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Abstract. This research is based on the concept of safety airbag to design a self-rescue system for the 
autonomous underwater vehicle (AUV) using micro inertial sensing module. To reduce the possibility of 
losing the underwater vehicle and the difficulty of searching and rescuing, when the AUV self-rescue system 
(ASRS) detects that the AUV is crashing or encountering a serious collision, it can pump carbon dioxide into 
the airbag immediately to make the vehicle surface. ASRS consists of 10-DOF sensing module, sensing 
attitude algorithm and air-pumping mechanism. The attitude sensing modules are a nine-axis micro-inertial 
sensor and a barometer. The sensing attitude algorithm is designed to estimate failure attitude of AUV 
properly using sensor calibration and extended Kalman filter (SCEKF), feature extraction and 
backpropagation network (BPN) classify. SCEKF is proposed to be used subsequently to calibrate and fuse 
the data from the micro-inertial sensors. Feature extraction and BPN training algorithms for classification are 
used to determine the activity malfunction of AUV. When the accident of AUV occurred, the ASRS will 
immediately be initiated; the airbag is soon filled, and the AUV will surface due to the buoyancy. In the 
future, ASRS will be developed successfully to solve the problems such as the high losing rate and the high 
difficulty of the rescuing mission of AUV. 
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1. Introduction 
 

Significant research is being conducted on the development of autonomy for underwater 

robotic vehicles, which are widely employed in many fields of application such as oceanographic, 

marine archaeology (Roman and Mather 2010), military organizations, off-shore oil industry, and 

cable tracking and inspection (Asakawa et al. 2002). The advent of underwater robotic vehicles 

has significantly reduced the dangers in deep sea exploration. Two kinds of robotic vehicles used 

in marine research are remotely operated vehicles (ROVs) and autonomous underwater vehicles 

(AUVs). The main difference between the two is that ROVs are connected to the ship by 

communication cables whereas AUVs operate independently from the ship. AUVs operate without 

an umbilical, therefore AUVs are able to conduct activities over a larger range. In our study, ASRS 

has the potential of predicting vehicular catastrophic and averting it, thereby minimizing loss of 
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the AUV. 

In recent years, the micro-electro-mechanical systems(MEMS) has nearly become a vital 

technology for modern society because of its small volume, low power consumption, low cost and 

ease to integrate into systems or modify (Zhou and Mason 2002). MEMS technology creates 

entirely innovative kinds of products, such as gyroscope sensor in camera-shake detection systems 

(Hwangbo et al. 2013), multi-axis inertial motion sensors for smartphone-based navigation (Niu et 

al. 2012) and rehabilitation systems based on inertial measurement units (IMU) (Leardini et al. 

2014). Additionally, the integration of Global Positioning System and inertial Navigation System 

(GPS/INS) is usually employed to measure the position of AUVs (Yun et al. 1999, Bonin-Font et 

al. 2015). Unfortunately, small errors in the measurement of initial data are double integrated into 

larger errors progressively in attitude data, and such errors increase unbounded. Error Reduction 

calibration for initialization of INS is paramount for the systematic parameter, like scale factor, 

bias and misalignment of axes. Based on the situation depicted above, a calibration method is 

investing and adopted in our study (Bao et al. 2013). There are many researches utilized Kalman 

filter (KF) (Luinge and Veltink 2005), complementary filter (CF) (Ruiz et al. 2012), adaptive 

Kalman filter (AKF) (Li and Wang 2013) or extended Kalman filter (EKF) (Mirzaei and 

Roumeliotis 2008) to fuse gyroscope and accelerometer together, taking advantages of their 

individual strength. One of the above, EKF is a form of non-linear estimation and typically used to 

compute the solution from these multiple sources. The EKF also developed by (Marins et al. 2001) 

allows estimating the orientation of attitude using IMUs. In this research, we chose the EKF to 

filter IMU outputs with a balance of noise cancelling and adaptability simultaneously, used in 

sensing attitude algorithm for ASRS.  

However, the system is computationally complex due to values estimation of AUV, and causes 

the high dimension which is called “curse of dimensionality” which donates the drastic raise of 

computational complexity and the classification error (Aha et al. 1991). The purpose of feature 

extraction is to reduce the dimension of the large measurement datas and prevent program 

operation from out of memories. We adopted nine kinds of features to improve dimensionality 

reduction before send into the classifiers. Feature extraction is a technique for extracting a subset 

of new features from the original set by some functional ways which keep as much information in 

the data as possible (Biricik et al. 2012). Conventional Principal Component Analysis (PCA), 

which is orthogonal the eigenvectors of the covariance matrix, is one of the most widely used for 

feature extraction techniques and factor analysis (Wold et al. 1987). Hence, PCA was chosen to 

reduce the dimension of the AUV attitude value in this study. Feeding the value to the classifier to 

determine the conditions of AUV after feature extractions. 

The sensing algorithm with EKF for sensing the attitude of AUV, while employing the 

backpropagation network (BPN) to classify motion data that are formed in the AUV. The neural 

network consists of multiple artificial neurons to receive inputs, and process them to obtain an 

output (Hopfield 1982). By repeating amendments to the model weights, neural network makes 

central processing unit (CPU) more logical to calculate the nonlinear systems of AUV motion 

(Sayyaadi and Ura 1999). Neural network has been widely used because of a number of 

advantages, including estimating which variables are important in classification, detecting possible 

interactions between predictor variables and constructing the prediction model with high accurate 

rate. Furthermore, neural network has emerged as an important tool in classification which has 

been investigated in many different important applications (Zhang 2000). In one work, Wenxi et al. 

(2005) designed a scalable mobile phone-based system for multiple vital signs monitoring and 

healthcare. Constructing neural network classifier (NNC) for classifying human activities by using 
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a wearable sensor. (Yang et al. 2008, Wang et al. 2012, Tuncel et al. 2009). As mentioned above, 

activity recognition is one of the most active application areas of NNC. In this research, NNC is 

used in the calculation of nonlinear systems AUV attitude data to detect a catastrophic failure of an 

AUV. We based on the multilayer feed-forward backpropagation algorithm as NNC and proposed 

an effective activity recognition method using 10-DOF sensor module. Backpropagation network 

(BPN) is the most widely used type of networks and is an efficient way to compute the gradient in 

a ANN (Rumelhart et al. 1986). This application is capable of reducing the probability of 

damaging and sinking the AUV.  

