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Abstract.  A theoretical study of Boussinesq equations (BEs) for internal waves propagating in a two-fluid 
system is presented in this paper. The two-fluid system is assumed to be bounded by two rigid plates. A set 
of three equations is firstly derived which has three main unknowns, the interfacial displacement and two 
velocity potentials at arbitrary elevations for upper and lower fluids, respectively. The determination of the 
optimal BEs requires a solution of depth parameters which can be uniquely solved by applying the Padé 
approximation to dispersion relation. Some wave properties predicted by the optimal BEs are examined. The 
optimal model not only increases the applicable range of traditional BEs but also provides a novel aspect of 
internal wave studies. 
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1. Introduction 
 

Internal waves frequently occur in ocean in which the density is stratified due to either 

temperature or salinity variations. They play an important role in the transport of momentum and 

energy within the ocean. Based on many observations in marginal seas, for example, the Andaman 

Sea by Osborne and Burch (1980), it is found that the stratified fluids can be simulated by a 

two-fluid system as the upper and lower densities of ocean are so close and clearly divided by the 

pycnocline. Furthermore, such a slight difference in densities of two layers yields a minimal 

displacement at free surface. Therefore the free surface is commonly replaced by a rigid-lid 

boundary for simplification and without loss of accuracy. 

For linear internal waves, Lamb (1932) displayed the dispersion relations for internal waves in 

a two-fluid system with a free-surface and rigid-lid boundaries, respectively. Nowadays these 

solutions are still widely applied to study motions of infinitesimal-amplitude internal waves, and 

are used to verify the linear properties of nonlinear models. Among nonlinear wave models (see 

Liu et al. 2008 for detailed reviews), Boussinesq equations which were originally developed for 

weakly nonlinear waves have been extended in the recent two decades for studying waves 

propagating from deeper water to shallow water in a single-fluid system (Chen and Liu 1995, 

Gobbi et al. 2000, Madsen and Schäffer 1998, Nwogu 1993, Wei et al. 1995). In addition, the 

concern about the accuracy of Boussinesq ocean model was demonstrated by McDougall et al. 
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(2002). 

As for the two-fluid system, Liu et al. (2008) derived a new set of BEs with the presence of 

free surface. Based on the derived equations he analyzed basic wave properties including 

dispersion relation, particle velocities and second-order wave properties. Later Nguyen and Dias 

(2008) studied the same problem but a rigid-lid boundary condition is considered. Both 

mathematical derivation and numerical simulation were performed. Debsarma et al. (2010) 

extended Camassa and Choi’s work (1999) to propose a set of fully nonlinear model equations also 

for a two-layer fluid where the lower fluid depth is infinite. A travelling wave solution was 

examined to verify their solution. Recently, a asymptotic model was theoretically derived and 

analyzed by Barros and Choi (2013). Local instability near the maximal displacement and bottom 

effect were mathematically examined by their model equations. It is clear that, either for surface 

waves or internal waves, Boussinesq equations are quite crucial not only in academic studies but 

also in many wave-related applications (Myrhaug and Ong 2012, Cifuentes et al. 2015, Dong et al. 

2012, Shi et al. 2013).  

As the motion of free surface can be reasonably ignored for most studies of internal waves, a 

rigid-lid assumption will greatly simplify the mathematical analysis. Hence, in this paper the BEs 

are derived with the assumption of a rigid-lid. Based on the derived equations, two major analyses 

are made. The first goal is to determine the optimal BEs by firstly determining the unique solution 

pair of depth parameters with mathematical methods. Secondly, properties of waves and fluid 

particles are examined. The organization of present study is as follows. In Section 2, a set of BEs 

is derived by retaining only the leading-order dispersive effect and making no smallness restriction 

on the nonlinearity. The optimal BEs and how it is determined are demonstrated in Section 3. In 

Section 4 wave properties including dispersion relation and particle velocities are examined. 

Conclusions are made in Section 5. 

