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Abstract.  Many different engagement situations require naval ships to achieve some level of effectiveness. 
The performance of the naval ships is very important for such effectiveness. There have been many studies 
that analyze the effectiveness and the performance. The former are largely related to engagement level 
simulations, while the latter are largely related to engineering level simulations. However, there have been few 
studies that consider both the engagement level and the engineering level at the same time. Therefore, this 
study presents three case studies using engagement simulation of the engineering level to check the 
performance of the related parameters. First, detection performance simulations are carried out by changing 
the specifications of the passive sonars of a submarine in different scenarios. Maneuvering performance 
simulations are carried out by changing the specification of the hydroplanes of a submarine in different 
scenarios. Lastly, in order to check whether or not our forces would succeed in attacking enemy forces, we 
perform an engagement simulation with various naval ship models that consist of several engineering level 
models, such as command systems, weapon systems, detection systems, and maneuver systems. As a result, 
the performance according to the specifications of the naval ships and weapons is evaluated. 
 

Keywords:  modeling and simulation; engagement level; engineering level; DEVS & DTSS model; naval 

ships 

 
 
1. Introduction 
 

Broadly defined, modeling is a method for organizing knowledge that is accumulated through 

observation or deduced from underlying principles, while simulation refers to a method for 

implementing a model over time (Etter 2013). In naval applications, Modeling and Simulation 

(M&S) is used for analyzing and developing the strategies and tactics of naval ships, and the 

performance of naval ships (Kim et al. 2014, Kim et al. 2017). M&S in naval applications could be 

categorized according its fidelity. There are four general classifications: theater, mission, 

engagement, and engineering levels (Etter 2013). The theater level is generally applied to evaluate 

force structures or strategies. The mission level is normally applied to evaluate force employment 

concepts. The engagement level is used to evaluate the effectiveness (accomplishment of mission 
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objectives and achievement of desired results in engagement situation) of an individual system 

against another system in one-on-one, few-on-few, and many-on-many scenarios. Lastly, the 

engineering level provides measures of performance, concerning such issues as design, cost, 

manufacturing, and supportability. In other words, the engagement level models and simulations are 

for analyzing and developing the tactics of naval ships in engagement scenarios, while the 

engineering level models and simulations are for analyzing and developing the performance of naval 

ships. In particular, this study focuses on the engagement level and the engineering level. 

Traditionally, during the engagement level simulation, many engineering level performances, 

such as maneuvering or the detection range of sonar, have been assumed, or simplified models have 

been used. Therefore, the accuracy would be lowered. In contrast, the engineering level simulations 

have used mathematical models for more accurate analysis results of the target submarine or the 

surface vessel than the results from engagement level simulation. However, the engineering level 

simulations have not been able to consider the performance during the engagement scenarios. 

Therefore, both engagement and engineering level simulations had limits between performance and 

effectiveness. 

To overcome these limits, this study proposed the engagement simulation of engineering level 

for the detection and maneuvering performances which are the most important feature of naval 

vessels. The most important merit of simultaneously considering engagement and engineering 

simulation is accuracy. The most engagement simulation uses simplified models. For example, in 

the most of the engagement simulation, it is assumed that the submarine detects the enemies which 

enter in the detection range. However, the detection in the real world is done by SONAR which 

detects the enemies by sounds propagated through the sea. Moreover, this study takes into account 

both flexibility and reusability of the models. Therefore, simulation models of engineering level can 

participate in the engagement simulation easily. 

 

 

2. Related works 
 

Many studies have been carried out of engagement and engineering levels in naval applications. 

However, few studies have simultaneously taken into account the two levels. Also, few studies have 

considered the flexibility and reusability of models. The examples of studies about such M&S of the 

engagement level and the engineering level are as follows. 

Hwang et al. (2011) focused on the maneuvering and detection performance of Unmanned 

Underwater Vehicles (UUVs) in engagement scenarios. The engineering level models and 

simulations for the maneuvering performance were considered by applying maneuvering equations, 

and the control of hydroplanes. However, in the case of detection performance, it is hard to say that 

the engineering level models and simulations for the detection performance were considered. The 

detection performance was just considered by the default values of detection probability. 

Cho and Kim (2012) analyzed the detection performance of UUVs. The engineering level models 

and simulations for the detection performance were considered by applying a passive sonar equation 

and beam patterns. However, the engineering level models and simulations for the maneuvering 

performance of naval ships were not considered. The paths of naval ships with constant speed were 

just considered.  