The concept of ASRS comes from the vehicle safety device: airbags consists of a flexible fabric 

bag in order to protect occupant and restrict during a crash accident (Lund and Ferguson 1995, 

Burgess et al. 1995). Wang (2005) and Dragcevic et al. (2009) designed the airbags, which fires 

via a small pyrotechnic charge to increase motorcyclists safety protections while riding a 

motorcycle. The airbags are applied to not only fall-protection device but also automatic inflatable 

life by the inflatable method of gas cylinder (Guangyi et al. 2007, Toshiyo et al. 2008, Tamura et 

al. 2009, Ishizaka et al. 2014). We extended the airbags systems to load on the AUV with CO2 

cylinders to implement the ASRS. In this research, we developed a malformed detection algorithm 

for AUV with both SCEKF and ANN, and the Implementation of air bag system loaded on AUV is 

under way. 

 

 

2. Theoretical methods and designs 
 

This section presents an overview of the theoretical method on the formulation of sensors 

algorithm and classification. The former includes the sensors calibration and extended Kalman 

filter algorithm; the latter is constructed of feature extraction and neural classifier. Moreover, we 

designs the concept of the airbag system for ASRS. Fig. 1 shows an overview of the SARS 

scheme. 

 

2.1 Sensors algorithm 
 

The implemental detail of using IMU in the AUV will be explained in this section. It includes 

constructing the 10-DOF sensors module, sensors calibration and EKF algorithm. 

 

 

 

Fig. 1 An overview of the SARS scheme 
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Fig. 2 Block diagram of the 10-DOF sensor module 

 

 

2.1.1 Senor design 
The MEMS sensor system contained 9-DOF IMU (three accelerometers, three gyroscopes, 

three magnetometers) and barometer integrated with microcontroller (Arduino MEGA2560). The 

six-axis inertial sensors (MPU6050) which is a complete triple axis gyroscope and triple axis 

accelerometer inertial sensing system are the most suitable sensors for stabilization and attitude 

measurement, where accelerometers track and eliminate the gyroscopes drift in vertical attitude 

(roll, pitch) of AUVs. The advantage of MPU6050 is that it eliminates the inter-axial differential 

problem between gyroscope and accelerometer and saves more space. MPU6050 contains the 

digital motion processor (DMP) which performs the motion processing algorithm itself. However, 

the horizontal attitude (yaw) is not possibility measurement. We used magnetometer (HMC5883L) 

with fusion algorithm accordingly for eliminating the gyroscope offset to recognize the AUV 

activity context more reliably. The barometer (BMP180) is used in ASRS to detect the depth of the 

AUV position and control the pressure of the air bag for supplying the perfect buoyancy. In 

addition, BMP180 also includes temperature sensor which is not only measure the underwater 

temperature but for thermal compensation for the MPU6050. The block diagram of the 10-DOF 

module as shown in Fig. 2. 

 

2.1.2 10-DOF sensors data calibration  
Although the development of the MEMS technology has made a great progress, the IMUs are 

difficult to be implemented a precision data in the presence of various errors, which categorizes 

into the deterministic error and the stochastic error (Titterton et al. 1997). Owing to the integration 

of IMU, any residual error will be accumulated and grow without bound, resulting in attitude data 

and orientation errors. That is the reason why the first step in using IMU is to calibrate its sensors. 

Calibration is the process of the measurement outputs comparing with known reference data and 

determining the coefficients that drive the output to agree with the reference data over a range of 

output. We can establish the error model illustrated in Fig. 3. 

 

 

 

Fig. 3 The sensor error model 
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Where realI  is the real raw value of the input, measO  represents the measurement of the output, 

scale factors errors , biases measb , stochastic noise measr  and iM  and jM  are the axial 

coupling factor corresponding with the iu  and ju  respectively. The relationship between 

sensor error model can be expressed using the following equation 

measjjiimeasrealerrormeas ruMuMbIsO  )1(               (1) 

If further simplify the equation, the calibration errors during assembly of each component 

generated into the IMU module can be ignored. Therefore, the characteristic equation can be 

expressed as 

measmeasrealerrormeas rbIsO  )1(                      (2) 

The position and velocity drift depends of scale factor, bias, and stochastic sensor error. Then it 

is very important the accurate procedure of calibration for an initialization of the IMU to improve 

the working efficiency the sensing element.  

 

Stochastic noise: thermal noise 
There is no temperature compensation when designing the IMU module, these variable type 

sensors are sensitive to temperature changes. The purpose of thermal compensation is to determine 

the adjustment in performance of a system when operated under different temperatures and to 

measure the desired variable precisely. There are two main approaches for thermal compensation: 

the thermal soak method and the thermal ramp method (Aggarwal et al. 2008). In this research, the 

thermal soak method was adopted to investigate thermal effect of IMU because of recording the 

sensor data until the element temperature stabilized. A method of linear interpolation has been 

used to establish the thermal compensation 

)()()( 2

1

1

2

12 TTTTTT TTT

rrr
 

                (3)
 

where 
1T

r
  and 

2T

r
  are known at temperatures 

1T  and 
1T , T is the required temperature point 

and 
T

r
  is a calculated IMU value at T°C. The thermal testing procedures of this research is to 

maintain constant temperature by utilizing the thermal turntable cabinet shown in Fig. 4. The 

variation of the thermal errors of IMU sensor is evaluated at temperatures ranging from 25°C to 

60°C. 

 

 

 

Fig. 4 Thermal turntable cabinet setup 
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Bias 
First of all, conducting static output measurement to calculate the amount of the bias, and the 

static noise output should be low and be the well distributed stable signal within ideally condition. 

In order to minimize the error caused by bias, we averaged the IMU data to calculate the bias, 

which is deducted from the output values of IMU measurements. The Calculation formula of the 

bias value is by Eq. (4) 

n

n

i

ri
 1




                             (4)

 

Where   is the bias of IMU, ri  is the output values of IMU measurements and n  

represents the total number of samples. 

