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Abstract. The iterative boundary element method (IBEM) developed originally before for cavitating 
two-dimensional (2-D) and three-dimensional (3-D) hydrofoils moving under free surface is modified and 
applied to the case of 2-D (two-dimensional) airfoils and 3-D (three-dimensional) wings over water. The 
calculation of the steady-state flow characteristics of an inviscid, incompressible fluid past 2-D airfoils and 
3-D wings above free water surface is of practical importance for air-assisted marine vehicles such as some 
racing boats including catamarans with hydrofoils and WIG (Wing-In-Ground) effect crafts. In the present 
paper, the effects of free surface both on 2-D airfoils and 3-D wings moving steadily over free water surface 
are investigated in detail. The iterative numerical method (IBEM) based on the Green’s theorem allows 
separating the airfoil or wing problems and the free surface problem. Both the 2-D airfoil surface (or 3-D 
wing surface) and the free surface are modeled with constant strength dipole and constant strength source 
panels. While the kinematic boundary condition is applied on the airfoil surface or on the wing surface, the 
linearized kinematic-dynamic combined condition is applied on the free surface. The source strengths on the 
free surface are expressed in terms of perturbation potential by applying the linearized free surface 
conditions. No radiation condition is enforced for downstream boundary in 2-D airfoil and 3-D wing cases 
and transverse boundaries in only 3-D wing case. The method is first applied to 2-D NACA0004 airfoil with 
angle of attack of four degrees to validate the method. The effects of height of 2-D airfoil from free surface 
and Froude number on lift and drag coefficients are investigated. The method is also applied to NACA0015 
airfoil for another validation with experiments in case of ground effect. The lift coefficient with different 
clearance values are compared with those of experiments. The numerical method is then applied to 
NACA0012 airfoil with the angle of attack of five degrees and the effects of Froude number and clearance 
on the lift and drag coefficients are discussed. The method is lastly applied to a rectangular 3-D wing and the 
effects of Froude number on wing performance have been investigated. The numerical results for wing 
moving under free surface have also been compared with those of the same wing moving above free surface. 
It has been found that the free surface can affect the wing performance significantly. 
 

Keywords:  WIG (Wing-In-Ground); airfoil, wing; iterative boundary element method; free surface; wave 

drag; lift 

 
 
1. Introduction 
 

Marine vehicles with high speeds can utilize air wings. WIG (wing-in-ground) effect craft and 
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some racing boats including catamarans with hydrofoils can take advantage of air lifting surfaces 

to support completely or partially the vehicle weight. In the present study, the performance of 2-D 

(two-dimensional) airfoils and 3-D (three-dimensional) wings moving with a constant speed above 

free water surface has been investigated by an Iterative Boundary Element Method (IBEM). The 

clearance (vertical distance) between the airfoil (or wing) and free water surface can affect 

significantly the airfoil (or wing) characteristics, such as; pressure distribution, lift, drag values as 

well as the wave deformations on the free water surface. The calculation of the steady-state flow 

characteristics of an inviscid, incompressible fluid past 2-D foils and 3-D wings moving above 

free water surface has therefore practical importance for air-assisted marine vehicles.  

Recently, 2-D WIG problem in close proximity to a free surface has been studied in (Zong et al. 

2012). According to this 2-D theory, WIG effect is significant when the clearance is small and the 

free surface can be represented by a rigid wall in the case of high velocity. A subsonic lifting 

surface theory for three-dimensional WIG effect crafts in the cases of both solid ground surface 

and free surface has been developed by (Liang and Zong 2011). They have found that when the 

clearance is small, WIG effect is significant. In (Liang et al. 2013), the problems of both two- and 

three-dimensional biplanes operating near a free surface were solved by extending the classical 

lifting theories. Extensive numerical results were presented to show the effect of clearance (height 

from free surface) and distance between two foils on the results (lift coefficient, drag coefficient 

etc.). The WIG problems in the cases of both 2-D and 3-D were also studied by (Barber 2007). It 

was found that for low Froude numbers (Fr < 1), the surface deformation is a small depression of 

the surface beneath the foil. As the Froude number is increased, a small change in the shape of the 

deformation is observed. At a Froude number of 14 the surface is not a depression, but rather a rise 

beneath the foil. It was mentioned that this result also followed the trends shown by (Grundy 

