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Abstract.  This paper presents a new approach for underwater image analysis using the bi-dimensional 
empirical mode decomposition (BEMD) technique and the phase congruency information. The BEMD 
algorithm, fully unsupervised, it is mainly applied to texture extraction and image filtering, which are widely 
recognized as a difficult and challenging machine vision problem. The phase information is the very stability 
feature of image. Recent developments in analysis methods on the phase congruency information have 
received large attention by the image researchers. In this paper, the proposed method is called the EP model 
that inherits the advantages of the first two algorithms, so this model is suitable for processing underwater 
image. Moreover, the receiver operating characteristic (ROC) curve is presented in this paper to solve the 
problem that the threshold is greatly affected by personal experience when underwater image edge detection 
is performed using the EP model. The EP images are computed using combinations of the Canny detector 
parameters, and the binaryzation image results are generated accordingly. The ideal EP edge feature 
extractive maps are estimated using correspondence threshold which is optimized by ROC analysis. The 
experimental results show that the proposed algorithm is able to avoid the operation error caused by manual 
setting of the detection threshold, and to adaptively set the image feature detection threshold. The proposed 
method has been proved to be accuracy and effectiveness by the underwater image processing examples. 
 

Keywords:  underwater image; bi-dimensional empirical mode decomposition; edge detection; multiple 

pixel edge features; phase congruency 

 
 
1. Introduction 
 

Underwater image edge detection is one of the key technologies in underwater image 

processing technique, which has been widely used in some areas such as ocean surveillance, 

seabed prospect and underwater targets detection. Consequently, underwater image processing 

method plays an important role in modern ocean engineering. In general, underwater image with 

high resolution may be obtained by an underwater camera. In deep-sea or turbid water, however, 

there will be various image distresses due to the bad illumination conditions and the noisy imaging 

environments, the image distresses will affect the application of underwater image in underwater 

targets detection. In order to solve the problem of the various image distresses, scientists have long 

sought numerous underwater imaging designs, and believing that they can overcome these 

difficulties (Jaffe 1998, 2001, Nevis 1999). For reducing the effects of sun light scattering and 
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absorption on underwater image, especially in turbid water, underwater acoustic imaging (Boyle 

2003, Blair 2006) and underwater laser imaging (Nevis 1999, Chen 2002, Chen and Wu 2004) 

have experienced a spectacular increase in underwater application over recent years. Among these 

imaging approaches, the mildest drawback is these methods depending on the imaging systems. 

For the most of underwater images, the underwater optical image will be inevitably encountered. 

Therefore, this paper will propose a novel method of multi-scale edge detection for underwater 

optical image analysis, and the algorithm is developed based on the phase-based edge detection 

utilizing the bi-dimensional empirical mode decomposition (BEMD) technique. 

The BEMD method is a two-dimensional extension of the concept of one-dimensional 

empirical mode decomposition (EMD). The EMD (Huang et al. 1998) algorithm is first proposed 

by Huang, Shen, Long and Wu et al. for analyzing non-linear and non-stationary data. This method 

is initially limited to real-valued time series, and then it has been extended to complex-valued time 

series (Rilling et al. 2007), and has been extended from one dimension to two dimensions, this 

two-dimensional data decomposition method has been received large attention by the researchers 

of image analysis (Bhuiyan et al. 2008, Damerval et al. 2005, Nunes et al. 2003 and 2005, Nunes 

et al. 2003, Xu et al. 2006). Therefore, this promising image processing technique can be applied 

in various real problems, for example, image texture analysis (Nunes et al. 2003, 2005, Nunes et al. 

2003, Xu et al. 2006), image feature detection (Bhuiyan et al. 2008, Ge et al. 2007), image 

denoising (Bhuiyan and Adhami et al. 2008), pattern analysis, multi-spectral image fusion (Xu et 

al. 2007) and so on. 

The purpose of underwater optical image analysis is to distinguish objects in water and to catch 

more underwater environment information. The traditional image processing method will lose 

plenty of features information, but the BEMD approach is to detect more edge information by 

decomposing multi-layer underwater image. The edge thinning is performed by the Canny operator, 

and this process also requires manual choice of the threshold parameter. Manual procedure is 

time-consuming, so aiming at this problem this paper presents a novel feature detection algorithm 

based on the ROC theory to extract the multi-scale edges of image. 