Scale factor 
The Linear relationship between input and output is one of a very important characteristic for an 

ideal inertial sensing element. Scale factor drifts of inertial sensors describe how well the relation 

between input and output IMUs are usually modeled with a linear response to simplify the 

calculation of measurement. we found the linear equation belongs to each components by linear 

least square (LLS) formula. 

In order to find the coefficient of IMU linear equation, the scale factor is denoted as 
1 , the 

offset coefficient is 0 , the corresponding value set in the user interface is s =  Tsss ma ; 

r =  Trrr ma  is the real raw measurement data, where acceleration a , angular velocity  , 

magnetic values m . The model function is given by Eq. (5) 

rs  10 
                               (5)

 

Using the following function was written it in matrix to find the coefficient of IMU linear 

equation 
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Then, the solution of parameter 
1  may then be simplified as 


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                           (7)

 

where ri  and si  are the real raw and sample value at the i
th
 orientation and rotation, 

respectively of all N samples. can be calculated as Eq. (8) by Eq. (5). 

rs  10 -
                              (8)
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Fig. 5 Overview of the SCEKF structure 

 

 

2.2 EKF algorithm 
 

A quaternion based EKF is proposed in this section for determining the attitude of the AUV 

from the outputs of IMU. Attitude estimation is a very important part of the ASRS systems. If the 

initial data are double integrated into larger errors without bound, it brings on the misclassification 

of ANN algorithm with wrong attitude values. For the sake of this error, We used a series of 

measurements observed over time for signal processing. The main advantage of the KF is its 

ability to provide the quality of the estimate, whereas the KF only applies to the linear and 

Gaussian models. The EKF conversely is a form of non-linear version of the KF which linearizes 

about an estimate of the current mean and covariance (Sabatini 2006). In view of this, we chose 

the EKF to filter IMU outputs with a balance of noise cancelling and adaptability simultaneously, 

used in sensing attitude algorithm for ASRS. We proposed the EKF fusing with the accelerometer, 

gyroscope and magnetometer integrated with sensor calibration (SC). SCEKF results to an 

improvement of the orientation accuracy from IMU. A flow-chart of structure performed by the 

proposed SCEKF is capsuled in Fig. 5. 

 Sensor calibration (SC) 

The IMU calibration equation presented in Eqs. (3)-(5) and discussed in section 2.1. 

 Compute the predict phase  

1

(2)

1-k1
ˆ)ˆ,(ˆ

  kksk xTx   (9) 

 T

kk

T

kkk QBBFPFP 111

(2)

1-k1
ˆ

   (10) 

First step of EKF predicts a current state and covariance matrix at time k . We estimated a 

current state based on the previous states  Tkkkk max 111-1
ˆˆˆˆ

    which is composed of the 

gyroscope measurement 1
ˆ

k  and white noise  Tk

m

kk

a

k 1111
ˆˆˆˆ

   
 and the priori 

covariance matrix kP̂  based on a previous covariance matrix 
(2)

1-kP , covariance Q  and 1kB  is a 

state noise coefficient matrix. 
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 Jacobian computation  

 )ˆ,( 1ˆ,1 1  





 ksfTk TJ
x

F
ks

  (11) 

   )ˆ(   ,0,ˆ~
ˆ khxkkkk xJ

x

h
Hxhzy

k





  (12) 

However, in view of the non-linear process of state transition 1kF  and observation kH  

directly , EKF approach requires being estimated by computing the Jacobian. 

 Gravity measurement correct 

 
a

T

kkkk RHPHS  ˆ  (13) 

   1
ˆˆ



 a

T

kkk

T

kkk RHPHHPK  (14) 

  kkkkkk xHaKxx ˆˆ(1)   (15) 

   kkkk PHKIP ˆ
44

(1)  
 (16) 

Where the innovation covariance kS  based on a priori error covariance matrix kP̂ and the 

measurement covariance matrix of accelerometer aR , which main diagonal elements are from the 

accelerometer values, non-main diagonal elements are all zero conversely. The Kalman gain kK  

is the error covariance matrix after gravity measurement correct.  

 Yaw measurement correct 

 m

T

kkkk RHPHS  (1)
 (17) 

   1
(1)(1)



 m

T

kkk

T

kkk RHPHHPK  (18) 

  (1)(1)(2)

kkkkkk xHmKxx   (19) 

   (1)

44

(2)

kkkk PHSIP    (20) 

Where the measurement covariance matrix of magnetometers mR , which main diagonal 

elements are from the magnetometer values, non-main diagonal elements are all zero conversely. 
(2)

kP  is the error covariance matrix after yaw measurement corrected.  

 

2.3 Structure of NNC 
 

We are going to introduce the structure of NCC for recognition of AUV activties in this section. 

The NNC scheme is classified into two categories: the feature extraction and BPN algorithm 

which comprises a feature classifier, a short-term classifier, and a long-term classifier as shown in 
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Fig. 6. A sliding window technique cut the sensors data into 20 second in each short-term window 

with 50% overlapping.  

In the beginning, for the purpose of reducing the dimension of the extracted features from the 

sensor data, these extracted features are selected by the PCA and feeding into the feature classifier 

to make a distinction of the AUV motions. Upon completion of the feature classifier construction, 

we are capable to distinguish every AUV motion in each operating period. This way is helpful for 

recognition the complex AUV activities and detecting each kind of motions well. 

 

2.3.1 Feature extraction and selection  
AUV motions are defined by the six degrees of freedom including heave, surge, sway, pitch, 

roll and yaw, and they are coupling by the vehicle shape, trends and current interaction. Therefore, 

the attitude data of AUV is the high dimension and very complex. The purpose of feature 

extraction is to reduce the dimension of the large measurement datas and prevent program 

operation from out of memories. The characteristics of a data segment is to keep the most meaning 
ful features and remove the redundant of data. Therefore, the feature extraction methods have been 

applied for activity detection from accelerometer data. (Saeedi and El-Sheimy 2015, Preece et al. 

