectively 

of the water depth (see Young (1999) for more details). From Eq. (35) it follows that (see Jensen 

2002) 
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6

3 2
( , )

( ) [tanh (1 tanh )]
h

gk kh kh kh


  

 
  (36) 

For given h, , and m0, the values of 1Ĥ and 2Ĥ  can be either read from Table 2 in Battjes and 

Groenendijk (2000), or they can be determined by solving the following two equations: 

1) The distribution function has to be continuous, i.e. 

     1
ˆ( )P H =

2
ˆ( )P H                    (37) 

2) The mean square normalized wave height, or the second moment of the probability density 

function (pdf) of Ĥ , has to equal unity, i.e., 

1ˆ)ˆ(ˆˆ)ˆ(ˆˆ
2ˆ

2

1

ˆ

0

22  


HdHpHHdHpHH
tr

tr

H

H

rms                (38) 

where 1p and 2p are the pdfs of Ĥ and defined as 
1 1

ˆ/p dP dH  and 
2 2

ˆ/p dP dH , as given 

in Eqs. (48) and (49), respectively. 

 

3.2 Outline of stochastic method 
 

The highest among random waves in a stationary narrow-band sea-state is considered, as it is 

reasonable to assume that it is mainly the highest waves which are responsible for the scour response. 

This is based on earlier comparisons between the stochastic method (Myrhaug and Rue 2003 and 

Myrhaug et al. 2009) and the corresponding Sumer and Fredsøe (1996) experimental data. It is also 

assumed that the sea state has lasted long enough to develop the equilibrium scour depth. The highest 

waves considered here are those exceeding the probability 1/ n , 
1/

ˆ
nH  (i.e., 

1/
ˆ1 ( ) 1/nP H n  ). 

The parameter of interest is the expected (mean) value of the maximum equilibrium scour 

characteristics caused by the (1/n)th highest waves, which is given as 

   




nH

n HdHpHSnHHHSE

/1
ˆ

/1
ˆ)ˆ()ˆ(ˆˆ)ˆ(     (39) 

where ˆ( )S H  represents the scour characteristics, and ˆ( )p H  is the pdf of Ĥ . More specifically, the 

present approach is based on the following assumptions: (1) the free surface elevation is a stationary 

narrow-band process with zero expectation, and (2) the scour response formula for regular waves 

plus currents given in the previous section (see Eqs. (11) and (19) to (22)), are valid for irregular 

waves as well. These assumptions are essentially the same as those given in e.g., Myrhaug et al. 

(2009), where further details are found. 

For a narrow-band process T = Tp where Tp = 2/p = 2Arms/Urms  and k = kp. Then by referring 

to Eq. (29) it follows that  

 H
H

H

A

A

U

U
U

rmsrmsrms

ˆˆ    (40) 

By substituting Eq. (40) in Eqs. (11) and (19) to (22), Eqs. (11) and (19) to (22) can be re-arranged 
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to  

  ˆ ˆ( )curSS
S F H

D D
   (41) 

where )ˆ(HF  for 0 0.4cwrmsU  (i.e., Ucwrms  as given in Eq. (14)) is given by 

 )3.2exp()ˆ(
3

5
)ˆ( bHKCHF a

rms      (42) 
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U
U

U

U

U

U
HU

rms

c

rms

c

rms

c

rms

c
cw

ˆ/ˆ/)ˆ(            (44) 

 a
2ˆ( ) 0.557 0.912( 0.25)cwU U                     (45) 

 b
2ˆ( ) 1.14 2.24( 0.25)cwU U               (46) 

Let S denote Ŝ  given in Eqs. (41) to (46). Then the mean of the maximum equilibrium scour 

depth caused by the (1/n)th  highest waves follows from Eq. (39) as 

      




nH

n HdHpHSnHHHSE

/1
ˆ

/1
ˆ)ˆ()ˆ(ˆˆ)ˆ(                (47) 

where the cdf of Ĥ  is given in Eq. (30), and p  Ĥ  is the pdf  of Ĥ , i.e.,  
1 1

ˆ/p dP dH   and 

2 2
ˆ/p dP dH , given as follows 

 tr
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ˆ
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ˆ
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ˆ
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(

ˆ
=)ˆ( 22
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2
2 ≥    (49) 

Moreover, 
1/

ˆ
nH  is obtained by solving the equation  

1/
ˆ1 ( ) 1/nP H n  . 