For convenience of discussion, this paper is organized as follows: First, the proposed EP model 

is represented in section 2 of this paper. Section 3 briefly introduces image edges detection based 

on ROC curve analysis. In Section 4, two groups of experiments are performed to verify the 

effectiveness of the proposed algorithm: one is decomposing the test image into IMFs and residues 

by the BEMD algorithm, the other is detecting the edge information in the first three EPs by the 

Canny operator and ROC curve analysis. Finally, Section 5 gives concluding remarks. 

 

 

2. The EP edge detection model for underwater image 
 

Image features such as step edges, lines, and the Mach bands all give rise to point where the 

Fourier components of an image are maximally in phase. The use of phase congruency for 

marking image features has significant advantages over the gradient-based method, since the phase 

congruency is an illumination and contrast invariant measure of the image feature, unlike the 

gradient-based feature detectors, which can only detect step features. Consequently, this paper 

provides an edge detection method for underwater image, which is the method of the combination 

of BEMD algorithm and phase information. For purposes of discussion, this edge detection 

algorithm is called “EP” model (E denotes the EMD algorithm, P denotes the phase information). 

As an image edge features extraction tool, the phase-based edge detection (Kovesi 1999) reflects 

218



 

 

 

 

 

 

An adaptive method of multi-scale edge detection for underwater image 

 

the behavior of an image in the frequency domain, and it has been noted that edge features have 

many of their frequency components in the same phase. But this method’s disadvantages are that 

calculating the phase congruency map of an image is very computationally intensive, and sensitive 

to image noise. 

In this section, the BEMD algorithm and phase information under which the EP model is 

designed for the underwater image multi-scale edge detection. Firstly, a 2-D image function

 yxf ,  can be decomposed into several IMFs sub-images and residual sub-images by the BEMD 

method, which making the image possible to be shown in multiple scales. Secondly, the 

multiple-scale edge detection model of an image will be designed based on the multiple-scale 

image. For each IMF sub-image, the EP model is shown as follows 

 IMFPCEP                                (1) 

According to the above analysis, this section gives a specific the description of the multi-scale 

edge detection process: 

(1) The 2-D image function  yxf ,  is decomposed by the BEMD algorithm 

In order to identify all the local extreme points of the given image  ,f x y , there are many 

methods available for them, such as morphological operators (Nunes 2003, 2005), and sliding 

window (Bhuiyan et al. 2008). These extreme points data interpolation is usually performed by the 

Delaunay triangulation, the bi-cubic spline, finite element algorithm and two order statistics filters 

estimation (Bhuiyan et al. 2008). In this paper, the regional-based operators will be chose to find 

the local maxima and minima points from the underwater image data. The regional-based operator 

assumes that one pixel of image is considered as a local extreme point, if it’s value is lower or 

higher than all of it’s neighbors, through scanning each pixel of all image line by line. The surfaces 

interpolation is realized using the RBF. Moreover, the envelop surface of maximum
max ( , )E x y and 

the envelop surface of minimum
min ( , )E x y  will be acquired, and then the mean of these envelop 

surface will be also computed. If ( , )meanE x y  denotes the average value of envelop surface of 

extremes, then the formula of it is shown as the following (Liu and Lin 2012) 

max min( , ) ( , )
( , )

2
mean

E x y E x y
E x y


                        (2) 

The difference between the original image’s function  ,f x y and ( , )meanE x y is the first 

component, which is designated as
1( , )H x y , that is 

 1( , ) , ( , )meanH x y f x y E x y                          (3) 

Since the sifting process serves two purposes, viz. to eliminate riding waves and to make the 

wave-profiles more symmetric. So the procedure should be repeated k times, until
1kH is an IMF, 

that is 

1( 1) , 1( , ) ( , ) ( , )k mean k kH x y E x y H x y                         (4) 

Set
1 1( , ) ( , )kC x y H x y , then

1( , )C x y is the first IMF component separated from the original 

image data. Similar to the EMD algorithm, a criterion must be determined for each layer of the 

sifting process to stop, which can be accomplished by limiting the size of the standard deviation 
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(SD), computed from the two consecutive sifting results ( 1) ( , )i kH x y and ( , )ikH x y for the i th mode 

as (Bhuiyan et al. 2008) 
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generally, the value of SD is equal or greater than 0.2 meanwhile equal or lesser than 0.3. 