2009). İn order to extract feature easily, the continuous measurement data of sensors is divided 

into many overlapping segments of which each is 20 seconds time, was illustrated in Fig. 6. In this 

paper, we adopted the principal components analysis (PCA) as the feature selection procedure to 

lower the dimension of the original features (Krzanowski 1979). Feature extraction is highly 

subjective in nature, it depends on applications. Here, we introduced the following features that is 

beneficial to classification of AUV failure detection; used these features to discriminate the type of 

AUV activity (Ranganathan et al. 2001). 

 Min,Max: minimum and maximum of the sensors signal. 

 Mean: the mean value is computed over a window of sensors signal. In the below equation 

that W  describes the number of elements of y  

W

y
y

W

i  1 i
                         (21) 

 Interquartile range (IQR): The interquartile range of a segment can be calculated by 

integrating while the mean values of different classes are similar and compare of the spread of 

data in a data set. 

 Root mean square (RMS): quadratic mean value of the signal 

  


W

i iy
W

RMS
1

21

                         

(22) 

 Standard deviation (STD): mean deviation of the sensors signal compared to the averge 

  


W

i i yy
W

STD
1

2)(
1

                     (23) 

 Root Mean Square Error (RMSE): the RMSE makes an general purpose deviation metric for 

each signal of sensor and is given by 
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2)(

1

1
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W
RMSE

W

ji j 



                       (24) 

 Signal magnitude area (SMA) (Bouten et al. 1997): SMA is the average of absolute 

acceleration over a window length and suitable for distinguishing between static and dynamic. 

 ),(
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where sur

ia ,
swa

ia ,
hea

ia  represent ith of the acceleration of the surge, sway and heave 

respectively. 

 Signal vector magnitude (SVM) (Karantonis et al. 2006): SVM distinguishes between 

shorter periods of activity and rest than SMA. It is able to detect the AUV is being attacked or 

hit the obstacles. 

 
222

: hea

i

swa

i

sur

i aaaSVM                      (26) 

 Averaged acceleration energy (AEE): the AEE is the mean value of the energy over three 

acceleration to describes how the energy of sensors signal is. İt can validate for distinguish  

static activities. from dynamic activities.  

 

2.3.2 BPN construction 
Finally, these extracted features selected by the PCA are feeding into the feature classifier, 

short-term classifier and long-term classifier sequentially and output the AUV condition. In order 

to detect the AUV condition accurately, reliably, stably and robustly, we divided recognition 

system into three classifiers which are based on BPN. BPN is considered the workhorse of ANNs 

and is the multilayer perceptron (MLP) based on a feed forward algorithm. (Rumelhart et al. 1986). 

The hidden layers, between input and output layers, use the error back-propagation (BP) algorithm 

to compute nonlinear relationship in supervised learning. The main features of BPN are as follows: 

high learning accuracy, fast response and can process the nonlinear problems.  

 

 
 

Fig. 7 The topology of the BPN classifier 
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In this paper, a three-layer BPN is used for classifying AUV failure condition. The topology of 

the BPN classifier as shown in Fig. 7 (Nielsen 2015). The input layer has R neurons, equal to the 

dimension of the feature vectors  TIIII )1(

R

)1(

r

)1(

1 ,,,  , where superscript 1 indicates the 1
st
 

layer. The hidden layer has J neurons, and the output layer has P neurons, equal to the number of 

AUV condition  TOOOO )3(

P

)3(

p

)3(

1 ,,,  , where superscript 3 indicates the 3
rd

 layer. 
)3(

pjw )2(

jrw

denotes the weight from the hidden to the output layer and from the input to the hidden layer, 

respectively. 
)2()3( ,bb  denotes the bias in 3

rd
 and 2

nd
 layer respectively. The 

)n(i and 
)n(o  is the 

input value and the activation of a neuron in the n
th
 layer  3:  nNn . We take the interval 

between hidden layer (2
nd

) and output layer (3
rd

) as an example. The function of the neurons in 

each step are defined as follows: (Rumelhart et al. 1986) 

 In the BPN network, the intermediate quantity 
)3(

jnet  is the weighted input to the neurons 

in the 3rd layer, and implements a nonlinear transformation from the output values of the 2
nd

 

layer to the output values of the 3
rd

.   is called the sigmoid function in general non-linear 

and differentiable. the functions of the p
th
 neuron are given by 

 )()(
1

)3()2((3))3()3( 



J

j

pjpjjp bowneto                  (27) 

 The discrepancy )3(E  between the desired output )3(

pt  and the real output )3(

pO  in 3
rd

 

layer can motivate the BP learning algorithm as gradient descent on sum-squared discrepancy. 

The factor of 21  will simplify the exponent when differentiating later. The function is 

defined as 

 
2)3()3((3) )(

2

1
E  

p

pp Ot                       (28) 

 Then, adjusting the weights to find the partial derivative E  with respect to a weight 
(3)

pjw : 

)( (3)

pj

)3((3)

pj wEw   , However, the discrepancy is not directly the function of weights. 

Calculating the derivative of the discrepancy is done using the chain rule twice.  
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Let’s discuss each of partial derivatives in turn: 

 In the last term of Eq. (29) is the derivative of the net 
)3(

pnet  with respect to a weight 

)3(

pjw : 
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(30) 
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 Next, the derivative of the activation 
)3(

po with respect to the net input 
)3(

pnet : 

 

)-(1))(-(1)(
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(31) 

 Last, we consider the derivative of the E  with respect to the activation. As a consequence 

of the neuron is in the output layer, then 
)3(

pO  is equal to 
)3(

po . 
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 Finally, substituting these results Eqs. (30)-(32) back into original Eq. (29) to find the weight 

change )3(

pjw  rule.  
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(33) 

 We can find the weight change 
)2(

jrw  in the same processes of above and is defined as:  
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(34) 

BPN algorithm approach to recognize and intelligent detect failures based on changes in 

weights values 
)3(

pjw  
)2(

jrw  of the AUV feature parameters. 