1986). Jung et al. (2012) on the other hand studied the endplate effect on the performance of 3D 

wings operating over free water surface. They have found that the end plate can cause a decrease 

in induced drag. Amiri et al. (2016) have formulated numerically the accelerations of 

aerodynamically alleviated marine vehicles in the phases of both landing and take-off. The 

developed model by them has also been validated with the existing experimental data. They 

asserted that any reduction in total resistance in the phase of take-off will result in a decrease in 

get-away speed and take-off run of an aerodynamically alleviated marine vehicle. Matveev (2014) 

has described a coupled aero-hydrodynamic model for a ram wing moving above water in steady 

motion. The factors affecting the aerodynamic performance of a ram wing and associated water 

surface deformations have been presented and it has been shown that an extent of blockage of 

wing sides can drastically change the ram wing lifting performance. A comprehensive survey of 

reviewing research and development of WIG effect technology can be found in (Rozhdestvensky 

2006). 

On the other hand, various numerical methods have been developed to treat the flows 

(cavitating or non-cavitating) around hydrofoils moving under free surface or without the effect of 

free surface. Important studies by using the boundary element methods for the flow analysis of 

2-D and 3-D cavitating or noncavitating hydrofoils and propellers can be found in (Fine and 

Kinnas 1993) and (Kinnas and Hsin 1992). Specifically, the Boundary Element Methods (BEMs) 

have also been found to be computationally efficient and robust tools for the inviscid analysis of 

cavitating or non-cavitating flows around arbitrary geometries (including ship type of bodies) both 

in two- and three-dimensions under free surface as given in (Lee et al. 1992) and (Guanghua 2013). 

For instance, Kelvin and Rankine types of singularities have modeled the flow around cavitating 

or non-cavitating hydrofoil under a free surface, in (Lee et al. 1992) and (Bal et al. 2001), 

246



 

 

 

 

 

 

Free surface effects on 2-D airfoils and 3-D wings moving over water 

 

respectively. The linearized free surface condition was used in both methods. An IBEM (iterative 

boundary element method) for the solution of cavitating or non-cavitating hydrofoil moving under 

a free surface was described in detail in (Bal and Kinnas 2002). The integral equation obtained by 

applying Green's theorem on the surfaces of the problem was divided into two parts; the cavitating 

hydrofoil part and the free surface part. The cavitating hydrofoil influence on the free surface and 

vice versa was considered via their potential values. Details of the present low-order 

potential-based panel method can be found in (Kinnas and Fine 1993). One of the most important 

reviews of boundary element methods up to the late 1970s was given in (Cheng and Cheng 2005), 

as well. This iterative method was modified and extended to apply to the surface piercing bodies 

inside a numerical towing tank or without a numerical towing tank and extensive numerical results 

of the method have been presented in (Bal 2007), (Bal 2008) and (Bal 2011).  

In the present paper, however, the numerical method originally developed for cavitating or 

non-cavitating hydrofoils moving under a free surface is modified and applied to 2-D airfoils and 

3-D wings moving over water. In the method applied here, the integral equation based on Green's 

theorem is divided into two parts: (i) the airfoil part (or wing part), (ii) the free surface part. These 

two problems are solved separately, with the effects of one on the others being accounted for in an 

iterative manner. It can be said that these two separate problems communicate each other via their 

potential values. This method has two advantages: i-) Solutions of sub-problems are easier to 

handle and organize than the full problem in terms of numerical implementation, ii-) Each 

sub-problem requires less computation time and less memory than the solution of full-problem. 