Son (2012) focused on the maneuvering performance of submarines. The engineering level 

models and simulations for the maneuvering performance were considered, applying maneuvering 

equations. Also, Discrete EVent System specification (DEVS) and Discrete Time System 
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Specification (DTSS) were applied for the flexibility and reusability of models. However, the 

engineering level models and simulations for the detection performance of the submarines were not 

considered. 

Kaymal (2013) analyzed which ship design factors were key drivers in the effectiveness of 

surface ships in Anti-SUrface Warfare (ASUW), based on realistic engagement scenarios. Although 

the key factors were compared for various ASUW scenarios, the engineering level models and 

simulations were not considered. 

Lind (2014) focused on the maneuvering performance of submarines. The engineering level 

models and simulations for the maneuvering performance were considered, applying maneuvering 

equations and the control of hydroplanes. However, neither the detection performance of submarines 

nor engagement scenarios were considered. 

Khaledi et al. (2014) analyzed the detection performance of UUVs. The engineering level models 

and simulations for the detection performance were considered by applying an active sonar equation. 

However, neither the maneuvering performance of the UUVs nor engagement scenarios were 

considered. 

These studies show that there are few studies that take into account both the engineering level 

and the engagement level, and that there are few studies that consider the flexibility and reusability 

of models. This study takes into account both levels, and the flexibility and reusability of models, as 

shown in Table 1. This study can consider the maneuvering and detection performance with high 

fidelity, applying maneuvering equations, the control of hydroplanes, a passive sonar equation, and 

beam patterns. 

 

 

3. Engagement simulation of engineering level 
 

Several modules are developed in this study for the engagement simulation of engineering level. 

Jeong et al. (2017) presents the details of these theoretical backgrounds. In this study, these 

theoretical backgrounds are introduced briefly as follows. 

 

3.1 Simulation core for the engagement simulation of engineering level 
 

For the engagement simulation, the command and the relation between the models are important. 

However, in the engineering level, the proper mathematical models are important. 

 

 
Table 1 Summary of the studies and this study 

Studies 
Maneuvering 

performance 

Detection 

performance 

Engagement 

scenarios 

Hwang et al. (2011) O X O 

Cho and Kim (2012) X O O 

Son et al. (2012) O X O 

Kaymal (2013) X X O 

Lind (2014) O X X 

Khaledi et al. (2014) X O X 

This study O O O 
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Fig. 1 Configuration of the simulation core and GUI 

 

 

The command and the relations between the models are input values at each time step during the 

simulation. Technical difficulties are the method how to build simulation models which contain in 

both engagement and engineering level properties simultaneously. Therefore, we developed 

simulation core based on DEVS & DTSS model to overcome this limit. 

The simulation core is based on maneuvering equations, the control of hydroplanes, a passive 

sonar equation, beam patterns, and DEVS and DTSS (Cha et al. 2010a, b). Fig. 1 shows the 

configuration of the simulation core. 

The DEVS & DTSS model (Fig. 1①) represents the state changes of naval ships over discrete 

events and discrete times. The Engineering model (Fig. 1②) represents the performance of naval 

ships and the environment that could affect the performance of the naval ships. First, the motion 

model represents the maneuvering performance of the naval ships, by applying maneuvering 

equations and the control of hydroplanes. The noise model represents the noise level of the naval 

ships. Then, the Sonar model represents the detection performance of the naval ships, by applying a 

passive sonar equation and beam patterns. Lastly, the Space model represents the environment that 

could affect the performance of the naval ships. For example, the Space model calculates the distance 

and time for the radiated noise from the naval ships to propagate to the other naval ships. 

Based on such DEVS & DTSS model and Engineering model, surface ships and submarines can 

be represented by the naval ship models: Surface ship model and submarine model (Figs. 1-③ and 

④). The naval ship models correspond to the coupled model in the DEVS & DTSS model, and are 

composed of the command system model, maneuver system model, detection system model, and 

weapon system model. The command system model, maneuver system model, detection system 

model, and weapon system model correspond to the atomic model in the DEVS & DTSS model.  

The command system model represents commanders, and issues orders following defined 
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scenarios. Each order works as a discrete event to the Maneuver system model and the detection 

system model. Then, the maneuver system model and the detection system model calculate 

maneuvering equations, the control of hydroplanes, a passive sonar equation, and beam patterns 

every discrete time through the motion model and sonar model, respectively. The weapon system 

model represents the decoys and torpedoes of naval ships. The decoys are devices intended to 

deceive enemy forces into attacking them, and by so doing, protect real naval ships. The torpedoes 

are self-propelled weapons with explosive warheads. 