It should be noted that the formulation in Section 3 is general, i.e., valid for a finite water depth. 

 

 

4. Results and discussion 

 
To the authors’ knowledge no data exist in the open literature for random wave-induced scour 

below pipelines on mild slopes. 
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4.1 Prediction of parameters 
 
In the present study, the effect of mild slopes on scour below pipelines in random waves alone 

and random waves plus currents is investigated. Four bed slopes, 1/50, 1/100, 1/150 and 1/250, are 

considered for this purpose.  

The case with the bed slope 1/100 is exemplified to show the procedure of calculating all the 

required parameters. Fig. 3 shows the seabed conditions with =1/100. The water depth at the 

seaward location (i.e., x = 0 m) is 15 m; the horizontal length of the sloping seabed is 600 m; the 

diameter of the pipeline D is set to be 1m for all the cases. 

The wave spectrum in finite water depth ( , )S h   can be obtained from the spectrum in deep 

water ( )S  , see Eq. (34). Hence, the random waves with a standard JONSWAP spectrum (γ = 3.3) 

and significant wave height Hm0 = 8 m and spectral peak period Tp = 11.1 s are assumed to describe 

the sea state in deep water. Fig. 4 shows some results of the wave spectra at the four locations 

transformed from the deep water according to Eqs. (33) - (36). The water depth at each location, as 

well as the corresponding values of KCrms and kph at each location are presented in Table 1. It is 

clearly seen in Fig. 4 that the wave energy decreases as the water depth decreases.  

 

 

 
Fig. 3 Definition sketch of the seabed conditions with α =1/100 
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Fig. 4 The transitional wave spectra in finite water depth 𝑆𝜂(𝜔, ℎ) versus 𝜔 at four locations for slope 

α =1/100 

 

 

 
Fig. 5 KCrms versus x in finite water depth for slope α =1/100 
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With the values of m0 along x, Hrms can be determined by Eq. (32) and therefore KCrms by Eqs. 

(26) and (43). Fig. 5 shows KCrms versus x for the slope =1/100. It appears that KCrms increases 

from 12.73 to 14.57 as the water depth decreases (for x: 0 m→ 600 m). It needs to be noted that 

although Hrms decreases as x approaches to 600 m, kph decreases because of the finite water depth.  

These effects increase KCrms along x. 

 

4.2 Random waves alone 
 

The pdf of the Battjes and Groenendijk (2000) wave height distribution of Ĥ   at the four 

locations referred to earlier (see Table 1) are shown in Fig. 6. The discontinuous points in Fig. 6 are 

due to the transitional wave height ˆ
trH , representing the limiting wave height for non-breaking 

waves. The figure shows that from location 1 to location 4 (as x increases from 0 m to 600 m), ˆ
trH

decreases from 1.78 to 1.30, reflecting that the influence of breaking waves on the distributions 

becomes more significant as the water depth decreases. It should be noted that the area under each 

pdf curve is equal to one.  

Fig. 7 shows the predictions of S/D for the (1/10)th highest waves (𝑆/𝐷1/10) along x for the slope 

 = 1/100. It should be noted that the use of the (1/10)th  value is justified based on the results in 

Myrhaug and Rue (2003) and Myrhaug et al. (2009) showing that this value can be taken to represent 

the upper value for the random wave-induced data in Sumer and Fredsøe (1996). It appears that 

S/D1/10  increases slightly as the water depth decreases (i.e., as x increases from 0 m to 600 m). This 

effect may be attributed to the increase of KCrms (Fig. 5) along the sloping bed since large KCrms 

induces more scour. The reason is that for pipelines the scour is caused by lee-wake erosion. For 

waves alone the downstream lee-wake vortex system occurs on both sides of the pipeline, and as 

KCrms increases the lee-wake vortex system is enhanced leading to more scour. 

Four different bed slopes ( = 1/50, 1/100, 1/150, 1/250) are considered in the present study. The 

seabed configuration is illustrated in Fig. 8. Fig. 9 shows KCrms versus x for the four slopes; KCrms 

increases as the water depth decreases for all the slopes. Futhermore, it appears that KCrms increases 

as the slope increases at a given location x. Fig. 10 shows S/D1/10 for the different slopes. Deeper 

scour hole is encountered when the slope becomes steeper. For all slopes, S/D1/10 increases slightly 

as x approaches to 600 m; at a given location x, it appears that S/D1/10 increases as the slope increases.  