The airfoil part (or wing part) as well as the free surface part are modeled with constant strength 

dipole and source panels. Source strengths on the free surface are proportional to the derivative of 

the perturbation potential with respect to the vertical axis. They are expressed by using the 

linearized free surface condition, in terms of the second derivative of the perturbation potential 

with respect to the horizontal axis as in (Dawson 1977). The corresponding second order 

derivative on the free surface is calculated via application a backward finite difference scheme 

(Bal and Kinnas 2002). In order to prevent upstream waves the first and second derivatives of the 

perturbation potential with respect to horizontal axis are enforced to be equal to zero. No radiation 

condition is enforced at the downstream boundary for 2-D airfoil problem and 3-D wing problem 

and at the transverse boundaries for only 3-D wing problem. The potential induced by airfoil (or 

wing) on the free surface and the potential induced by free surface on airfoil (or wing) surface are 

considered on the right hand sides of each corresponding integral equation.  

The method is first applied to 2D NACA0004 foil geometry with the angle of attack of four 

degrees to validate the present numerical method with that given in (Zong et al. 2012). The 

method is also applied to NACA0015 airfoil for another validation with experiments in case of 

ground effect. The effects of vertical distance on lift coefficient have been investigated. The 

method is then applied to NACA0012 foil geometry with the angle of attack of five degrees. The 

effects of vertical height between foil and calm free surface on pressure distribution and lift and 

drag coefficients have been discussed in detail. The effects of Froude number and clearance on 

wave elevation have been also investigated. The effects of Froude number on the aerodynamic 

performance of 3-D wing have then been discussed. The aerodynamic results of the wing moving 

under free surface have also been compared with those of the same wing moving above free 

surface. 
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2. Mathematical model  
 

2.1 2-D Airfoil problem 
 

It is considered that an airfoil over a free surface is subjected to a uniform inflow, as shown in 

Fig. 1. The x-axis is positive in the direction of uniform inflow and the z-axis is positive upwards. 

The undisturbed free surface is located at z = 0 while the vertical distance between foil and free 

surface is h. It is assumed that the fluid is inviscid and incompressible and the flow field is 

irrotational. Despite the mathematical model (governing equation and boundary conditions) was 

explained in detail in (Bal and Kinnas 2002) and (Bal 2011), it is summarized below for the 

completeness of the paper.  

The perturbation potential,(x,z) and the total potential,(x,z) should satisfy the Laplace’s 

equation in the fluid domain 

0  22                                 (1)
 

The following boundary conditions should also be satisfied by perturbation potential : 

i) Kinematic boundary condition on foil surface: The flow should be tangent to the foil surface 

nU
n








                               (2)
 

where  n


 is the unit normal vector to the airfoil surface directed into the fluid (air) domain. 

ii) Kutta condition: The velocity at the trailing edge of the foil should be finite 

edge  trailingat the   finite;
                    (3)

 

If t


 is a unit vector in the direction of the mean velocity, the velocity in the stream line 

direction must be continuous across the surface 

tVtV

 

                            (4) 

Eq. (4) may be written in terms of total potential  

  0ΦΦ
tt

Φ

t

Φ














 


                (5)
 

which means that the jump of the potential across the wake remains constant in the stream-wise 

direction 

directiontinconstantΦΦ   
              (6)

 

Eq. (6) can be shown to reduce Morinos’ Kutta condition (Kinnas and Hsin 1992) and (Bal 

2011) 

wΔ 


TT                       (7)
 

where T
+
 and T

-
 are the values of the potential at the upper and lower sides of the foil trailing 

edge, respectively.  
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Fig. 1 Definition of coordinate system for 2D foil over water (not scaled) 

 

 

iii) Kinematic free surface condition: The fluid particles should follow the free surface 

ζ(x)zon 0
Dt

z)(x, FD


                      (8)
 

where F(x,z)=z-(x).  