 

3.2 Maneuvering equations 
 

In general, surface ships are assumed to have 3 Degrees-Of-Freedom (DOF) motion of surge, 

sway, and yaw. Submarines are assumed to have 6 DOF motion of surge, sway, heave, roll, pitch, 

and yaw. The maneuvering equations for these motions can be obtained by changing Newton-Euler 

equations from an inertial frame to a body-fixed frame. The maneuvering equations are given by 

Eqs. (1)-(6) (Fossen 2002, Gertler and Hagen 1967, Babaoglu 1998, Ha et al. 2012). 

2 2[ ( ) ( ) ( )]G G Gm u vr wq x q r y pq r z pr q X                             (1) 

2 2[ ( ) ( ) ( )]G G Gm v wp ur y r p z qr p x qp r Y                             (2) 

2 2[ ( ) ( ) ( )]G G Gm w uq vp z p q x rp q y rq p Z                         (3) 

2 2( ) ( ) ( ) ( )

[ ( ) ( )]

x z y xz yz xy

G G

I p I I qr r pq I r q I pr q I

m y w uq vp z v wp ur K

       

      
                (4) 

2 2( ) ( ) ( ) ( )

[ ( ) ( )]

y x z xy zx yz

G G

I q I I rp p qr I p r I qp r I

m z u vr wq x w uq vp M

       

      
                   (5) 

2 2( ) ( ) ( ) ( )

[ ( ) ( )]

z y x yz xy zx

G G

I r I I pq q rp I q p I rq p I

m x v wp ur y u vr wq N

       

      
               (6) 

where, m is the mass, (Ix, Iy, Iz, Ixy, Iyz, Izx) is the mass moment of inertia, and (xG, yG, zG) is the center 

of gravity. (u, v, w) is the body-fixed linear velocity, (p, q, r) is the body-fixed angular velocity, (X, 

Y, Z) is the force, and (K, M, N) is the moment. 

The forces in the above maneuvering equations consist of hydrostatic forces and hydrodynamic 

forces. The hydrostatic forces depend on gravity and buoyancy, while the hydrodynamic forces 

depend on the velocity, acceleration, angle of traverse, and so on. Such hydrodynamic forces can be 

represented by hydrodynamic coefficients. These hydrodynamic coefficients vary in the 

specifications for the hull, rudder, fin, and so on. Thus applying the maneuvering equations makes 

it possible to analyze the maneuvering performance of naval ships according to their specifications. 

 

3.3 Passive sonar equation 
 

Targets generate noise, and the noise radiates in all directions. The radiated noise propagates far 

away, undergoing the loss of acoustic energy, and the addition to background noise. Once the 

radiated noise arrives at sonars, the sonars analyze the radiated noise. Finally, sonar operators 
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determine whether or not the noise represents targets. Such target detection can be expressed as a 

passive sonar equation (Michael 2010, Urick 1983) 

SE SL PL NL BW AG DT                            (7) 

The first term, the Source Level (SL), is the magnitude of the radiated noise, whose major sources 

are engines and propellers. The second term, Propagation Loss (PL), refers to the loss of acoustic 

energy that the radiated noise undergoes when propagating. This loss of acoustic energy results 

mainly from the spreading of acoustic energy and chemical relaxation. The third term, Noise Level 

(NL), is the magnitude of the background noise. The fourth and fifth terms, BandWidth (BW) and 

Array Gain (AG), are related to signal processing. The sixth term, Detection Threshold (DT) is the 

standard for determining whether there are targets or not. Finally, Signal Excess (SE) expresses the 

amount of excess of DT. If the sign of the value of SE is positive, the sonar operators decide that 

there is a target. 

Such terms in the passive sonar equation vary in the specifications for the sonars of naval ships 

and the underwater environment. Thus, applying the passive sonar equation and signal propagation 

makes it possible to analyze the detection performance of naval ships according to the specifications 

of their sonars and the underwater environment. 

 

3.4 Beam patterns 
 

The principle of beam patterns was well described in (Michael 2010, Li 2011). The passive sonars 

of naval ships carry out spatial filtering, which involves sampling noise in space to remove any noise 

of undesired direction. In other words, spatial filtering clarifies the noise of desired directions. This 

spatial filtering helps sonar operators not only to detect the radiated noise from targets, but also to 

know the directions of the radiated noise. 

Such spatial filtering is largely determined by the beam patterns of the hydrophone arrays at the 

passive sonars. A hydrophone is a device that is designed to receive underwater noise. Hydrophone 

arrays are collections of hydrophones, and there are various types of hydrophone arrays, according 

to their configuration. The beam patterns of the hydrophone arrays represent how the measured 

magnitude of noise varies depending on the direction of the noise. The beam patterns are related to 

the term, Array Gain (AG), in the passive sonar equation (Eq. (7)). 