 

 

2. Boussinesq equations for a rigid-lid boundary 
 

Internal waves propagating in a two-fluid system with a rigid-lid plate is schematically depicted 

in Fig. 1. Both fluids are assumed to be inviscid and immiscible. Densities of the upper and lower 

fluids are 1  and 2 , and the density ratio is defined as 121  r . Flow in each layer is 

assumed to be irrotational, implying the existence of two velocity potentials 1  and 2  in the 

upper and lower layers. For a dimensionless analysis, the following non-dimensional variables are 

introduced: x  and y  are the horizontal coordinates scaled by a representative wavenumber 0k . 

z  is the vertical coordinate starting at the undisturbed interface of two layers and pointing upward, 

scaled by a typical thickness 0h . The undisturbed thicknesses of the upper and lower layers 1h  

and 2h  are also scaled by 0h .   denotes the interfacial displacement which is scaled by a 

representative amplitude 0a . All non-dimensional governing equations and boundary conditions 

are shown as follows (all non-dimensional symbols are neglected hereafter) 

0,11

22  zz   within 1hz                         (1) 

0,22

22  zz   within  zh2                      (2) 

0,1  z   at 1hz                                (3) 
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where the subscripts z,  and t,  represent the derivatives with respect to z  and t , the symbol 

  is defined as  yx  ,  and two important parameters,   and  , which measure the 

dispersive effect and the nonlinearity respectively, are defined as 00hk  and 00 ha . 

Integrating Eqs. (1) and (2) with respect to z  and taking boundary conditions into account, it 

yields 
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Next, velocity potentials are expanded in terms of 2  as 
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Fig. 1 Internal waves in a two-fluid system with a rigid lid 
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Substituting Eq.(10) into Eqs. (1), (2), (3) and (6) gives the solutions of n1  and n2 . Now 

we introduce two velocity potentials, U  and L  which denote the velocity potentials of the 

upper and the lower layers at the specific elevations Uzz   and Lzz  , respectively. Relations 

between 1 , 2  and U , L  are 
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Substituting Eqs. (11) and (12) into Eqs. (7), (8) and (9) generates the Boussinesq equations 

expressed in terms of U , L  and   as 
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where higher-order nonlinear terms are neglected for simplicity. It is remarked that if one adopted 

Eq. (4) or Eq. (5) instead of using Eq. (3) or Eq. (6) for deriving the equations, some higher-order 

terms will be different in Eqs.(13) to (15). But such a difference will not affect the determination 

of the optimal BEs analyzed in the following section. Moreover, Eqs. (13) to (15) can be reduced 

to some existing wave equations. For example, by keeping Eqs. (14) and (15), retaining the terms 

of  2O  and  O  and setting the density ratio r  to be zero, the BEs for a single-layer fluid, 

which was referred to Chen and Liu (1995), are recovered 

 

 

3. The optimal Boussinesq equations  
 

In this section the depth parameters Uz  and Lz  will be determined to acquire the optimal 

BEs. Depth parameters dominate not only the type of BEs but also wave properties while 

simulating wave propagation. If the depth parameters are chosen arbitrarily, one cannot ensure that 

the resulting BEs still behave excellent in the range of 1 . Typically the linear dispersion 

relation is adopted to provide a way toward the optimal choice. For the sake of simplification, only 

one-dimensional wave is considered in the following analysis. By assuming that the velocity 
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potentials U  and L  are proportional to   txi exp  and eliminating   from BEs, it 

gives the linear dispersion relation 
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If one hope to extend the applicable range of present BEs from a shallower configuration to a 

deeper one, it requires to choose a suitable pair of Uz  and Lz  to make the linear dispersion 

relation of BEs identical to that of linear wave theory which is shown (se Lamb 1932) 
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Eq. (17) is now rewritten in the form of the (2,2) Padé approximants 

   

 
 

  








































21

2121

21

3

2

3

1

21

3

2

3

12

21

212

315
1

15
1

1

hh

hhhh

hh

hh

hh

hh

hh

hh

r

r

r

r

r

r

r

r
LP


















             (18) 

Equating two coefficients in the numerator and denominator of Eqs. (16) and (18), only one 

relation is obtained 
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which can be also represented as 
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It is clear that Eq. (20) cannot give an unique pair of  LU zz , . In Liu et al. (2008), the solutions 

are arbitrarily chosen by only one equation. This can be improved by adding an extra equation  

012  LU zhzh                            (21) 

to be solved with Eq. (20) to determine a unique pair of depth parameters. It is noted that The 

imposed condition Eq. (21) is applied to determine a unique solution pair of  LU zz , . The major 

reason why Eq.(21) is chosen is that the solution pair should be located within the range 

10 hzu   and 02  Lzh . In Fig. 2, plots of Eqs. (20) and (21) are respectively shown in solid 

circle and dash line. The radius of solid circle can be easily found to be less than 2

2

2

1 hh  . The 

determined depth parameters are located at the intersection of solid circle and dash line and are 

solved to be 
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Eq. (22) can make sure that both of depth parameters will have reasonable values, i.e., 

10 hzU   and 02  Lzh . Related results are plotted in Fig. 3. Solid and dash curves 

represent 1hzU  and 2hzL , respectively. Density ratio 997.0r  is chosen to meet general 

condition in real oceans. 11 h  is fixed and only the range of 10 12  hh  is considered and 

plotted for the sake of avoiding the possible divergence while the thickness ratio grows that will be 

demonstrated in next section. Results show that Uz  and Lz  respectively are approximately a 

half of 
1h  and 2h . 

