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Abstract.  Tension Leg Platform (TLP) is a floating structure that consists of four columns with large 
diameter. The diffraction theory is used to calculate the wave force of floating structures with large 
dimensions (TLP). In this study, the diffraction and Froude-Krylov wave forces of TLP for surge, sway and 
heave motions and wave force moment for roll, pitch degrees of freedom in different wave periods and three 
wave approach angles have been investigated. From the numerical results, it can be concluded that the wave 
force for different wave approach angle is different. There are some humps and hollows in the curve of wave 
forces and moment in different wave periods (different wavelengths). When wave incidents with angle 0 
degree, the moment of diffraction force for pitch in high wave periods (low frequencies) is dominant. The 
diffraction force for heave in low wave periods (high wave frequencies) is dominant. The phase difference 
between Froude-Krylov and diffraction forces is important to obtain total wave force. 
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1. Introduction 
 

TLP hull is similar to semisubmersible platform. Vertically small motions and high stability, 

low cost increases rate as increasing depth in comparison to other types of platforms, capability of 

production from deep seas are some advantages of TLPs. The disadvantages are: high cost subsea 

foundation installation, sensitive fatigue damage in tethers, tether connections repair and 

maintenance difficulty, low capacity storage tanks. There are important conceptual problems in 

dynamic analysis of such structures (Tabeshpour and Malayjerdi 2016).  

The Morison equation is used to estimate the wave loads in the design of oil platforms and 

other offshore structures (Gudmestad et al. 1996, Veritas et al. 2005). This equation is used when 

the diameter of the cylinder is much smaller than the wavelength. If the diameter of the body is not 

small compared to the wavelength, diffraction effects have to be taken into account (Chaplin. 

1984). Zeng et al. (2007) investigated 6-DOF coupled motions, time history of motions and wetted 

area, free surface and viscous drag effect and dynamic analysis of ISSC TLP in depth of 415 m in 

regular sea. Anitha et al. (2010) presented a new geometric configuration that could be a better 
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alternative to an existing configuration. Also in this paper a three-column mini TLP is designed 

and added mass, radiation damping, transfer functions of wave force and RAOs of motions is 

investigated for three column mini TLP and compared with an existing four column mini TLP. 

Tabeshpour et al. (2013) and (2006) developed hydrodynamic analysis of heave and pitch motions 

of tension leg platforms. They presented an exact solution for heave and pitch vibrations of a TLP 

interacting with ocean wave. Wu et al. (2014) investigated the influence of the legs underwater on 

the hydrodynamic response of the multi-leg floating structure. Also, they studied the 

hydrodynamic responses of the structure in different cases numerically simulated by applying the 

three-dimensional potential theory. The hydrodynamic coefficients, wave excitation loads and 

RAOs of the six degrees of freedom in different wave frequencies were calculated and compared. 

Yang et al. (2012) studied a coupled dynamic analysis for wave interaction with a truss spar and its 

mooring line/riser system in the time domain and developed a time domain second order method 

to estimate of hydrodynamic loads. They also developed a higher-order boundary element method 

to calculate the velocity potential of the resulting flow field at each time step. Drake (2011) 

presented an analytical solution for the horizontal drift force acting on a uniform circular cylinder 

that is undergoing surge and pitch motion in regular waves. Ghadimi et al. (2012) studied an 

analytical solution of the diffraction problem  for  a  cylinder  of  particular  radius  (α)  

floating  in  a  channel  of  specific depth (d). Kunisu (2010) evaluated wave force of the 

submerged floating tunnel based on the diffraction theory by Boundary Element Method and the 

Morison’s equation. Also, the numerical results of the theories compared with experimental 

results.  

In this study deals with estimating of the Froude-Krylov, diffraction and total forces on TLP 

induced by regular wave in the frequency domain. The numerical simulations are based on  the  

Boundary Element Method (BEM) to compute the forces. TF
*
 and phase of wave forces for 

incident angle 0 degree are illustrated and importance of phase difference between Froude-Krylov 

and diffraction are also examined. Spectral analysis of wave forces in three wave approach angles 

(0, 45 and 90 degree) is done, then root mean square (RMS) of the wave forces PSD
†
 are 

estimated and compared. 