 

2.4 The concept of the airbag system 
 

In the case of AUV failure and sinking underwater, we designed an airbag system to increase 

buoyancy and reduce the overall density of AUV. The AUV is 36 centimeter in length (14.2 

inches), 20 centimeter Beam (7.9 inches), 2.8 kilograms while full load (6.2 pounds), 3.1 

kilograms after putting the counterweight (6.8 pounds), and 3 knots (1.54 m/s). The vision is that 

we install a waterproof container system on both sides of AUV. The waterproof cabin, which 

length 20 cm, diameter 10 cm, 1570L of the displacement, including sensing module, 

double-trigger inflator, and airbag. Fig. 8(a) illustrates a double-trigger inflator includes a servo 

motor, horn, spring, spring case, striker, water soluble PVA fiber, and CO2 cylinder. The designed 

double-trigger inflator not only can trigger by electricity but also trigger by water damage when 

the waterproof cabin is severely broken.  

There are two ways to trigger the inflator. To begin with the electricity trigger way, in the case 

of the waterproof cabin is watertight, after detecting the failure of AUVs, servo motor rotates for 

pushing the striker, and the striker punches the release button. CO2 releases into the air bag 

through the air tube as shown in Fig. 8(b). 
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(a) Before release       (b) release by servo motor       (c) release by spring  

Fig. 8 The design diagram of inflator 

 

 

We chose MG995 for servo-motor which weights 55 grams; MG995 is sufficient to move the 

horn from the striker with it's maximum torque 13 kg-cm. Besides, if the AUV is severely 

impacted and cause the cabin seepage, so that the power system is damaged. The AUV can not 

resurface by the thruster or the electricity-trigger inflator. So we designed the water-trigger inflator 

for this kind of case. When the cabin is seeped, water melts the water soluble PVA fiber and 

release the spring case as shown in Fig. 8(c). The music wire is selected to spring within the spring 

case, the true maximum load of selected spring is 27.985N which have enough force to press the 

release button through striker.  

In addition, if the total weight of a waterproof container and its substance is 1.25 kg; the total 

displacement and weight of an AUV are 3.61 kg and 4.36 kg respectively. Suppose that the 

acceleration of gravity is the constant 9.8 m / s
2
. In other words, the total buoyancy of entire AUV 

apparatus is 32.73 Newton upwards contrary to the total gravitation is 42.63 Newton downwards. 

In the development of ASRS, we used two bottles of the12 g CO2 gas cylinder with 6 L of CO2 in, 

and four natural rubber inflatable nylon airbag with a capacity of 2.4L. The airbags connect with 

the regulating valves and cling to the valves to avoid falling and cause the pollution under the sea. 

Assume that the maximum depth is 100 m which refers to 11atm pressure there, and suppose that 

the temperature is regarded as Kelvin temperature 297K. According to the Ideal Gas law Eq. (35), 

where R is gas constant 8314.32 (N m)/(kmol K), nCO2 is 0.273, Vcylinder is 0.014L of a 12 g 

canister, the pressure in a CO2 cylinder is 475atm, which is much higher than the water pressure 

11atm. So the CO2 cylinder can operate successfully without body deformation. The relationship 

between flow rate and pressure is the following Eq. (36): (Guangyi et al. 2007)  

 cylinder
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where  =1.2 and CO2 Gas constant gR ＝188.9J/Kg K.  
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3. Experimental test and result.  
 
3.1 SCEKF 
 
To validate the sensor calibration and fusion method proposed in this paper, this section covers 

the results obtained from the 10-DOF sensor module with operating system of Windows 8.1, 2.20 

GHz CPU, 8GB memory, and experiments are performed with the Arduino described in Section 

2.1.1. The system was fixed on an anti-vibration table to minimize interference. The proposed 

SCEKF algorithm was used to estimate accelerometer and orientation with 27-Hz updating rate.  

As the calculation process of sensor algorithm, we used the rotary platform with outputting the 

quantitative and stable signal to observe the relative signal output. The rotary platform as shown in 

Fig. 4. The first process is that fixing IMU at the center and along the rotation axis of the platform 

and fixing it by valves. After the installation, setting the required rate or angle of rotation as a 

reference data by the user interface; we measured the output corresponding to the reference data. 

The performance of the orientation before/after SCEKF algorithm are presented in Fig. 9(a)-9(c), 

respectively; produced reasonable output values within the expected ranges. It is seen that each 

component of Euler orientation (i.e., roll, pitch, and yaw) is within 0·1 degree after SCEKF 

processing in the static test. 

 

3.2 AUVs attitude simulation and experiment 
 
In order to construct a robust underwater vehicle fault attitude database, we simulated the 

underwater vehicle motion model with different situations in the water environment, which can 

provide the particular case of attitude data, such as the AUVs suffered a crash or propeller disabled. 

Moreover, we built the fault simulator GUI interface for a more convenient operation, in other 

words, the ASRS start with the fault simulator GUI interface, after inputting the required AUVs 

dimensions, hydrodynamic coefficients, buoyancy center and, inertia coefficients. Next, simulator 

calculates the different AUV motion data under different case through the Matlab
TM

 program as 

shown in Fig. 10. The above results from simulator will combine with the experimental data as the 

database for training and verification of BPN classifier. Last but not least, the real AUV motion 

signal is set as the testing dataset to ensure the establishment of the ASRS. The modular modeling 

equation of AUVs is selected from (Prestero 2001). The modeling method of Prestero’s without 

considering the sea conditions of emission that can help us to generate the dynamic models of 

AUVs quickly and conveniently. The dynamics model and kinematics model of AUVs are 

established by analysis of the force working on AUVs moving underwater, based on the theorem 

of the momentum of the rotation around the buoyancy center and the theorem of the motion of 

mass center. The motion in 6-DOF of the AUVs is determined. And then, the attitude data of 

AUVs at any instant are determined. 

Since we simulated the AUV motion in the underwater environment without considering the 

influence of currents and waves, so we did the wave maker experiment in NCKU Ship Model 

Towing Tank to observe the changes and effects on the AUV motion data in different wave height. 