These results are physically sound and consistent with those observed in Fig. 9. It is noted that the 

shape of the curve for the slope 1/50 in Fig. 10 differs from those for the other slopes, reflecting an 

inherent feature of the model. 

An assessment of breaking waves is feasible by using the surf parameter p = (Hs/((g/2) Tp
2)) -1/2 tan 

defined in terms of the significant wave height in deep water Hs = 8m and the spectral peak period 

Tp = 11.1s, giving p = (0.020, 0.033, 0.049, 0.098) for the slopes (1/250, 1/150, 1/100, 1/50).  

For individual waves the surf parameter is defined as 𝜉 = (𝐻/((𝑔/2𝜋)𝑇2))−1/2 tan 𝛼 , where H is 

the deep water wave height. Types of breaking waves are defined in terms of this surf parameter (see 

e.g., Battjes (1974)); spilling if 0 <  < 0.5 and plunging if 0.5 <  < 3. Thus, if breaking occurs in 

this example there will most likely be spilling breakers; and therefore the effect of breaking waves 

on scour is of minor importance. 
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Fig. 6 pdf of Ĥ  at four locations for slope α =1/100 

 

 

 

 

 
Fig. 7 S/D1/10 versus x in finite water depth for slope α =1/100 
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Fig. 8 Sketch of the seabed conditions for four slopes α = (1/50, 1/100, 1/150, 1/250). The total horizontal 

length of the sloping bed is 600 m, and the water depth at the seaward direction is 15 m 

 

 

 

Fig. 9 KCrms versus x for α = (1/50, 1/100, 1/150, 1/250) 
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Fig. 10 S/D1/10 versus x for α = (1/50, 1/100, 1/150, 1/250) 

 

 

4.3 Random waves plus currents 
 
The effect of the current on random wave-induced scour below a pipeline is investigated in this 

section. This can be achieved by changing Uc in Ucw (see Eq. (44)).  

Fig. 11 shows S/D1/10 versus Ucwrms in combined random waves plus current for  =1/100 at the 

four locations along the seabed (see Table 1). It should be noted that the results for   

S/D1/10 for Ucwrms = 0 (random waves alone) are the same as those presented in Fig. 7. The increase 

of S/D1/10 from location 1 to location 4 for Ucwrms = 0 shows that the scour depth increases as the 

water depth decreases. It is clearly seen in Fig. 11 that the effect of the current is to increase the 

scour depth compared with that for random waves alone, and the effect is enhanced as Ucwrms 

increases. More specifically, for all the locations, S/D1/10 for Ucwrms = 0.4 is approximately 1.2 times 

larger than for random waves alone. The reason is that by adding a current to random waves the lee-

wake vortex system occurs more downstream than upstream, causing a larger scour depth. 

 

4.4 Alternative view of random wave-induced scour: Approximate method 
 

An alternative pragmatic view of the scour process below pipelines and around a single vertical 

pile under random waves is that of Sumer and Fredsøe (1996, 2001) referred to in Section 2. They 

looked for which parameters of the random waves to represent the scour variable, finding by trial 

and error that the use of Hrms and Tp in an otherwise deterministic approach gave the best agreement 

with data.  
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Fig. 11 S/D1/10  versus Ucwrms at four locations for slope α =1/100 

 

 

Here the alternative view of the scour process is considered using the results of the present 

stochastic method. The question is how well the mean scour depth caused by the (1/n)th highest 

waves,  /( ) | nE S H H H 1
  (see Eq. (47)), can be represented by using the mean of the (1/n)th 

highest waves in the scour depth formula for regular waves, i.e.,   / nS E H1 .  