 

 

2. Diffraction, Froude-Krylov and radiation wave forces 
 

In This section, the hydrodynamic fluid loading of diffracting bodies in regular waves is 

explained. The fluid is assumed to be ideal and non-rotational to use potential theory. Velocity 

potential is defined as follows (Tabeshpour and Malayjerdi 2016) 

( , , , ) ( , , )
i t

x y z t x y z e


 



                      (1)

 

Where   
is complex potential function and is separated into radiation waves due to the six 

modes of body motion, the incident wave and diffracted wave, and   is frequency of incident 

wave and is expressed as follow 

( , , , ) R I Dx y z t     
                        (2)
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Where R , I and
 D represent

 
radiation, incident wave and diffracted wave potential.  

Two problems for the body are considered to obtain  . The first problem is related to the 

floating body undergoing harmonic oscillation in still water. The body motions will cause radiation 

force to create. The second problem is regarding fixed body subjected to regular wave. 

Froude-Krylove and diffraction forces are components of wave forces acted to fixed the body. 

Therefore, the total potential can be written as below 

6

1

( , , , ) [( ) ]
i t i t

I D j j
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where I , d ,
j , 

jx are incident wave potential, diffracted wave potential, radiation potential 

due to j th motion (per unit wave amplitude), respectively. The wave form and the associated 

velocity potential are given as follows (Tabeshpour et al. 2013) 
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Where iA  is the amplitude incident wave, g is acceleration of gravity, h is the water depth, 

and 1K ik  , where  2 /k L is the wave number with L  as the wavelength. 1K satisfies 

the dispersion relation (Tabeshpour et al. 2013) 

2

1 1tanh( )g K K h 
                          (6)

 

By solving the Laplace equation, Potential functions for incompressible, non-viscose and 

irreversible flows are obtained 

2 2 2
2

2 2 2
0 0or

x y z

  


  
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Also concurrent with solution of Laplace equation, boundary conditions must be satisfied. 

Boundary conditions are as follows 

free surface boundary condition 

2 0g
z




  


  

                            (8) 

bottom boundary condition  

0u in z h
z
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Kinematic boundary condition 
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where n  is normal vector to surface and Sommerfeld boundary condition is as follow 

0 when r  
                         (11)

 

Where 2 2 2r x y z   ,
  is shear stress of fluid. When the potential functions are known, 

the first order hydrodynamic pressure distribution can be calculated using the linearized Bernoulli 

equation 

p
t





 
                               (12)

 

The fluid forces are computed by integrating the pressure over the wetted surface of the body as 

follows 

( )n d
jw I D j

s

F i s   
                     (13)

 

Where 
jwF is the wave force in j -the direction, jn  is the generalized surface normal for j

-th direction and s is the wetted surface of the body in equilibrium position. The diffraction and 

Froude-Krylov forces are found as follows 

( )n d
jD D j

s

F i s  
                       (14)

 

( )n d
jI I j

s

F i s  
                       (15)

 

Where 
jDF  and 

jIF are diffraction and Froude-Krylov forces respectively. Also diffraction 

and Froude-Krylov forces in the surge and heave directions are estimated by integration of the 

fluid pressure around the body in the x and z directions, respectively. The total wave exciting 

forces can then be estimated by summing two the force components (The Froude-Krylov and 

diffraction forces). The Froude-Krylov and diffraction forces are generated due to undistributed 

and distributed waves, respectively. The total Moments of diffraction and Froude-Krylov forces 

can be expressed as below 

( ) dI D j

A

M n r s     
                     (16)

 

Where M is moment vector and r is the place vector of element of body respect to the region, 

which is located in the center of flotation.  

The roll and pitch excitating moments of diffraction and Froude-Krylov forces can be 

expressed as follows 

4 2 3

4 2 3

I I c I c
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5 1 3

5 1 3

I I c I c

d d c d c

M F z F x

M F z F x

 

 
                         (18)

 

4IM and 
5IM express moment of Froude-Krylov force for roll and pitch motions. 

4dM and 

5dM are moment of diffraction force for roll and pitch motions, respectively. 
1IF , 

2IF and 
3IF  

are Froude-Krylov force for surge, sway and heave motions, respectively. 
1dF , 

2dF and 
3dF are 

diffraction forces for surge, sway and heave motions, respectively. cx , cy and cz are distance 

between the wave force and center of gravity of TLP in surge, sway and heave directions, 

respectively.  