By experimenting with simulation, we can be closer to the state of the real ocean environment. The 

experiment of the AUVs affected by wave maker in NCKU Ship Model Towing Tank is illustrated 

in Fig. 11. 
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Fig. 10 The AUVs fault simulator diagram 

 

 

 

Fig. 11 The wave maker of the NCKU Ship Model Towing Tank 

 

 

3.3 Classification results 
 
In this paper, we focused on ten conditions of AUV which are listed in Table 1. There are two 

types of these AUV conditions. One of them is failure situation and the other is functional 

condition both which include five motion status of the AUV. We carried out twenty times of 

experiments for capturing data and verifying classifier. The data from 17 experiments was adopted 

in the training program of the recognition scheme; these data were obtained from the others 

experiments were used for testing the recognition performance. Note that, since the sampling 

frequency is 27.5 Hz, the total number of the short-term and long-term samplings for each activity 

of each experiment is 550 and 2200 respectively, which means 20 seconds per short-term window 

and 80 seconds per long-term window. The feature extraction of this paper based on 50% 

overlapping windows using 550 samples of window sizes to avoid information loss at the 

boundary of a single window. The dimension of a feature vector was 45 (an accelerometer × 3 

axes × 9 features + a gyroscope × 3 axes × 6 feature). Fig12. illustrates the first 2200 data of 

accelerations and Euler orientations collected from the first experiment. The selected features of 
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sensors data enabled effective recognition of the conditions and were suggested for BPN training 

procedure. A computation program adopted the input features and activates the feature classifier 

learning procedure with the BP algorithm, and outputted the results to short-term classifier. Then, 

an AUV condition was distinguished by a long-term classifier which was inputted the several 

outcomes from short-term classifier to raise the accuracy of failure recognition. The number of 

neurons in each hidden layer are 4, 6, and 7 for the feature classifier, short-term classifier, and 

long-term classifier, respectively, and the number of epochs is 700 for each neural training, The 

BPN classifier was trained on the training data set and tested on the test set which are from the 

experiment values. The classifier was created by neural network toolbox of MATLAB
TM

 for 

practical implementation and to validate the proposed model.  
 

 

 

Fig. 12 The accelerations and Euler orientation of the first experiment 
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Table 1 Activities performed in this experiment 

Number Activity Description 

1 Functional condition after horizontal sinking 

2 Malfunction after horizontal sinking 

3 Functional condition after vertical sinking 

4 Malfunction after vertical sinking 

5 Functional condition after ramped sinking 

6 Malfunction after ramped sinking 

7 Functional condition after turbulence 

8 Malfunction after turbulence 

9 Functional condition after collision 

10 Malfunction after collision 

 
Table 2 Confusion matrix for all the testing experiments 

20 times of testing experiments 

Classified 

Type 
1 2 3 4 5 6 7 8 9 10 

 

Recognition 

Rate (%) 

 Detection Accuracy 

(%) 

1 14/13 0/0 1/2 0/0 5/6 0/0 0/0 0/0 0/0 0/1 70/65  Malfunction 97/92 

2 1/2 16/14 0/0 0/0 0/0 1/2 0/0 0/1 2/3 2/4 80/70  Functional 

condition 
93/88 

3 1/1 0/0 15/13 0/0 0/1 0/0 0/0 0/0 1/1 0/0 75/65  

4 0/0 0/0 0/0 18/16 0/0 2/2 0/1 0/0 0/0 0/0 90/80    

5 4/3 0/0 2/4 0/1 15/13 0/0 0/0 0/0 0/1 0/0 75/65    

6 0/1 1/1 0/0 2/3 0/0 16/15 0/0 3/4 0/0 0/0 80/75    

7 0/0 0/0 0/0 0/0 0/0 0/0 17/15 1/2 0/0 0/0 85/75    

8 0/0 0/0 0/0 0/0 0/0 1/1 3/4 16/13 0/0 0/0 80/65    

9 0/0 1/2 2/1 0/0 0/2 0/0 0/0 0/0 16/14 1/2 80/70    

10 0/0 2/3 0/0 0/0 0/0 0/0 0/0 0/0 1/1 17/14 85/70    

*Proposed classifier with feature extraction in BP algorithm/ANN classifier without feature extraction 

 

After building up our prediction algorithm, we apply our chosen prediction algorithm on our 

new test set which’s from the real signal of AUV, in order to have an idea about the algorithm's 

performance on unseen data. The confusion matrix of all the real AUV testing experiments is 

provided in Table 2, which recorded the result from the 20 times experiment on each condition of 

AUV. We have implemented in two different ways under MATLAB
TM

 environment. In the first, 

we conducted in our proposed classifier system with feature extraction and the results indicate that 

the AUV failure detection on the average 97% of the time, and a successful functional condition 

accuracy of 93% is achieved. Second, we chose a classifier in ANN learning algorithm without 

feature extraction for comparing with the classifier that we proposed. The performance indicated 

that the ANN classifier without feature extraction performs poorer than our proposed. From the 

confusion matrix, we can know that the malfunction and functional condition are not easy to be 

confused. However, the motion within functional condition may be misclassified between each 

other, because these activities contains similar amplitude peak and waveform at the AUV. 
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3.4 Simulation and design of the inflator 
 
Finally, we simulated the capacity change between the CO2 cylinder and the air bag to make 

sure it can be aerated successfully and save AUV to surface. In this research, the high-pressure 

CO2 gas cylinders were designed to install in the AUV, and detect the failure conditions by 

sensors module. The design specifications of inflator were explained in section 2.4, We adopted 

the BMP180 to measure the pressure where the AUV located. We simulated the time relation rate 

between depth and airbag volume changes determined by Eqs. (35) and *36). From the result of 

simulation illustrated in Fig. 13. It takes 32seconds to filled with four nylon airbags and provides 

94.08N buoyancy for AUV. The design of added buoyancy can bring 13.45kgw of underwater 

vehicle to the surface (asume that the Full load displacement is fixed). The entire process takes 

about 50 seconds. Furthermore, we can install the appropriate number of gas cylinders and airbags 

in accordance with the different displacement of AUV. With this technology, we can install the 

appropriate number of gas cylinders and airbags in accordance with the different displacement of 

AUV. 