The noise would propagate to the hydrophone arrays in the form of an acoustic wave, and then 

differences in the phases of the acoustic wave at each hydrophone would occur. These differences 

result in the beam patterns. Fig. 2 shows how the differences in the phases of an acoustic wave at 

each hydrophone occur in a linear hydrophone array. If the acoustic wave comes perpendicularly to 

the linear hydrophone array, the phases of the acoustic wave at each hydrophone are the same. 

Meanwhile, if the acoustic wave comes obliquely to the linear hydrophone array, the phases of the 

acoustic wave at each hydrophone are different, and then the acoustic wave energy would be lost.  

In other words, the measured magnitude of the noise coming obliquely is smaller than that of the 

noise coming perpendicularly. In contrast, it is possible to lose the energy of acoustic wave coming 

perpendicularly, by the hydrophones intentionally making differences in the phases of acoustic wave 

at each hydrophone, as shown in Fig. 3 In this case, the measured magnitude of the noise coming 

obliquely is greater than that of the noise coming perpendicularly. In this way, the measured 

magnitude of the noise could vary depending on the direction of the noise, and this is represented 

by the beam patterns. 
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Fig. 2 Differences in the phases of the noise at each hydrophone 

 

 

 
Fig. 3 Intentional differences in the phases of the noise at each hydrophone 

 

 

4. Case studies 
 

To verify the applicability of the simulation core, this simulation core was applied to detection 

performance simulations, maneuvering performance simulations, and engagement simulations. The 

results of these simulations ensure that the simulation core of this study considers both the 

engagement level and the engineering level, and features the flexibility and reusability of models. 

The following would show these simulations. 

 

4.1 Case study for detection performance simulation 
 

The detection performance simulations were carried out by changing the specifications of the 

passive sonars of a submarine in different scenarios. 
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Fig. 4 Specifications of the passive sonars of a submarine 

 

 

Fig. 4 shows that this study referred to the 214-class submarine, and the diameter of Cylindrical 

Array Sonar (CAS) and the length of Flank Array Sonar (FAS) were estimated to be 4 m and 30 m, 

respectively. In the detection performance simulations, the CAS and the FAS were assumed to be a 

circular array sonar and a linear array sonar. Then, the diameter of the circular array sonar was 

changed from 3 to 5 m, and the length of the linear array sonar was changed from 25 to 35 m. Fig. 

5-10 show the beam patterns of the circular array sonar and the linear array sonar according to the 

diameter and the length. These figures show that the longer the diameter and the length, the wider 

the beam width. The width in which the maximum value decreases to 3 dB is called the beam width.  

The beam width corresponds to the resolution, which is the ability to resolve adjacent targets. 

The narrower the beam width, the better the resolution. 

 

 

 

Fig. 5 Beam pattern of a circular array sonar (diameter: 3 m) 
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Fig. 6 Beam pattern of a circular array sonar (diameter: 4 m) 

 

 

Fig. 7 Beam pattern of a circular array sonar (diameter: 5 m) 

 

 

Fig. 8 Beam pattern of a linear array sonar (length: 25 m) 
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Fig. 9 Beam pattern of a linear array sonar (length: 30 m) 

 

 

 

Fig. 10 Beam pattern of a linear array sonar (length: 35 m) 

 

 

 

 

Fig. 11 First scenario for the detection performance simulation 
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Table 2 Results of the first scenario simulations 

Case 
Array diameter / length [m] The number of detected 

enemy forces Circular Linear 

A1 3 – 0.0 

A2 4 – 0.0 

A3 5 – 0.0 

A4 – 25 4.0 

A5 – 30 5.6 

A6 – 35 6.3 

 

 

Fig. 11 shows that the first scenario was that our forces consisted of one submarine that moved 

along a straight path at a speed of 10 knots, and detected enemy forces. The enemy forces consisted 

of ten surface ships, which were randomly located in the specified area and did not move, and of 

which the noise level was 125 dB. The specifications for the submarine referred to the 214-class 

submarine. The specifications for the surface ships referred to the gearing-class destroyer. The 

criterion for the detection performance was assumed that the submarine should detect at least five 

of the ten surface ships. 

The first scenario simulations were carried out, using the circular array sonar and the linear array 

sonar, and changing the diameter and the length as shown in Table 2. The number of detected targets 

in Table 2 is the mean value of ten simulations of each case. This is because the location of the 

surface ships was randomized at every simulation. 

The results of this scenario are that the linear array sonar is more suitable than the circular array 

sonar; and the longer the length of the linear array sonar, the more suitable the detection performance. 