iv) Dynamic free surface condition: The pressure on the free surface should be equal to the 

atmospheric pressure (patm). Applying Bernoulli’s equation, the following equation can be given as, 

  ζ(x)zon 0ζU)(
2

1 22  g
                  (9)

 

where g is the gravitational acceleration. If the second-order terms are omitted and Eqs. (8) and (9) 

are combined, the following linearized free surface equation can be obtained as 

0zon0
z

k
x

02

2









 

                      (10)

 

Here, k0=g/U
2
 is the wave number. The corresponding wave elevation in linearized form can 

also be obtained as 

xg

U
ζ








                              (11)
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249



 

 

 

 

 

 

Sakir Bal 

 

v) Radiation condition: No upstream waves should occur. In order to prevent upstream waves, 

both the first-derivative and the second-derivative of the perturbation potential with respect to x is 

forced to be equal to zero for the upstream region on the free surface (Bal 2011) 










xas0

xx 2

2 

                    (12)
 

 

2.2 3-D Wing problem 

 
It is considered similarly that the wing above free surface is subjected to a uniform inflow, U. 

The x-axis is positive in the direction of uniform inflow, the z-axis is positive upwards and the 

y-axis completes the right-handed system as shown in Fig. 2. The wing above undisturbed free 

surface is located at z = h. It is assumed that the fluid is inviscid and incompressible and the flow 

field is irrotational. The perturbation potential, (x,y,z) and the total potential, (x,y,z) should 

satisfy the Laplace’s equation in the fluid domain similar as in Eq. (1). The kinematic boundary 

condition, Eq. (2) and Kutta condition (including the boundary condition on the wake surface), as 

similar in Eq. (3), should also be satisfied by perturbation potential. An iterative pressure Kutta 

condition is forced at the trailing edge of the wing. The force-free condition is also satisfied on the 

wake surface. The trailing wake surface is assumed to be constant on z=h. The dipole strength in 

the wake however is convected along the assumed wake model in order to ensure that the pressure 

jump in the wake is equal to zero. In other words, in order for wake surface to be force-free, the 

pressure across the wake surface must be continuous 

p
+
=p

-
=p  on wake surface                       (13) 

If t


 is a unit vector in the direction of the mean velocity, Eq. (13) implies that the streamwise 

velocity must be continuous across the surface 

tVtV

 

                            (14) 

Eq. (14) may be written in terms of  

  0ΦΦ
tt

Φ

t

Φ














 


                 (15)
 

which means that the jump of the potential across the wake remains constant in the stream-wise 

direction 

directionttheinconstantΦΦ                (16)
 

Eq. (16) can be shown to reduce iterative Morino’s Kutta condition (Kinnas and Hsin 1992) 

wΔ 


TT                     (17)
 

where T
+
 and T

-
 are the values of the potential at the upper and lower sides of the wing trailing 

edge, respectively. Refer to (Kinnas and Hsin 1992) for details. 
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Fig. 2 Definition of coordinate system for 3-D wing problem. Half of the wing and its wake are shown 

due to symmetry (not scaled) 

 

 

The linearized free surface condition which is identical to 2-D linearized condition as given in Eq. 

(10), should also be satisfied by perturbation potential (x,y,z). The related wave elevation in 

linearized form is identical to Eq. (11) as well. The radiation condition, on the other hand forces no 

upstream waves. It is also identical to that of 2-D problem as given in Eq. (12). 