After that,
1( , )C x y is separated from the original image data, the rest part is the residue

1( , )R x y , 

it will be treated as the new data and subjected to the same sifting process as described similar to 

the EMD method, this procedure can be repeated n  times, finally the superposition expression 

will be obtained as follows 

     



N

n

nn yxryxcyxf
1

,,,                       (6) 

where ( , )f x y denotes the original image function,  yxcn , is designated the information of the 

smaller scale after the decomposition,  yxrn , denotes the final coarsest scale mean trend. 

(2) The multiple-scale sub-image edge detection process analysis 

For every  yxcn , , set 

   yxcyx nn ,,IMF  , ( Nn ,,2,1  )                   (7) 

For every sub-image  yxn ,IMF , the local energy of the sub-image  yxEn ,  is calculated by 

the Log-Gabor Wavelet, and the sum of its amplitude u uFp  is also computed. The minimal 

scale filter responds to the image noise which is estimated in all directions from the energy figure, 

the total energy of noise nT  can be obtained in all directions. 

The phase congruency of each sub-image is calculated by the following equation (Kovesi 1999) 

 
  

 




u

u

nn

Fp

TyxE
yx



,
,PC                          (8) 

where    denotes that the difference between the functions is not permitted to become negative, 

an  value of 0.01 has been used for all the results presented in the text. 

Having defined EP model, from the Eqs. (1), (7) and (8), the n  levels multiple-scale 

sub-image is defined as 

 nn IMFPCEP                              (9) 

In this paper, Emphasis is placed on the construction of the EP model by the underwater image 

analysis in achieving the multiple-scale edges of objectives becomes possible, thus the effect of 

edge detection in water will rise sharply. 
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3. The EP edge detection model based on ROC curve analysis 
 
In this paper, the test image is decomposed into IMFs and residues by the EP model. As the first 

three IMFs (IMF1, IMF2 and IMF3) closely resemble the edge map of an image, so the edges 

detection is performed in IMFs images by Canny operator. The Canny algorithm detects edges by 

looking for local maxima of the gradient of image. The gradient’s amplitude and orientation are 

calculated using the derivative of a Gaussian filter. The Canny operator belongs to primarily 

gradient-based method. But one major issue with the Canny algorithm is it’s threshold parameter 

not automatic caused by the Canny operator, so the ROC (Macmillan et al. 1991) curves analysis 

is employed to select the Canny detector parameter values in this paper.  

(1) Generation of underwater image edge extraction 

In this step, an image edge extraction graph is automatically constructed, given a range of 

detection results obtained from different Canny detector parameter sets. The range of parameters to 

be tested should be large enough to cover a wide range of detection results from noisy to sparse. 

The actual parameter values depend on the actual implementation setup such as the image intensity 

range and size. The standard deviation of the Gaussian in the Canny detector here is from 0.9 to 

1.5 in steps of 0.2, the high threshold value is from 0.07 to 0.37 in steps of 0.1, and the low 

threshold is set to one third of the high. Thus, we can implement 16 parameter sets combinations 

and obtain 16 edge detection graphs. These 16=N  edge detection results ( 1,2, , )jD j N  

are then tested for correspondence. A pixel location identified as an edge by all N detector setups 

will have the highest correspondence, and a location identified as an edge by only one detector 

setup will have the lowest. Typically, points with higher correspondence belong to more distinct 

luminance edges and are considered to be more related to boundaries of main objects in the image 

rather than noise or minor features that may appear disturbing to the viewer (Yitzhaky et al. 2003). 

In this paper, N detection results will produce N possible correspondence levels, so N possible 

correspondence threshold (CT) values can be applied to distinguish between points with 

correspondence higher, equal or lower than that CT. 
(2) Construction of a ROC curve 

To form the CT-ROC curve, the CT value is applied at each of the N correspondence levels. In 

each CT level i , points with correspondence above or equal to the CT will be considered as edges 

and the other points will be considered as non-edges, so a potential ground truth ( iPGT ) is formed 

for each CT level i . For each iPGT   1,2, ,i N  and each ( 1,2, , )jD j N , here, set

ji DPGTTP ,
,

ji DPGTFP , ,
ji DPGTTN ,
and 

ji DPGTFN ,
are, respectively, the true positive (TP), false positive 

(FP), true negative (TN) and false negative (FN) in goals, according to the ROC theory, the 

average of these probabilities in goals are as follows 
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where R and C are the dimension number of image, 1iPGT  and 0iPGT  are the pixels in the 

iPGT  decided as the edges and the non-edges, respectively, and 1jD  and 0jD  are, respectively, 

pixels detected as the edges and the non-edges in the detection j . 