 

 

3. Frequency domain analysis 
 

In this study, for determining of energy of wave force in wave frequencies, spectral analysis has 

been carried out. For a linear system, PSD of wave force in a wave frequency is obtained by 

multiplying the square of the wave force transfer function with PSD of wave elevation and can be 

written as follows 

2
( ) ( ) ( )F FS TF S  

                       (19)
 

Where, ( )FS  and ( )S  are PSD of wave force and wave elevation. ( )FTF   is a  TF of 

wave force. The target PSD of wave for the numerical study in this study is assumed JONSWAP 

and for 8SH m is plotted in Fig. (1). 

Numerical results of wave forces and moment (Froude-Krylov and diffraction) in frequency 

domain for surge, sway, heave, roll and pitch motions when wave incidents with wave approach 

angles 0, 45 and 90 degree are illustrated in this section. The case study is a tension-leg platform 

named ISSC TLP and the specifications are given in table (1), (Zeng et al. 2007):  

 

 

 

Fig. 1 Spectral density of wave 
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Table 1 specifications of ISSC TLP in depth of 230 m 

Draft 35?m  External radius of tendon 0.3m  
Displacement 654.5 10 ?kg  

Internal radius of tendon 0.212m  

Mass 640.5 10 ?kg  
Length of tendon 195  

Roll motion moment of 

inertia 
9 282.37 10 ?kg m  

Pre-tension in tendon 1.1445 7E N  

Pitch motion moment of 

inertia 
9 282.37 10 ?kg m  

Young’s modulus of 

tendon 22.1 11 NE
m  

yaw motion moment of 

inertia 
9 298.07 10 ?kg m  

Axial stiffness of tendon 1.5 8 NE
m  

Center of gravity height 38?m  
Number of tendons under 

leg 
3

 
 

 

Fig. 2(a) shows TF of Froude-Krylov, diffraction and total wave forces on TLP for surge and 

Fig. 2(b) illustrates phase of wave forces for surge, when wave incidents with wave approach 

angle 0 degree. It can be seen that Froude-Krylov force for surge in the region Ι 

( 4 6s wave period s  ) is dominant. In the region Π (11 19s wave period s  ), diffraction force 

is dominant and Froude-Krylov and diffraction forces approximately are same in the region ΙΙΙ 

( 6 9.5s wave period s  ). There are some humps and hollows in the curve of wave forces of TLP 

in surge and they occur simultaneously. The global shapes of both Froude-Krylov and diffraction 

forces are similar. At wave period 8 s, phase difference among Froude-Krylov and diffraction 

forces is low. Therefore, in curve of total force that is the sum of Froude-Krylov and diffraction 

forces, occurs a hump. The phase difference at wave period 5 s, approximately is 120 degrees. It 

causes that total force is equal to Froude-Krylov. 

Fig. 3(a) presents TF of wave forces of TLP for heave degree of freedom in frequency domain 

when wave approach angle is 0 degree. It is clear that the Froude-Krylov wave force is 

insignificant rather than diffraction force in the regions Ι ( 5 8s wave period s  ) and Π  

(11 14s wave period s  ) and diffraction force is dominant in this region. At wave period 8s and 

14 s, the diffraction wave force is greater than total wave force because the phase difference 

between Froude-Krylov and diffraction forces is approximately 180 degrees. Also, at wave period 

19 s, the phase difference is 180 degrees and it causes Froude-Krylov force to be more than from 

the total force. At wave period 11.2 s, phase difference is low and it leads the total force to be 

greater than Froude-Krylov and diffraction forces. At wave periods 9.3 and 19 s, Froude-Krylov 

force is dominant. 

Also by comparing Figs. 2(a) and 3(a), it can be concluded that wave force for surge very 

greater than heave force. At some wave periods the humps and hollows of diffraction force differ 

with Froude-Krylov force in heave, but for surge, they occur simultaneously. 

The diffraction, Froude-Krylov and total moment of forces in pitch degree of freedom when 

wave approach angle is 0 degree is shown in Fig. 4(a). The pitch moment is created due to the 

wave forces in surge and heave motions (see Eqs. (12) and (13)). From Figs. 2(a) and 4(a), it is 

clear that at wave period 8 s in the curves of wave force and moment for surge and pitch occurs 

hump and at wave period 6 s occurs hollows on the both of them. The humps and hollows of pitch 
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moment and the wave force of surge happen in the same wave periods. In addition, it is seen that 

the moment of diffraction force for pitch in high wave period (low frequencies) is dominant. Fig. 4 

(b) illustrates phase of wave force moment in pitch direction. At wave period 8s, the phase 

difference between Froude-Krylov and diffraction forces are low and causes in TF of total moment 

occurs hump. At wave period 9.3 s, the phase difference is approximately 180 degrees and it leads 

Froude-Krylov moment to be greater than from total moment. 