 

 
3. Iterative boundary element method  
 

According to the Green’s third identity the perturbation potential on the airfoil (or wing) 

surface and the free surface can be expressed as 

 

 















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




W
S

W

FS
S

F
S

dS
n

G
dSG

nn

G
C 




              (18)

 

where SF, SW and SFS are the boundaries of the airfoil (or wing) surface, wake surface and the free 

surface, respectively. C is equal to 1 for 2-D airfoil problem and C=2 for 3-D wing problem. G is 

the Green function (G=ln r in 2-D airfoil problem and G=1/r in 3-D wing problem), (r is the 

distance between the singularity point and field point). W is the potential jump across the wake 

surfaces, and n
+
 is the unit vector normal to the wake surface pointing upwards. In the present 

study, the iterative method presented in (Bal 2011) is applied to solve Eq. (18). The iterative 

method here in general is composed of two parts: (1) the airfoil (or wing) part and (2) the free 

x
y

z

U

Wake Panels
Wing Panels

hc

Fre
e Surfa

ce

s/2
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surface part. On the other hand, the potential in the fluid domain due to the influence of the airfoil 

(or wing), F, can be given as 

 






















WF S

W

S

F dS
n

G
dSG

nn

G
C 




               (19)

 

The potential in the fluid domain due to the influence of the free surface, FS can be given as 

 


















FSS

FS dSG
nn

G
C




                      (20)

 

By substituting Eq. (20) into Eq. (18), the following integral equation for the flow on the airfoil 

(or wing) surface can be written as 

FS

S

W

S

CdS
n

G
dSG

nn

G
C

WF



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















  

            (21)

 

and by substituting Eq. (19) into Eq. (18) in a similar way the following integral equation for the 

flow on the free surface can be written as 

F

S

CdSG
nn

G
C

FS




 2
















 

                   (22)

 

After applying the kinematic condition on the hydrofoil surface and linearized free surface 

condition, Eqs. (21) and (22) can be reduced to 
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x CdS
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            (23)
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Here, nx is the x component of normal vector on the airfoil (or wing) surface. Integral Eqs. (23) 

and (24) can be solved iteratively by a low-order panel method with the potentials F and FS being 

updated during the iterative process. Here, the airfoil surface (or wing surface) and the free surface 

communicate each other via potential. The airfoil (or wing) surface and the free surface are 

discretized into panels with constant strength source and dipole distributions. The discretized 

integral equations provide two matrix equations with respect to the unknown potential values and 

can be solved by any matrix solver. In Eq. (24), the second derivative of perturbation potential 

term (
2
/x

2
) can be expressed in terms of the potentials on the free surface by applying Dawson's 

original fourth-order backward finite difference scheme as given in (Bal and Kinnas 2002). In 

order to prevent upstream waves, the first derivative of potential with respect to x, (/x) and the 

second derivative of potential with respect to x, (
2
/x

2
) are enforced to be equal to zero. Thus the 

source strengths from some distance (termed radiation distance) in front of the airfoil (or wing) to 
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the upstream truncation boundary of the free surface are set to zero, and this forces the first 

derivative of potential with respect to z (/z) to be equal to zero. The value of radiation distance 

is kept the same along the y axis in 3-D wing case. Details of the numerical method can be found 

in (Bal 2011). 

 

 

4. Numerical results and discussion  
 

The present boundary element method for the prediction of unbounded flow characteristics 

around surface piercing and fully submerged cavitating or non-cavitating hydrofoils has already 

been validated extensively in terms of convergence of the results and by comparison with 

experimental data and other numerical methods as given in (Bal 2008) and (Bal et al. 2001). The 

wave heights from present method for hydrofoil moving under free surface compared also 

satisfactorily with the experimental measurements as given in (Bal and Kinnas 2002). In addition, 

the results of the present numerical method for NACA0004 foil were compared with those of 

another numerical method for different angles of attack and Froude numbers (Zong et al. 2012).  

 
4.1 NACA0004 Airfoil for Validation  
 

The method is first applied to a NACA0004 airfoil with angle of attack of four degrees,  = 4˚. 