Then, according to the ROC theory, the average TP rate (TPR) and the average FP rate (FPR) 

are 

i

i

i i

i

i

i i

PGT

PGT
PGT PGT

PGT

PGT
PGT PGT

TP
TPR

TP FN

FP
FPR

FP TN






 
 

                       (11) 

where, 
ii PGTPGT FNTPP  , 

ii PGTPGT TNFPP 1 ; the TPR and FPR are known as 

sensitivity and (1- specificity), respectively. So the coordinates of these points’ pairs (FPR, TPR) 

are forming a curve, which is the CT-ROC curve. 
 
 
4. The results and discussion of the preliminary experiment 
 

4.1 Multi-scale decomposition of underwater image based on BEMD algorithm 
 

This section gives a specific example of BEMD algorithm, the original test images shown in 

Figs. 1 and 2 are as follows 

 

 

Fig. 1 Img1 

 

 

Fig. 2 Img2 
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Fig. 3 Decomposition diagram of BEMD 

 
 

      
IMF1_Img1 IMF2_Img1 IMF3_Img1 IMF1_Img2 IMF2_Img2 IMF3_Img2 

      
Residue1_Img1 Residue2_Img1 Residue3_Img1 Residue1_Img2 Residue2_Img2 Residue3_Img2 

Fig. 4 Test image 1 and test image 2 are decomposed into three IMFs and three Residues 

 
 

The Fig. 3 displays three layers decomposition of the original image based on BEMD, this 

procedure can separate natural scale from the original image to achieve image decomposition from 

low to high frequency. To begin with, the first intrinsic mode function (IMF1) is separated from 

the original image, which corresponds to the image with the highest spatial frequency. The residue 

(viz. Residue1), is the remainder which the IMF1 is subtracted from the original image, and it 

corresponds to the image with the lowest spatial frequency. The next step is to extract the IMF2 in 

the Residue1, and obtains the Residue2. In the end, the IMF3 and Residue3 can be obtained in the 

same way. Each IMF is obtained through decomposing the upper residue image, as shown in Fig. 4; 

the test image is decomposed into three IMF images and three residual images, the first row is IMF 

image from finer to courser scales, the second row displays the residue image corresponding to the 

IMF. The IMF image represents the texture, noise and edges information of underwater image. The 

IMF1 obviously exhibits edges information of image, and the residue image presents the basic 

structure and eventual trend of image. 
Fig. 5 is the edge detection map by the proposed method. This is a group of gas curtain images 

under water; though it is impossible to distinguish the sizes and amounts of bubbles in image, the 

large quantities of texture information about objects are still obtained in the EP images. In general, 

there are some problems with non-structured objects such as bubbles and rocks in underwater 

image; it is difficult to extract the robust information from these images. In Figs. 4 and 5, however, 
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a lot of information about these non-structured objects can be acquired by comparing analysis. 

Moreover, the EP image has good visual effect over the IMF image. The Fig. 5 second row gives 

the relation between phase angle and frequency in each EP sub-image. It can be seen that the phase 

angle 2 ( 57.1 ) is a knee of the curve. 

In each EP image, the local energy  yxEn ,  is calculated by the Log-Gabor Wavelet, Table 1 

and Table 2 are shown the mean energy squared values recorded with smallest scale filter at each 

orientation, the mean energy values are reduced along with the increasing number of the EP layers.  

As pointed out by Kovesi (Kovesi 2002), the weighted mean phase angle will lie in the range 

  to + . As one moves around the phase circle an angle of zero indicates an upward going 

step, 2  indicates a bright line feature,   indicates a downward going step, and 3 2  

indicates a dark line feature. Our EP model inherits this trait, the weighted mean phase angle 0 and 

  correspond to a line, and the angle 2  and 3 4  correspond to a step, as shown in the Fig. 

6. 