An alternative KC number for random waves in the approximate method can be defined as 

    
   / /

/

n p n

n

E U T E A
KC

D D


 

1 1
1

2
                (50) 

Based on the narrow-band assumption,  /nE U1  and  /nE A1  can be defined as  

     
 /

/
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n

n

p

E H
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k h


1
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         (51) 

       
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/ /
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
 

1

1 1
2

          (52) 

where  /nE A1 ,  /nE U1  and  /nE H1  are the mean values of the (1/n)th largest values of the 

near-bed orbital displacement amplitude, velocity and wave height, respectively. 
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Fig. 12 Random waves alone: The stochastic to approximate method ratio R1/10 versus x for four slopes 

α = (1/50, 1/100, 1/150, 1/250) 
 

 

The scour depth below a pipeline for random waves alone can be obtained by replacing KC with 

KC1/n  in Eq. (1), given by  

    
0.5

1/0.1 n

S
KC

D
                  (53) 

For random waves plus currents, the approximate model can be obtained by replacing KC with 

KC1/n  in Eqs. (41), (42), (44) – (46) 

)3,2exp( 
3

5
==ˆ

/1 bKC
D

S

D

S
S a

n

cur
                      (54) 

where 

    2

1/0.557 0.912( [ ] 0.25)cw na E U          (55) 

   2

1/1.14 2.24( [ ] 0.25)cw nb E U                (56) 

     
 1/

1/

c
cw n

c n

U
E U

U E U



              (57) 

For the case of random waves alone, the results of the stochastic to approximate method ratio of 

the scour depth for the four slopes are shown in Fig. 12, denoted by R1/10 for n = 10. It is interesting 

to note that the approximate method gives almost the same values as that of the stochastic method 

for all slopes. This is also the case for R1/3, (not shown here). Thus, it appears that the approximate 

method can replace the stochastic method for random waves alone. 
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Fig. 13 Random waves plus current: The stochastic to approximate method ratio Rcw1/10  versus Ucwrms  

at four locations for slope α =1/100 

 

 

For random waves plus currents, Fig. 13 shows the result of the stochastic to approximate method 

ratio of the scour depth, denoted by Rcw 1/10 for n = 10 and α =1/100. It appears that for all locations, 

the values of Rcw 1/10 are larger than one. The difference between the stochastic method and the 

approximate method increases as Ucwrms increases, suggesting that the effect of current increases the 

difference between the two methods. Overall, it appears that the stochastic method cannot be 

replaced by the approximate method for estimating the scour depth for random waves plus current.  

 

4.5 Shields parameter 
 

As described in Section 2, the scour prediction model in Eq. (1) is valid for live-bed scour, for 

which θ > θcr, where θ is the undisturbed Shields parameter defined in Eq. (3). 

For a sloping bed the gravity gives a force component on the grain which may increase or 

decrease the threshold shear stress required from the flow. The threshold Shields parameter, θacr, for 

initiation of motion of the grains at a bed sloping at an angle α to the horizontal in upsloping flows 

is related to the value θcr for the same grains on a horizontal bed by (see e.g., Soulsby (1997, Section 

6.4)) 

    
tan

cos
tan

cr

cr i

 


 

 
  

 
1             (58) 

where ϕi is the angle of repose of the sediment. 

Following Myrhaug (1995) and Myrhaug and Holmedal (2002), the non-dimensional maximum 
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Shields parameter for individual narrow-band random waves near a horizontal bed, ˆ / rms   , is 

equal to the non-dimensional maximum bottom shear stress for individual narrow-band random 

waves, ˆ /w wrms   . Here θrms is defined as  

    
/

( )

wrms
rms

g s d

 
 

 501
                      (59) 

where, by definition 
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 

2

0
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2
          (60) 

and   is defined in Eq. (3). By using this and following Myrhaug and Holmedal (2002, Eq. (21)), 

̂  is given as 

    ˆ ˆ dH  2                 (61) 

For random waves it is not obvious which value of the Shields parameter to use to determine the 

conditions corresponding to live-bed scour. However, it seems to be consistent to use corresponding 

statistical values of the scour depth and the Shields parameter, e.g., given by 

  







 n

d
nHHHE n n 1,

2
2ˆˆ)ˆ(ˆ /1                   (62) 

where ( , )    is the incomplete gamma function (see Abramowitz and Stegun (1972, Ch. 6.5, Eq. 

(6.5.3)). This is used in conjunction with Eq. (58) when the bed is sloping. 