From Figs. 2(b), 3(b) and 4(b), it is clear that the phase difference between Froude-Krylov and 

diffraction forces for surge and pitch directions is low in high wave periods but it is high for heave 

direction. 

 

 

 

Fig. 2 (a) Wave forces of TLP for surge degree of freedom and (b) Phase of wave forces for surge, wave 

approach angle is 0 degree 
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Fig. 3 (a) The wave forces of TLP for heave degree of freedom and (b) The phase of wave force for heave, 

wave approach angle is 0 degree 

 

 

Fig. 5(a) shows RMS of wave forces PSD for surge motion. From Fig. 5(a), it is clear that wave 

force for surge is significant when a wave incident with angle 0 degree but is insignificant when 

wave approach angle is 90 degrees. It is seen that diffraction and Froude-Krylov forces are 

approximately equal for surge. The wave force for surge when wave approach angle is 0 degree is 

approximately two times as much as rather than wave approach angle is 45 degree. The RMS of 

wave forces PSD for sway motion is shown in Fig. 5(b). From Fig. 5(b), it is clear that when wave 

incidents with angle 90 degrees, wave force for sway is significantly greater than 45 and 0 degrees. 

The RMS of wave forces PSD for heave motion is shown in Fig. 5(c). It can be seen that the 

Froude-Krylov force of heave are equal in three wave approach angles. The diffraction force is 

greater than total force for heave in three wave approach angle because PSD of wave in the range 

of wave periods 12-16 s is dominant and TF of diffraction wave force for heave is dominant in this 

range.   
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Fig. 4 (a) moments of force for pitch degree of freedom and (b) Phase of wave force moment, wave 

approach angle is 0 degree 

 

 

Figs. 6(a) and 6(b) illustrate RMS of moment of wave force for roll and pitch rotations 

respectively. From Figs. 6(a) and 6(b), it is seen that moment of Froude-Krylov force for roll and 

pitch is insignificant. When wave approach angle is 90 degrees moment of wave force for roll is 

greater than when wave approach angle is 45 degrees. The diffraction moment constitutes the 

greater portion of the total moment for roll and pitch. 
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Fig. 5 (a) RMS of the wave force for surge, (b) RMS of the wave force for sway and (c) RMS of the wave 

force for heave 

 

 

242



 

 

 

 

 

 

Frequency domain analysis of Froude-Krylov and diffraction forces on TLP 

 

 

 

Fig. 6 (a) RMS of the wave force moment for roll and (b) RMS of the wave force moment for pitch 

 

 

4. Conclusions 
 

In this study hydrodynamic analysis of TLP is conducted by Boundary Element Method 

(BEM). The diffraction and Froude-Krylov wave forces for surge, sway, heave and moments for 

roll and pith in three wave approach angle (0, 45 and 90 degrees) are investigated. From the 

numerical results, some points are reported as follows:   

There are some humps and hollows in curve of wave forces and moment. The hollows and 

humps occur in different wave periods (different wavelengths). The hollows and humps of Froude-

Krylov and diffraction wave force for surge and wave force moment for pitch approximately occur 

simultaneously, but these hollows and humps for heave differ with together.  

When wave incidents with angle 0 degree, the moment of diffraction force for pitch in high 

wave periods (low frequencies) is dominant. The diffraction force for heave in low wave periods 

(high wave frequencies) is dominant. The wave force of TLP for surge direction is very greater 

than heave direction. The diffraction and Froude-Krylov forces are approximately equal for surge. 

The phase difference of Froude-Krylov and diffraction forces is important to obtain total wave 

force because when it is high (180 degree), the total force is lower than diffraction or Froude-
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Krylov forces and when the phase is low, higher total force is created.   

When the wave approach angle is 45 degrees, the wave forces for surge and sway and the 

moment of wave force for roll and pitch motions are equal. When the wave approach angle is 90 

degree, the wave force for sway is significant but for sway is insignificant. The Froude krylov and 

diffraction force for heave direction in three wave approach angles are approximately the same. 

The moment of Froude-Krylov force for roll and pitch is insignificant. The diffraction moment 

constitutes the greater portion of the total moment for roll and pitch.  
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