Figs. 12 and 13 show that these results correspond to the Array Gain (AG) at around 0°. 

In a passive sonar equation (Section 3.3), the probability of detection becomes higher as the value 

of the AG becomes larger. The values of AG at around 0° of the linear array sonar are larger than 

that of the circular array sonar; and the longer the length of the linear array sonar, the larger the 

values of AG at around 0°. Meanwhile, the values of the AG of the circular array sonar are the same, 

regardless of the bearing angles, because the array configuration of the circular array sonar is the 

circle. 

 

 

 

Fig. 12 Array gain of the circular array sonar 
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Fig. 13 Array gain of the linear array sonar 

 

 

 

Fig. 14 Second scenario for the detection performance simulation 

 

 

Among these six cases, Case A5 and Case A6 satisfy the criterion for the detection performance. 

Considering that the length of the FAS of the 214-class submarine is 30 m, Case A5 is the most 

suitable case. 

Fig. 14 shows the second scenario, which was that our forces consisted of one submarine that 

moved along a straight path at speed 10 knots, and detected enemy forces. The enemy forces 

consisted of two submarines that moved along adjacent parallel straight paths in the same direction 

at a speed of 10 knots, and of which the noise level was 125 dB. The specifications for the 

submarines referred to the 214-class submarine. The criterion for the detection performance was 

assumed to be that the submarine should detect both of the adjacent surface ships. 

The second scenario simulations were carried out using the circular array sonar and the linear 

array sonar, and changing the diameter and the length as shown in Table 3. 

 
Table 3 Results of the second scenario simulations 

Case 
Array diameter / length [m] The number of detected 

enemy forces Circular Linear 

B1 3 – 1 

B2 4 – 2 

B3 5 – 2 

B4 – 25 1 

B5 – 30 1 

B6 – 35 2 
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Fig. 15 Beam width of the circular array sonar 

 

 

Fig. 16 Beam width of the circular array sonar 

 

 

The results of this scenario are that the circular array sonar is more suitable than the linear array 

sonar; and the longer the diameter of the circular array sonar, the more suitable the detection 

performance. Figs. 15 and 16 show that these results correspond to the beam width at around 90°.  

The resolution, which is the ability to resolve adjacent targets, becomes better as the beam width 

decreases. The values of the beam width at around 90° of the circular array sonar are smaller than 

those of the linear array sonar; and the longer the diameter of the circular array sonar, the smaller 

the beam width at around 90°. Meanwhile, the values of the beam width of the circular array sonar 

are the same, regardless of the bearing angles, because the array configuration of the circular array 

sonar is a circle. 

Among these six cases, Cases B2, B3 and B6 satisfy the criterion for the detection performance. 

Considering that the diameter and length of the CAS and the FAS of the 214-class submarine are 4 

and 30 m, respectively, the results show that Case B2 is the most suitable. 

 

4.2 Case study for maneuvering performance simulation 
 
The maneuvering performance simulations were carried out by changing the specifications of the 

hydroplanes of a submarine in different scenarios. 

Fig. 17 shows that this study referred to the 214-class submarine. In the maneuvering 

performance simulations, the areas of the hydroplanes were changed to be half times, and one-and-

one-half times. The hydrodynamic coefficients could be determined by Eqs. (8)-(11) (Bohlmann 

2003) 
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Fig. 17 Specifications of the hydroplanes of a submarine 
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where, (P) is a bow or stern plane, and (R) is an upper or lower rudder. Zδ(P), Mδ(P), Yδ(R), and Nδ(R) 

are hydrodynamic coefficients representing normal force, pitching moment, lateral force, and 

yawing moment as a function of the hydroplanes, respectively. δ(P) is the deflection of a bow or 

stern plane, and δ(R) is the deflection of an upper or lower rudder. L is the length of a submarine. 

S(P) is the area of a bow or stern plane, and S(R) is the area of an upper or lower rudder. x(P) is the 

lever arm from the center of gravity to a bow or stern plane, and x(R) is the lever arm from the center 

of gravity to an upper or lower rudder. a2(P) is the lift slope of a bow or stern plane, and a2(R) is the 

lift slope of an upper or lower rudder. 

Table 4 shows the values of the hydrodynamic coefficients. It was assumed that the values of the 

other hydrodynamic coefficients, which referred to the values from Babaoglu (1998), would not be 

changed. 