 
 
5. Tentative approaches to related cases for random waves alone 

 
5.1 Effect of pipe position in scour 
 
Sumer and Fredsøe (1990) also did some tests where the scour depth was measured below 

pipelines fixed at different e-levels relative to the undisturbed horizontal bed (where e is the 

clearance between the pipeline and the undisturbed seabed, see Fig. 14). Based on these results 

Sumer and Fredsøe (2002) proposed the following empirical formula for the equilibrium scour depth 

for regular waves 

 
0.50.1 exp( 0.6 ) ;  0 2

S e e
KC

D D D
     (63) 

This equation is valid for live-bed scour in regular waves. By rearranging the equation, it is 

noticed that this is a generalization of Eq. (1) namely 

 
0.5/ exp( 0.6 ) 0.1

S e
KC

D D
                        (64) 
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(a) 

 
(b) 

Fig. 14 Definition sketch of scour below pipelines with a pipe position 𝑒 above the undisturbed bed:  

(a) on a horizontal bed; (b) on a mild slope 

 

 

Thus, all the results given for the scour depth in random waves below pipelines initially resting 

on an undisturbed bed with a mild slope can be used in this case by multiplication of the factor 

exp( 0 6 / )e D  . No data exist for scour in random waves on mild slopes. 

 

5.2 Self-burial of pipelines at span shoulder 
 

Sumer et al. (2001) summarized the results of an experimental study on the onset of scour below 

pipelines and self-burial of pipelines on a horizontal bed in currents and regular waves. They found 

that the self-burial at span shoulders was the same as the scour depth in the case of a fixed pipeline 

with an initial zero gap. Thus, the self-burial depth at span shoulder B (see Fig. 15) is given by  

Eq. (1) where B replaces S, namely 

S 

D 

Waves 

e 

S 

 

α 
x 

D 

Waves 

e 
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(a) 

 
(b) 

Fig. 15 Definition sketch of self-burial depth 𝐵 at span shoulder of pipelines: (a) on a horizontal bed; 

(b) on a mild slope 

 

 

 
0.50 1  ;  100  

B
KC KC

D
 (65) 

This equation is valid for live-bed in regular waves. Thus, all the results given for the scour depth 

in random waves below pipelines initially resting on an undisturbed bed with a mild slope can be 

used in this case. No data exist for self-burial of span shoulders in random waves on mild slopes. 

 

 

6. Conclusions 
 

A practical method for estimating the scour depth below pipelines exposed to random waves 

alone and random waves plus currents on mild slopes for wave-dominated flow conditions with 

D 

Waves 

B 

x α 

D 

Waves 

B 
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 0 ≤ 𝑈𝑐/(𝑈𝑐 + 𝑈𝑟𝑚𝑠) ≤ 0.4  is provided. 

 The main conclusions are: 

1. The Battjes and Groenendijk (2000) wave height distribution for mild slopes is applied to 

describe the random wave condition on mild slopes including the effect of breaking waves. A method 

for transformation of the wave spectrum from deep water to finite water depth is presented. Then a 

method is derived for calculating the random wave-induced scour below a pipeline based on 

assuming the waves to be a stationary narrow-band random process. 

2. For random waves alone, the present results reveal that the effect of a mild slope increases the 

scour depth compared with that at the seaward location. Moreover, a larger bed slope causes more 

scour at a fixed location. 

3. The present results show that the effect of a current increases the random wave-induced scour 

depth. This effect becomes more pronounced as the current increases. The scour depth for random 

waves plus currents ranges up to about 1.3 times that for random waves alone. 

4. The results suggest that for random waves alone the approximate method can replace the 

stochastic method, whereas the stochastic method is required for random waves plus currents. 

5. Tentative approaches to related random wave-induced scour cases are also suggested, such as 

the effect of pipe position in scour on mild slopes, and self-burial of pipelines at span shoulder on 

mild slopes. 

Although the methodology is simple, it should be useful as a first approximation to represent the 

stochastic properties of the scour depth below pipelines under both random waves alone and random 

waves plus current on mild slopes for wave-dominated flow conditions. However, comparisons with 

data are required before a conclusion regarding the validity of this method can be given. In the 

meantime the method should be useful as an engineering tool for the assessment of scour and in 

scour protection work of pipelines on mild slopes. 

 
 
References 

 
Abramowitz, M. and Stegun, I.A. (1972), Handbook of Mathematical Functions, Dover, New York. 

Battjes, J.A. (1974), “Surf similarity”, Proceedings of the 14th Int. Conf. on Coastal Eng., vol. 1, ASCE, New 

York. 

Battjes, J.A. and Groenendijk, H.W. (2000), “Wave height distributions on shallow foreshores”, Coast. Eng., 

40, 161-182. 