The numbers of panels on the airfoil surface and on the free surface are chosen as, NF = 200 and 

NFS = 300, respectively. The clearance based Froude number is Fnh=15. The ratios of vertical 

distances between airfoil and calm free water surface to chord are taken as h/c =1.5, 1.0, 0.6 and 

0.4 and the corresponding chord based Froude numbers are Fnc = 18.37, 15.00, 11.62 and 9.49, 

respectively, as given in (Zong et al. 2012). Here, the chord-based Froude number and clearance 

based Froude number are defined as 
gc

U
Fn c   and 

gh

U
Fn h  , respectively. In Table 1, the 

calculated lift coefficients (CL) are compared with those of given in (Zong et al. 2012).  

The agreement between both results is satisfactory. This provides a strong validation test of the 

method. Note that for smaller h/c ratios, the lift coefficients become higher which is consistent 

with the results given in Zong et al. (2012) and Liang and Zong (2011) for very high Froude 

numbers. 

 

 
Table 1 Comparison of lift coefficients with those of given in (Zong et al. 2012) 

h/c Fnh=U/(gh)
0.5 

Fnc=U/(gc)
0.5 

CL (Values in Zong 

et al. 2012) 

CL (Values of 

Present Method) 

1.5 15.00 18.37 0.53 0.53 

1.0 15.00 15.00 0.55 0.55 

0.6 15.00 11.62 0.60 0.61 

0.4 15.00 9.49 0.66 0.67 
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Fig. 3 Lift coefficient versus clearance-to-chord ratios in case of ground effect 

 
 
4.2 NACA0015 airfoil for validation 
 

The method is then applied to a NACA0015 airfoil with angle of attack of five degrees,  = 5˚ 

in the case of ground effect for compariosn with experimental results . The numbers of panels on 

the airfoil surface and on the ground surface are chosen as, NF = 200 and NFS = 500, respectively. 

The ratios of vertical distances between airfoil and ground surface to chord are taken as between 

h/c =1.0, and 0.1, as given in (Zong et al. 2012). In Fig. 3, the calculated lift coefficients (CL) are 

compared with those of experiments and a lifting line method given in (Zong et al. 2012). The 

agreement between pressent method and experiments is satisfactory even for small h/c ratios. This 

provides another strong validation test of the method. In Fig. 4, the corresponding pressure 

distributions are ahown for differnt h/c ratios. In this figure unbounded flow domain means no 

ground effect. 

 

4.3 NACA0012 airfoil 
 

The NACA0012 airfoil with  = 5˚ is later chosen to present some extensive results. The 

Froude numbers are between 0.4  Fn c 2.5 and two clearance (vertical height between airfoil and 

calm free surface) to chord ratios are chosen as h/c = 1.0 and h/c=0.5. The numbers of panels on 

the airfoil surface and on the free surface are chosen as, NF = 300 and NFS = 500, respectively. the 

variation of lift and wave drag coefficients versus chord based Froude numbers with two different 

clearance/chord ratios (h/c=1.0 and h/c=0.6) is shown in Fig. 5. Note that the lift coefficients 

increased for increasing Froude numbers for both h/c ratios as a general trend. The lift coefficient 

in the unbounded flow domain (no free surface case) on the other hand is 0.58. The lift coefficient 

at Froude number FnC = 2.5 for h/c=1.0 is higher than the one in the unbounded flow domain. Note 

also that for Froude number FnC = 1.5, the wave drag coefficients decreased slightly for both h/c 
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ratios and then increased again for increasing Froude numbers. In Fig. 6, the effect of free surface 

on the pressure distribution on the airfoil has been shown for Fnc=1.5 and h/c=1.0. Free surface 

has affected the pressure coefficient larger on lower surface than on the upper surface. 

 

 

 

Fig. 4 Pressure distribution for different clearance-to-chord ratios in case of ground effect 

 

 

 

Fig. 5 Lift and drag coefficients versus Froude numbers with two different clearance-to-chord ratios 
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Fig. 6 Free surface effect on pressure distribution 

 

 

 

Fig. 7 Froude number effect on wave profiles for fixed clearance to chord ratio 
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In Fig. 7, the effect of Froude number on the wave deformation for fixed h/c = 1.0 has been 

presented. It has been found that increasing Froude numbers caused higher wave heights and larger 

wave lenghts. On the other hand, the smaller clearance-to-chord ratio (h/c) caused higher wave 

heights for fixed a Froude number as shown in Fig. 8. The clearance-to-chord ratios did not affect 

the wave lengths any more. In Fig. 9, the effect of iteration numbers on the lift and drag 

coefficients has been shown. Note also that the solution has practically converged within several 

iterations (here two) for both CL and CD. 