 
Table1 Mean Energy squared values of test image 1 

 0 4  2  3 4    3 2  

EP1 1.8201 1.0951 0.7524 0.7782 0.7536 1.0793 

EP2 0.0770 0.0592 0.0548 0.0574 0.0579 0.0604 

EP3 0.0040 0.0029 0.0032 0.0036 0.0031 0.0026 

 
 
Table 2 Mean Energy squared values of test image 2 

 0 4  2  3 4    3 2  

EP1 5.1250 3.5791 2.9446 2.8239 2.8239 3.9320 

EP2 0.2789 0.2250 0.2040 0.2108 0.2125 0.2449 

EP3 0.0082 0.0073 0.0074 0.0077 0.0075 0.0075 

 
 

      
EP1_Img1 EP2_Img1 EP3_Img1 EP1_Img2 EP2_Img2 EP3_Img2 

      

Fig. 5 EP image and its frequency 
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EP1_Img1 EP2_Img1 EP3_Img1 

   
EP1_Img2 EP2_Img2 EP3_Img2 

Fig. 6 Edge types analysis 

 

4.2 Results of edge features detection based on CT-ROC curve 
 

A histogram of the correspondence for 16N  is presented in Fig. 7. Examples of the iPGT

s with CT level 4i   are presented in Fig. 8. 

 

   
EP1_Img1 EP2_Img1 EP3_Img1 

   
EP1_Img2 EP2_Img2 EP3_Img2 

Fig. 7 Correspondence level of every EP image edge pixels 
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EP1_Img1 EP2_Img1 EP3_Img1 

   
EP1_Img2 EP2_Img2 EP3_Img2 

Fig. 8 PGT edge map 

 
 

   
EP1_Img1 EP2_Img1 EP3_Img1 

   
EP1_Img2 EP2_Img2 EP3_Img2 

Fig. 9 ROC curve of each EP image 

 
 

ROC analysis is applied here to find the best CT value that forms the PGT  by considering 

the trade off between increasing the information and decreasing the noise in the detection result. 

The best CT value is defined as the one that forms a PGT  giving the best match to the entire 

edge detection results. This PGT  will be our ideal edge graph. The optimal CT forms a point in 
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the CT-ROC plane that is the closest to the ideal point (0, 1). As shown in Fig. 9, we define a 

diagnosis line by connecting the points (P, P) and (0, 1) on the CT-ROC plane. Then, the best CT 

value will be at the intersection of the diagnosis line and the ROC curve (Yitzhaky et al. 2003), 

and practically the closest point to the intersection. Thus, the ideal edge graphs are show in Fig. 

10. 

 
4.3 Results of edge segmentation using the EP model 
 

This experiment will segment the every EP sub-image using the region growing method (Theo 

1990), as illustrated in the Fig. 11, let’s only take the first two EP image of Img1 for example. 

Firstly, the each EP sub-image is extracted edge features by the EP model; the next step will 

perform the edge segmentation according to the region growing algorithm in every EP sub-image; 

finally, this paper provides the statistical analysis on the change of the pixel of each EP sub-image. 

 
 
5. Conclusions 
 

The BEMD algorithm is a potential image processing method, which is not only robust and 

adaptive, but also totally data-driven. The phase congruency is a measure of feature significance in 

computer image; this edge detection is particularly robust against changes in illumination and 

contrast. In this paper, the EP model is the phase congruency multi-scale edge detection based on 

the BEMD algorithm, which inherits theirs good traits. The contrast experiment has shown that, 

the proposed method could detect a lot of edge features information for underwater image, even 

for unclear image. The experiment also provides some satisfactory results of this paper, which are 

summarized as follows 

 

 

   
EP1_Img1 EP2_Img1 EP3_Img1 

   
EP1_Img2 EP2_Img2 EP3_Img2 

Fig. 10 Ideal edge extraction using the optimal CT value 
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EP1_Img1 edge map 

 

EP1_Img1 segmentation 

 

EP2_Img1 edge map 

 

EP2_Img1 segmentation 

 

The change of EP1_Img1 edge pixel 

 

The change of EP2_Img1 edge pixel 

Fig. 11 The region segmentation analysis of underwater image by the EP model 

 
 

(1) In view of some virtues of the BEMD algorithm and the phase congruency theory, this paper 

has successfully proposed the EP model to process underwater image. The EP model inherits the 

advantages of the first two methods accordingly. 

(2) The image segmentation is performed based on the principle of the multi-scale edge 

detection of image. So it is feasible that the underwater image could be segmented by means of 

multiple scales. 

(3) The EP model could make full use of the texture information of every layer sub-image, 

which is its peculiar trait. 

Conclusively, as described by this article, it enables us to realize that the image processing 

technology has a wide range of applications in underwater engineering, and is obviously of crucial 

significance. 
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