 

 

Fig. 18 First scenario for the maneuvering performance simulation 
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Table 4 Hydrodynamic coefficients according to the area of the hydroplanes 

Area of hydroplanes 0.5 times 1 times 1.5 times 

Zδb -0.002540 -0.005080 -0.007620 

Zδs -0.002200 -0.004400 -0.008800 

Mδb 0.000586 0.001172 0.001758 

Mδs -0.001083 -0.002165 -0.003248 

Yδr= YUpper
δr+ YLower

δr 0.001886 0.003772 0.005658 

YUpper
δr 0.000952 0.001904 0.002856 

YLower
δr 0.000934 0.001867 0.002801 

Nδr= NUpper
δr+ NLower

δr -0.000929 -0.001858 -0.002787 

NUpper
δr -0.000469 -0.000938 -0.001407 

NLower
δr -0.000460 -0.000919 -0.001379 

 

 
Table 5 Results of the first scenario simulations 

Case 
Array of the hydroplanes [m2] 

The arrival time [s] 
Bow plane Stern plane 

C1 

2.08 

13.98 253.8 

C2 27.95 196.1 

C3 41.93 173.5 

C4 

4.16 

13.98 234.3 

C5 27.95 153.6 

C6 41.93 183.1 

C7 

6.24 

13.98 232.3 

C8 27.95 152.9 

C9 41.93 186.1 

 

 

Fig. 18 shows the first scenario, in which a submarine dived on changing its pitch angle, by 

controlling the deflection of the bow plane and the stern plane. The forward speed of the submarine 

was 10 knots. The specifications for the submarine referred to the 214-class submarine. The 

maximum deflection of the bow plane and the stern plane were assumed to be 25° and 10°, 

respectively; and the limit of the pitch angle was assumed to be 30°. The criterion for the 

maneuvering performance was assumed that the submarine should dive to the target depth 300 m 

within 155 s. The tolerance of the target depth was assumed to be 1 m. 

The areas of the bow plane and the stern plane of the 214-class submarine were estimated to be 

4.16 and 27.95 m2, respectively. Table 5 shows the first scenario simulations that were carried out, 

by changing the areas of the bow plane and the stern plane to be half times, and one-and-one-half 

times. The arrival time in Table 5 is the time for the submarine to dive to the target depth 300 m. 
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Fig. 19 Depth variations in Cases C1 and C8 

 

 

 

Fig. 20 Pitch angle variations in Cases C1 and C8 

 

 

 

Fig. 21 Deflection of the bow plane in Cases C1 and C8 

 

 

The results of this scenario are that the wider the areas of the bow plane and the stern plane, the 

shorter the arrival time. The following would explain this tendency through Cases C1 and C8. The 

arrival time of Case C1, 253.8 s, is the longest, while that of Case C8, 152.9 s, is the shortest; and 

the areas of the bow plane and the stern plane of Case C8 are wider than those of Case C1. Fig. 19 

shows the depth variations of the submarine in Cases C1 and C8. 

Fig. 20 shows the pitch angle variations in Cases C1 and C8. The pitch angle in Case C1 was 

changed more slowly than in Case C8. 
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Fig. 22 Deflection of the stern plane in Cases C1 and C8 

 

 

 

Fig. 23 Depth variations in Cases C8 and C9 

 

 

Figs. 21 and 22 show the deflection of the bow plane and the stern plane in Cases C1 and C8. 

These two figures show that the time during which the deflection was the maximum value or the 

minimum value was longer in Case C1 than in Case C8.  

Overall, the smaller the areas of the bow plane and the stern plane, the longer the time for the 

bow plane and the stern plane to be held at the maximum or minimum deflection. Then, the pitch 

angle would change slowly, and the depth would change slowly. As a result, the smaller the areas of 

the upper rudder and the lower rudder, the longer it takes for the submarine to dive to the target 

depth. 

However, this tendency does not hold for Cases C6 and C9. This is because there was no overshoot 

in Cases C6 and C9. Fig. 23 shows that the depth variation of the submarine in Case C9 had no 

overshoot, compared to that of the submarine in Case C8. 

Among these nine cases, Cases C5 and C8 satisfy the criterion for the maneuvering performance. 

Considering that the areas of the bow plane and the stern plane of the 214-class submarine are 4.16 

and 27.95 m2, respectively, the results show that Case C5 is the most suitable case. 