 

 

Fig. 8 Clearance-to chord ratio effect on wave profiles for fixed Froude number 

 

 

Fig. 9 Convergence history of the numerical method for lift and drag coefficients 
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4.4 3-D rectangular wing 
 

The rectangular 3-D wing which has NACA0012 sections along span-wise direction has been 

modeled with AR (aspect ratio=s
2
/A; A: planform area of wing) of 4. The chord length and span of 

the wing are represented as c and s, respectively, as shown in Fig. 2. The flow around the wing has 

been first simulated for the infinite case (no free surface effect, unbounded flow domain). The 

analyses have been performed for the angle of attack, =5°. The total number of panels on the 

wing is 50x40=2000, (the number of panels along chord-wise direction and span-wise direction are 

50 and 40, respectively) as shown half of the wing due to symmetry with respect to span in Fig. 2. 

On the other hand the total number of panels on the free surface is selected as 100x20=2000, (the 

number of panels along x direction and y direction are 100 and 20, respectively). The method 

applied here has also been validated before in the case of 3-D hydrofoils moving under free 

surface, including infinite case in (Bal 2008). So they are not repeated here. In Fig. 10, the 

non-dimensional pressure distribution (
2

2
1

0

P
ρU

pp
C


 ) for mid-strip, quarter-strip and tip-strip are 

given for the rectangular wing with AR=4 in unbounded flow domain. The variation of lift and 

drag (induced drag + wave drag) coefficients (
2

2
1D2

2
1L

ρAU

D
C,

ρAU

L
C  , L: lift force, D: 

drag force, A: planform area of the wing) with Froude number (
gc

U
Fn  ) is presented for two 

different h/c ratios (=0.5 and 1.0) in Fig. 11 The lift and drag coefficients (only induced) in the 

case of unbounded flow domain (no free surface effect) are computed as CL=0.3283 and 

CD=0.0095, respectively. Therefore for the selected range of Froude numbers the free surface 

caused an increase in both lift and drag coefficients. In Fig. 12, the wave contours on the free 

surface by IBEM are shown for Fn=0.7 and h/c=0.5. The Kelvin wave pattern can be seen clearly 

here. The pressure coefficients on the mid-section of the wing for Fn=0.7 and h/c=0.5 are shown as 

compared with those of infinite case in Fig. 13. Free surface caused an increase in pressure values 

which is consistent with the results given in Fig. 11. 

Lastly the results of the 3-D wing moving under free surface have also been compared with 

those of the same wing moving above free surface. In Fig. 14, the non-dimensional pressure 

coefficients in the mid-strip for the wing moving under free surface (no cavitation model is 

included) are compared with those of the same wing with the same conditions (Fn=0.7 and 

h/c=1.0). The pressure coefficients in unbounded flow domain (no free surface effect) are also 

included in Fig. 14. Note that the pressure distribution on the lower side of the mid-strip has been 

increased slightly with respect to those of infinite fluid domain for the wing moving above free 

surface. On the other hand the pressure distribution on the upper side of the mid-strip has been 

increased slightly with respect to those of infinite fluid domain for the wing moving under free 

surface. Both are expected results. In Fig. 15, the wave contours on the free surface for the same 

wings with the same conditions are shown for both cases (above and under free surface). Note that 

the wave troughs created by the wing moving under free surface become wave crests created by 

the wing moving above free surface. The wave crests created by the wing moving under free 

surface become wave troughs created by the wing moving above free surface. 
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Fig. 10 Non-dimensional pressure distribution on rectangular wing with AR=4 in unbounded flow domain 