 

 

4. Conclusions 
 
The main objective of this work was to develop the intelligent AUV self-rescue system (ASRS) 

for detecting failure to minimize loss of an autonomous underwater vehicle (AUV). We combined 

three main ideas to construct the ASRS, including sensors algorithm, classifier conducting, and air 

bag system. Complex data acquisition was done by the 10-DOF sensors module with sensor 

calibration and extended Kalman filter (SCEKF), where Euler orientation fused with gravity and 

magnetic field are as state variables, can benefit to get the precise attitude from the AUV. After 

SCEKF processed, we extracted the features of these signals from the 10-DOF sensors module and 

selected these features by principal components analysis (PCA) method. The results were 

incorporated with feature classifier, short-term classifier, and long-term classifier in order to 

recognize 10 types of AUV condition. According to the experimental test in section 3, we have 

shown that the 20 experimental data sets are categorized into “malfunction” or “functional 

condition” categories. The outcomes of proposed classification with features extracted, which 

failure detection accuracy is 97%, were more accurate than the ANN without features extracted. 

These results confirmed that the technology of the ASRS was feasible and that the proposed 

methods were accurate. Furthermore, we designed an inflatable mechanism which fills CO2 to the 

airbags to generate buoyancy for AUV while failure detection.  

The attitude estimation and classification applied in the underwater environment is a new field.  

Considering the future work,we will try to extend more condition types of AUV for classifying 

more complex situation and accomplish the airbag system for setting on the AUV. we can have the 

ability to construct a variety of different models for the AUVs fault simulation, such as the 

underwater turbulence or underwater creatures’ interference. To provide a more comprehensive 

ASRS, and do not have to do the experimental in the real underwater environ-ment, also can 

improve the performance and convenience of installation to the ASRS.With this technology, we 

can install the appropriate number of gas cylinders and airbags in accordance with the different 

displacement of AUV to avoid the loss of AUV; even can be used in rescuing vessels to reduce the 

shipwreck in the future, thereby minimizing loss of life and property. This study will have 

outstanding contributions for the next generation of underwater vehicles. We are look forward to 
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that the application of the SARS will be used widely in the future. 

 

 

Acknowledgments 
 

The authors would like to thank Ministry of Science and Technology (MOST) (granted number: 

MOST 103-2221-E-006-220-MY3, MOST 104-2622-E-006-019-CC2, MOST 

105-2622-E-006-011-CC2, 105 AS-11.2.4-FA-F1 and 106 AS-18.1.7-FA-F1). The research was 

supported in part by the Headquarters of Advancement at the National Cheng Kung University, 

which is sponsored by the Ministry of Education, Taiwan. 

 

 

References 
 

Aggarwal, P., Syed, Z. and El-Sheimy, N. (2008), “Thermal calibration of low cost mems sensors for land 

vehicle navigation system”, 2859-2863. 

Aha, D.W., Kibler, D. and Albert, M.K. (1991), “Instance-based learning algorithms”, Machine Learning, 

6(1), 37-66. 

Asakawa, K., Kojima, J., Kato, Y., Matsumoto, S., Kato, N., Asai, T. and Iso, T. (2002), “Design concept 

and experimental results of the autonomous underwater vehicle AQUA EXPLORER 2 for the inspection 

of underwater cables”, Adv. Robot., 16(1), 27-42. 

Bao, Z., Lu, G., Wang, Y. and Tian, D. (2013), “A calibration method for misalignment angle of 

vehicle-mounted IMU”, Procedia - Social and Behavioral Sciences, 96, 1853-1860. 

Biricik, G., Diri, B. and Sonmez, A.C. (2012), “Abstract feature extraction for text classification”, Turkish J. 

Elec. Eng. Comput. Sci., 20, 1137-1159. 

Bonin-Font, F., Massot-Campos, M., Lluis Negre-Carrasco, P., Oliver-Codina, G. and Beltran, J.P. (2015), 

“Inertial sensor self-calibration in a visually-aided navigation approach for a micro-AUV”, Sensors, 15(1), 

1825-1860. 

Bouten, C.V.C., Koekkoek, K.T.M., Verduin, M., Kodde, R. and Janssen, J.D. (1997), “A triaxial 

accelerometer and portable data processing unit for the assessment of daily physical activity”, IEEE T. 

Bio.- Med. Eng., 44(3), 136-147. 

Burgess, A.R., Dischinger, P.C., Oquinn, T.D. and Schmidhauser, C.B. (1995), “Lower-extremity injuries in 

drivers of airbag-equipped automobiles - clinical and crash reconstruction correlations”, J. Trauma-Injury 

Infection Critical Care, 38(4), 509-516. 

Dragcevic, Z., Takeuchi, K., Vecaj, D. and Hursa, A. (2009), “Motorcycle jacket with integrated air bag”, 

Tekstil, 58(7), 346-351. 

Guangyi, S., Cheung-Shing, C., Guanglie, Z., Li, W.J., Leong, P.H.W. and Leung, K.S. (2007), “Towards a 

mobile airbag system using MEMS sensors and embedded intelligence”, 634-639. 

Hopfield, J.J. (1982), “Neural networks and physical systems with emergent collective computational 

abilities”, Proceedings of the National Academy of Sciences of the United States of America-Biological 

Sciences, 79(8), 2554-2558. 

Hwangbo, M., Kim, J.S. and Kanade, T. (2013), “IMU self-calibration using factorization”, IEEE T. Robot., 

29(2), 493-507. 

Ishizaka, S., Moromugi, S., Kobayashi, M., Kajihara, H., Koga, K., Sugahara, H., Ishimatsu, T., Kurata, S., 

Kirkness, J.P., Oi, K. and Ayuse, T. (2014), “A remote-controlled airbag device can improve upper 

airway collapsibility by producing head elevation with jaw closure in normal subjects under propofol 

anesthesia”, IEEE J. Translational Eng. Health Med., 2, 1-9. 

175



 

 

 

 

 

 

Yi-Ting Yang and Sheng-Chih Shen 

Karantonis, D.M., Narayanan, M.R., Mathie, M., Lovell, N.H. and Celler, B.G. (2006), “Implementation of 

a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring”, IEEE T. 

Inform. Technol. Biomed., 10(1), 156-167. 

Krzanowski, W.J. (1979), “Between-groups comparison of principal components”, J. Am. Statist. 

Association, 74(367), 703-707. 