Fig. 24 shows the second scenario, in which a submarine patrolled along the ten positions by 

changing the yaw angle of the submarine, by controlling the deflection of the upper rudder and the 

lower rudder. The forward speed of the submarine was 10 knots. The specifications for the submarine 

referred to the 214-class submarine. It was assumed that the deflection of the upper rudder and the 

lower rudder would be changed equally. The maximum deflections of the upper rudder and the lower 

rudder were assumed to be 40°. The criterion for the maneuvering performance was assumed that 

the submarine should patrol along the ten positions within 2,210 s. 
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Fig. 24 Second scenario for the maneuvering performance simulation 

 

 

 

Fig. 25 Trajectories in Cases D2 and D9 

 

 
Table 6 Results of the second scenario simulations 

Case 
Array of the rudders [m2] 

The arrival time [s] 
Upper rudder Lower rudder 

D1 

5.62 

6.47 – 

D2 12.94 2,289.2 

D3 19.41 2,210.0 

D4 

11.23 

6.47 2,285.0 

D5 12.94 2,209.0 

D6 19.41 2,176.8 

D7 

16.85 

6.47 2,208.4 

D8 12.94 2,176.4 

D9 19.41 2,156.5 

 

 

The areas of the upper rudder and the lower rudder of the 214-class submarine were estimated to 

be 11.23 and 12.94 m2, respectively. Table 6 shows the second scenario simulations that were carried 

out, by changing the areas of the upper rudder and the lower rudder to be half times, and one-and-

one-half times. The arrival time in Table 6 is the time for the submarine to patrol along the ten 

positions. The dash, –, in Table 6 means that the submarine failed to patrol along the ten positions 

in Case D1. 
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Fig. 26 Yaw angle variations in Cases D2 and D9 

 

 

 

Fig. 27 Deflection of the upper rudder and the lower rudder in Cases D2 and D9 

 

 

The results of this scenario are that the wider the areas of the upper rudder and the lower udder, 

the shorter the arrival time. The following would explain this tendency through Cases D2 and D9.  

The arrival time of Case D2, 2,289.2 s, is the longest, while that of Case D9, 2,156.5 s, is the 

shortest; and the areas of the upper rudder and the lower rudder of Case D9 are wider than those of 

Case D2. Fig. 25 shows the trajectories of the submarines in Cases D2 and D9. The submarine got 

further away from the position in Case D2 than in Case D9. 

Fig. 26 shows the yaw angle variations in Cases D2 and D9. The yaw angle in Case D2 changed 

more slowly than in Case D9. 

Fig. 27 shows the deflection of the upper rudder and lower rudder in Cases D2 and D9. The times 

during which the deflection was the maximum value or the minimum value were longer in Case D2 

than in Case D9. 

Overall, the smaller the areas of the upper rudder and the lower rudder, the longer the time for 

the upper rudder and the lower rudder to be held at the maximum or minimum deflection. Then, the 

yaw angle would change slowly, and the submarine would get further away from the patrol position. 

As the result, the smaller the areas of the upper rudder and the lower rudder, the longer for the 

submarine to patrol along the ten positions. 

 

4.3 Case study for the engagement simulation of submarines and surface ships 
 

The simulation core of this study features the flexibility and reusability of models, so that it is 

easier to simulate various engagement situations with various naval ship models, which consist of 

different command systems, weapon systems, detection systems, and maneuver systems, as shown 
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in Fig. 28. Applying such simulation core, the engagement simulations were carried out by changing 

the engagement situations, such as the number of naval ships engaged, the tactics of the naval ships, 

and the weapons of the naval ships. 

Table 7 shows the engagement simulations that were carried out for the five cases, checking 

whether or not our forces would succeed in attacking the enemy forces. Table 8 shows the properties 

of torpedoes. In these cases, the specifications for the maneuvering and detection performance of 

the submarines and the surface ships referred to the 214-class submarine and the gearing-class 

surface ship, respectively. The following would explain these cases. 

 

 
Table 7 Variations of the engagement situations 

Case 

Number Tactics Weapon 

Success Our 

forces 

Enemy 

forces 

Our 

forces 

Enemy 

forces 

Our 

forces 

Enemy 

forces 

E1 

1 1 

Attack 

Patrol 
Torpedo1 

- O 

E2 

Evade Decoy 

X 

E3 Torpedo2 O 

E4 
3 2 

Torpedo1 Torpedo1 Torpedo1 X 

E5 Torpedo1 Torpedo3 Torpedo1 O 

 

 
Table 8 Variations of the engagement situations 

Torpedo Speed [knot] Lifespan [min] 

Torpedo1 20 20 

Torpedo2 20 30 

Torpedo3 30 30 

 

 

 

Fig. 28 Variations of the engagement situations 
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Fig. 29 Progress of Case E1 (1) 

 

 

 

Fig. 30 Map view of Case E1 

 

 

[Case E1] The scenario of Case E1 was that our forces consisted of one submarine that would 

attack the enemy forces, and enemy forces consisted of one surface ship that would patrol along the 

defined path. First, as shown in Figs. 29 and 30 the submarine and the surface ship moved along the 

defined path. 