Goda, Y. (1979), A review on statistical interpretation of wave data. In: Report of the Port and Harbour 

Research Institute, Japan, 18, 5-32. 

Jensen, J.J. (2002), “Conditional short-crested waves in shallow water and with superimposed current”, 

Proceedings of the 21st Int. Conf. on Offshore Mech. and Arctic Eng., Oslo, Norway. Paper No. OMAE2002-

28399. 

Myrhaug, D. (1995), “Bottom friction beneath random waves”, Coast. Eng., 24, 259-273. 

Myrhaug, D. and Holmedal, L.E. (2002), “Bottom friction in nonlinear random waves plus current flow”, 

Proceedings of the 28th Int. Conf. on Coastal Eng., Cardiff, Wales. 

Myrhaug, D., Holmedal, L.E., Simons, R.R. and MacIver, R.D. (2001), “Bottom friction in random waves 

plus current flow”, Coastal Eng., 43(2), 75-92. 

Myrhaug, D., Ong, M.C., Føien, H., Gjengedal, C. and Leira, B.J. (2009), “Scour below pipelines and around 

vertical piles due to second-order random waves plus a current ”, Ocean Eng., 36(8), 605-616. 

Myrhaug, D. and Ong, M.C. (2011a), Random wave-induced scour around marine structures using a stochastic 

method. I: Marine Technology and Engineering : CENTEC Anniversary Book. CRC Press. 

Myrhaug, D. and Ong, M.C. (2011b), “Long- and short-crested random wave-induced scour below pipelines”, 

297



 

 

 

 

 

 

Dag Myrhaug, Ping Fu and Muk Chen Ong 

Proceedings of the Institution of Civil Engineers : Maritime Engineering, 164(4), 173-184. 

Myrhaug, D. and Ong, M.C. (2013a), “Scour around vertical pile foundations for offshore wind turbines due 

to long-crested and short-crested nonlinear random waves”, J. Offshore Mech. Arct. Eng., 135(1), 011103. 

Myrhaug, D. and Ong, M.C. (2013b), “Effects of sand-clay mixtures on scour around vertical piles due to 

long-crested and short-crested nonlinear random waves”, J. Offshore Mech. Arct. Eng., 135(3), 034502.        

Myrhaug, D. and Rue, H. (2003), “Scour below pipelines and around vertical piles in random waves”, Coast. 

Eng., 48(4), 227-242. 

Ong, M.C., Fu, P. and Myrhaug, D. (2016a), “Scour below marine pipelines due to random waves on mild 

slopes”, Proceedings of the 8th Int. Conf. on Scour and Erosion, Oxford, UK. 

Ong, M.C., Myrhaug, D. and Fu, P. (2016b), “Scour around vertical piles due to random waves alone and 

random waves plus currents on mild slopes”, Ocean Syst. Eng., 6(2), 161-189. 

Ong, M.C., Myrhaug, D. and Hesten, P. (2013), “Scour around vertical piles due to long-crested and short-

crested nonlinear random waves plus a current”, Coast. Eng., 73, 106-114. 

Soulsby, R.L. (1997), Dynamics of Marine Sands. A Manual for Practical Applications. Thomas Telford, 

London, UK. 

Sumer, B.M. and Fredsøe, J. (1990), “Scour below pipelines in waves”, J. Waterw., Port, Costal Ocean Eng., 

116(3), 307-323. 

Sumer, B.M. and Fredsøe, J. (1996), “Scour below pipelines in combined waves and current”, Proceedings of 

the 15th OMAE Conf., Florence, Italy, Vol. 5, ASME, New York, pp. 595-602. 

Sumer, B.M. and Fredsøe, J. (2001), “Scour around pile in combined waves and current”, J. Hydraulic Eng., 

127(5), 403-411. 

Sumer, B.M. and Fredsøe, J. (2002), The Mechanics of Scour in the Marine Environment. World Scientific, 

Singapore. 

Sumer, B.M., Truelsen, C., Sichmann, T. and Fredsøe, J. (2001), “Onset of scour below pipelines and self-

burial”, Coast. Eng., 42(4), 313-335. 

Whitehouse, R.J.S. (1998), Scour at Marine Structures. A Manual for Practical Applications. Thomas Telford, 

London, UK. 

Young, I.R. (1999), Wind Generated Ocean Waves, Elsevier, Amsterdam. 

 

 

MK 

 

298