Leardini, A., Lullini, G., Giannini, S., Berti, L., Ortolani, M. and Caravaggi, P. (2014), “Validation of the 

angular measurements of a new inertial-measurement-unit based rehabilitation system: comparison with 

state-of-the-art gait analysis”, J. Neuroeng. Rehabilit., 11, 7. 

Li, W. and Wang, J.L. (2013), “Effective adaptive Kalman filter for MEMS-IMU/magnetometers integrated 

attitude and heading reference systems”, J. Navigation, 66(1), 99-113. 

Luinge, H.J. and Veltink, P.H. (2005), “Measuring orientation of human body segments using miniature 

gyroscopes and accelerometers”, Med. Biol. Eng. Comput., 43(2), 273-282. 

Lund, A.K. and Ferguson, S.A. (1995), “Driver fatalities in 1985-1993 cars with airbags”, J. Trauma-Injury 

Infection Critical Care, 38(4), 469-475. 

Marins, J.L., Xiaoping, Y., Bachmann, E.R., McGhee, R.B. and Zyda, M.J. (2001), “An extended Kalman 

filter for quaternion-based orientation estimation using MARG sensors”, 2003-2011 vol.2004. 

Mirzaei, F.M. and Roumeliotis, S.I. (2008), “A Kalman filter-based algorithm for IMU-camera calibration: 

observability analysis and performance evaluation”, IEEE T. Robot., 24(5), 1143-1156. 

Nielsen, M.A. (2015), “Neural networks and deep learning”, Determination Press, Canada  

Niu, X., Zhang, Q., Li, Y., Cheng, Y. and Shi, C. (2012), “Using inertial sensors of iPhone 4 for car 

navigation”, 555-561. 

Preece, S.J., Goulermas, J.Y., Kenney, L.P.J. and Howard, D. (2009), “A comparison of feature extraction 

methods for the classification of dynamic activities from accelerometer data”, IEEE T. Bio.- Med. Eng., 

56(3), 871-879. 

Prestero, T.T.J. (2001), Verification of a six-degree of freedom simulation model for the REMUS 

autonomous underwater vehicle, Massachusetts institute of technology.  

Ranganathan, N., Patel, M.I. and Sathyamurthy, R. (2001), “An intelligent system for failure detection and 

control in an autonomous underwater vehicle”, IEEE T .Syst. Man Cy. A, 31(6), 762-767. 

Roman, C. and Mather, R. (2010), “Autonomous underwater vehicles as tools for deep-submergence 

archaeology”, Proceedings of the Institution of Mechanical Engineers Part M-Journal of Engineering for 

the Maritime Environment, 224(4), 327-340. 

Ruiz, A.R.J., Granja, F.S., Honorato, J.C.P. and Rosas, J.I.G. (2012), “Accurate pedestrian indoor navigation 

by tightly coupling foot-mounted IMU and RFID measurements”, IEEE T. Instrum. Meas., 61(1), 

178-189. 

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), “Parallel distributed processing: explorations in 

the microstructure of cognition, vol. 1”, (Eds., David, E.R., James, L.M. and Group, C.P.R.), 318-362, 

MIT Press. 

Sabatini, A.M. (2006), “Quaternion-based extended Kalman filter for determining orientation by inertial and 

magnetic sensing”, IEEE T. Bio.- Med. Eng., 53(7), 1346-1356. 

Saeedi, S. and El-Sheimy, N. (2015), “Activity recognition using fusion of low-cost sensors on a smartphone 

for mobile navigation application”, Micromachines, 6(8), 1100-1134. 

Sayyaadi, H. and Ura, T. (1999), “Multi input-multi output system identification of AUV systems by neural 

network”, 201-208. 

Tamura, T., Yoshimura, T., Sekine, M., Uchida, M. and Tanaka, O. (2009), “A wearable airbag to prevent 

fall injuries”, IEEE T. Bio.- Med. Eng., 13(6), 910-914. 

Titterton, D.H., Weston, J.L. and Institution of Electrical, E. (1997), “Strapdown inertial navigation 

technology”. 

Toshiyo, T., Takumi, Y. and Masaki, S. (2008), “A study to demonstrate the use of an air bag device to 

prevent fall-related injuries”, 1-3. 

Tuncel, O., Altun, K. and Barshan, B. (2009), “Classifying human leg motions with uniaxial piezoelectric 

gyroscopes”, Sensors, 9(11), 8508-8546. 

176



 

 

 

 

 

 

Design and estimation of a sensing attitude algorithm for AUV self-rescue system 

Wang, L. (2005), “Air bags for motorcycles”, Chem. Eng. News, 83(39), 80-80. 

Wang, Z., Jiang, M., Hu, Y. and Li, H. (2012), “An incremental learning method based on probabilistic 

neural networks and adjustable fuzzy clustering for human activity recognition by using wearable 

sensors”, IEEE T. Inform. Technol. Biomed., 16(4), 691-699. 

Wenxi, C., Daming, W., Shuxue, D., Michael, C., Hui, W., Shigeru, T. and Naotoshi, T. (2005), “A scalable 

mobile phone‐based system for multiple vital signs monitoring and healthcare”, Int. Pervas. Comput., 1(2), 

157-163. 

Wold, S., Esbensen, K. and Geladi, P. (1987), “Principal component analysis”, Chemometr. Intell. Lab., 

2(1-3), 37-52. 

Yang, J.Y., Wang, J.S. and Chen, Y.P. (2008), “Using acceleration measurements for activity recognition: 

An effective learning algorithm for constructing neural classifiers”, Pattern Recogn. Lett., 29(16), 

2213-2220. 

Yun, X., Bachmann, E.R., McGhee, R.B., Whalen, R.H., Roberts, R.L., Knapp, R.G., Healey, A.J. and Zyda, 

M.J. (1999), “Testing and evaluation of an integrated GPS/INS system for small AUV navigation”, IEEE 

J. Oceanic Eng., 24(3), 396-404. 

Zhang, G.Q.P. (2000), “Neural networks for classification: A survey”, IEEE T. Syst. Man C, 30(4), 451-462. 

Zhou, J.W. and Mason, A. (2002), “Communication buses and protocols for sensor networks”, Sensors, 2(7), 

244-257. 

 

 

MK 

 

177