Next, as shown in Fig. 31, the submarine detected and tracked the surface ship. 

Then, as shown in Fig. 32, the submarine launched a torpedo, and succeeded in attacking the 

surface ship. 

[Case E2 & Case E3] The scenario of Cases E2 and E3 was that our forces consisted of one 

submarine that would attack the enemy forces, and the enemy forces consisted of one surface ship 

that after detecting our forces, would evade. The progression of Cases E2 and E3 were identical with 

that of Case E1, until the surface ships launched their decoys, as shown in Fig. 33. 
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Fig. 31 Progress of Case E1 simulation (2) 

 

 

 

Fig. 32 Progress of Case E1 simulation (3) 

 

 

 

Fig. 33 Progressions of Cases E2 and E3 (1) 
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Fig. 34 Progress of Case E2 simulation (2) 

 

 

Next, in Case E2, the submarine failed to attack the surface ship, because the decoys succeeded 

in interrupting the torpedo, as shown in Fig. 34. On the other hand, in Case E3, the submarine 

succeeded in attacking the surface ship, because the decoys failed to interrupt the torpedo, as shown 

in Fig. 35. The lifespan of the torpedo in Case E3 was longer than that of the torpedo in Case E2, 

which was the reason why the submarine in Case E3 succeeded in attacking the surface ship. 

[Case E4 & Case E5] The scenario of Cases E4 and E5 was that our forces consisted of three 

submarines that would attack the enemy forces, and the enemy forces consisted of two surface ships 

that would evade, after detecting our forces. For convenience to indicate the submarines and the 

surface ships, the submarines are indicated as OurForce1, OurForce2, and OurForce3, and the 

surface ships are indicated as EnemyForce1 and EnemyForce2. First, as shown in Figs. 36 and 37, 

the submarines and the surface ships moved along the defined paths. 

 

 

 

Fig. 35 Progress of Case E3 simulation (3) 
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Fig. 36 Progressions of Cases E4 and E5 (1) 

 

 

 

Fig. 37 Map view of Cases E4 and E5 

 

 

 

Fig. 38 Progressions of Cases E4 and E5 (2) 
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Fig. 39 Progressions of Cases E4 and E5 (3) 

 

 

 

Fig. 40 Progress of Case E4 (1) 

 

 

Next, as shown in Fig. 38, OurForce1 failed to attack EnemyForce2. 

Then, as shown in Fig. 39, OurForce3 succeeded in attacking EnemyForce2, and EnemyForce1 

launched the decoys after detecting the torpedo launched by OurForce2. Until this situation, the 

progressions of Cases E4 and E5 were identical to each other. 

In Case E4, OurForce2 failed to attack EnemyForce1, because the decoys succeeded in 

interrupting the torpedo, as shown in Fig. 40. On the other hand, in Case E5, OurForce2 succeeded 

in attacking EnemyForce1, because the decoys failed to interrupt the torpedo, as shown in Fig. 41.  

The lifespan of the torpedo of OurForce2 in Case E5 was longer than that of OurForce2 in Case 

E4, and the speed of the torpedo of OurForce2 in Case E5 was faster than that of OurForce2 in Case 

E4, which was the reason why our forces in Case E5 succeeded in attacking all the enemy forces. 
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Fig. 41 Progress of Case E5 (2) 

 

From these five cases, whether or not our forces would succeed in attacking the enemy forces 

was checked according to the engagement situations, such as the number of naval ships engaged, 

the tactics of the naval ships, and the weapons of the naval ships. 

 

 

5. Conclusions 
 

This study conducted three case studies using the engagement simulation of the engineering level 

to check the performance of the related parameters. First, the detection performance simulations 

were carried out by changing the specifications of the passive sonars of a submarine in different 

scenarios. The maneuvering performance simulations were carried out by changing the specification 

of the hydroplanes of a submarine in different scenarios. Lastly, in order to check whether or not our 

forces would succeed in attacking the enemy forces, we conducted the engagement simulation with 

various naval ship models, which consisted of several engineering level models, such as command 

systems, weapon systems, detection systems, and maneuver systems. As a result, the performance 

according to the specifications of the naval ships and weapons was evaluated. 

The simulation core makes it possible to consider the engagement level and the engineering level 

at the same time. In addition, the simulation core features the flexibility and reusability of models, 

so that it is easier to simulate various engagement situations with various naval ships. 

In the near future, we will upgrade the engineering models for more realistic engagement 

simulation. It is also planned to improve the performance, so that the speed does not become slow, 

even if more than 10 models participate together. 
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