 

 

Fig. 11 Effect of Froude number on lift and drag coefficients for two different clearances 
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Fig. 12 Kelvin wave contours on free surface 

 

 

Fig. 13 Non-dimensional pressure distribution on mid-strip 
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Fig. 14 Comparison of non-dimensional pressure coefficients in the mid-strip 

 

 

Fig. 15 Comparison of wave contours on the free surface 
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5. Conclusions  
 

An iterative numerical method described for submerged cavitating hydrofoils under a free 

surface, has been modified and applied to 2-D airfoils and 3-D wings moving above free water 

surface and some numerical results have been presented. The iterative method was based on the 

perturbation potential formulation. The airfoil part (or wing part) and the free surface part were 

solved separately, with the effects of one on the other taken into account iteratively. These 

corresponding two problems communicate, or “talk” to, each other via their potential values. The 

iterative numerical method was first applied to NACA0004 airfoil geometry for validation. A 

satisfactory agreement has been found in terms of lift coefficient with different Froude numbers 

and clearance values. The method was then applied to NACA0015 airfoil for another validation 

with experiments in case of ground effect. A satisfactory agreement has also been found in terms 

of lift coefficient with different clearance values. The numerical method was later applied to 

NACA0012 foil with a constant angle of attack over a wider range of Froude numbers. It has been 

applied to a 3-D rectangular wing moving steadily over a free water surface to predict the 

aerodynamic performance. The followings have been found that: 

 

1-) The loading on the 2-D airfoil is mainly increasing for increasing Froude numbers. 

2-) The wave heights on the free surface is increasing for decreasing h/c ratios for a fixed Froude 

number for 2-D airfoil problem. 

3-) The wave heights and wave lengths on the free surface are increasing for larger Froude 

numbers for a fixed h/c ratio both for 2-D airfoil problem and 3-D wing problem. 

4-) The free surface caused an increase in loading (lift and drag coefficients and pressure distribution) 

of the 3-D wing related to those of infinite domain (the case of unbounded flow domain, no free 

surface effect).  

5-) If the clearance is small, free surface effect on 3-D wing can become significant.  

6-) The Kelvin wave pattern has also been occurred on the free water surface.  

7-) The wave troughs created by the wing moving under free surface become wave crests by the 

wing moving above free surface and vice versa. 

8-) It is also shown that the method is converged after several iteration steps. 

 

It was also found that the effects of free surface on the performance of 2-D airfoils and 3-D 

wings can be substantial and should be considered in the design stage of the 2-D WIG sections and 

3-D WIGs.   
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Nomenclature  

 

AR  : Aspect ratio 

c  : Chord length of airfoil or wing 

CD  : Drag coefficient of airfoil or wing 

CL  : Lift coefficient of airfoil or wing 

CP  : Pressure coefficient 

D  : Drag of airfoil or wing 

FnC  : Chord based Froude number, FnC =U/(gc)
0.5

 

Fnh  : Clearance based Froude number, Fnh=U/(gh)
0.5

 

g  : Gravitational acceleration 

h  : Height between airfoil (or wing) and calm free surface 

IBEM : Iterative boundary element method 

k0  : Wave number, k0=g/U
2
 

L  : Lift of airfoil or wing 

NF  : Total number of panels on airfoil or wing surface 

NFS  : Number of panels on free surface 

n


  : Unit normal vector directed from airfoil (or wing) to air 

p  : Pressure 

po  : Reference pressure 

s  : Span of wing 

SFS  : Free surface 

SF  : Airfoil (or wing) surface 

SW  : Wake surface 

t


  : Unit tangential vector on wake surface 

U  : Uniform velocity of incoming flow 

  : Angle of attack 

  : Total potential 

  : Perturbation potential 

  : Density of water 

  : Wave elevation 
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