 

 

 

Fig. 2 Solutions of Uz  and Lz  

 

 

 

Fig. 3 Relations between  LU zz ,  and thickness ratio 12 hh  for 997.0r  and 11 h  
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4. Examination of wave properties 
 

Dispersion relation and particle velocities for linear waves will be analyzed in this section. First, 

the rigid-lid model (present BEs) and the free-surface model (Liu et al. 2008) will be compared to 

verify the feasibility of the former one. Dispersion relation for the free-surface model (see Eq. (18) 

in Liu et al. 2008) is 

024  NM LfLf                             (23) 
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Thus two types of wave motions can be readily solved by Eq. (23) 
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where the positive and negative signs denote the fast-mode (surface-mode) and slow-mode 

(internal-mode) motions, respectively. For internal wave motions, the slow-mode case is 

considered with the assumption of 1~r  for real oceans. It yields 
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Eq. (26) is equivalent to that of the rigid-lid case simplified from Eq. (17) 
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A comparison of dispersion relation of both cases is depicted in Fig.4. Ratios of Eq. (17) to Eq. (25) 

are compared under different thickness ratios and relative water depths. A very slight difference 

between two cases appears. It is also found that the difference in the shallower-water configuration is 

larger than that in the deeper-water configuration because nonlinear effects become stronger in the 

former. Above result demonstrates the validity of replacing the free surface by a rigid lid when the 

density ratio approaches unity. 

Next, dispersion relations between present BEs and linear wave theory are shown in Fig. 5. 

Comparisons of Eq. (16) to Eq. (17) are depicted. Cases of various thickness ratios are examined. A 

poorer behavior of BEs occurs when the thickness ratio 12 hh  becomes larger. To eliminate this flaw, 

two cases classified by the thickness ratio are introduced 









21121

21121

for,1,

for,,1

hhhh

hhhh




                       (28) 

123



 

 

 

 

 

 

Chi-Min Liu 

 

in which both 1  and 2  are less than unity to avoid the possible divergence of wave properties, 

as previously shown in Fig.5. With the help of Eq. (28), frequency ratios of dispersion relations of 

Eqs. (16) and (17) for both cases are plotted in Fig. 6. Solid and dash curves denote the frequency 

ratios for cases 21 hh   (with 1  along the bottom coordinate) and 21 hh   (with 2  along the 

top coordinate), respectively. For a fixed value of  , results of both cases are almost the same 

which can be readily seen by Eqs. (16) and (17) when r  approaches unity. Maximum errors are 

about 10% for the case of 5  and about 37% for those of the case 10 . It demonstrates 

that present BEs can provide a better prediction in regions of larger values of   than traditional 

BEs. 

 

 

 

Fig. 4 Comparison of dispersion relations of the free-surface model and present BEs for 997.0r  and 

11 h  

 

 

 

Fig. 5 Relations between L  and   for various values of 12 hh  for 997.0r and 11 h  
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Fig. 6 Relations between L  and thickness ratios 1  or 2 . Solid curves for the cases 21 hh   

and dash curves for the cases 21 hh   

 

 

Next, velocities of water particles are derived and examined. Horizontal velocities for the upper 

and the lower layers, which are normalized by those at the interface, are  
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Similarly, results for vertical velocities are 
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Solutions for linear waves are  
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Now Eqs. (29) to (32) are compared to Eqs. (33) to (36) and results are shown in Fig. 7. Two 

cases for 1  and 2  are plotted for a fixed thickness ratio 121 hh . Solid and dash-dot 

curves respectively represent the results of horizontal and vertical velocities of present BEs. 

Solutions predicted by linear wave theory are drawn by short-dash and long-dash curves for 

horizontal and vertical velocities, respectively. Behaviors of present BEs are very close to those of 

linear wave theory for the case 1 . It is also seen that the deviation also rapidly increases as   

grows. The reason is stemmed from the inefficiency of using present  2O  model to calculate 

the particle velocities. A higher-order model is expected to substantially improve the accuracy of 

particle velocities predicted by BEs.  

 

 

 

Fig. 7 Comparison between normalized particle velocities of present BEs with those of linear wave theory. 

Solid, dash-dot, short-dash and long-dash curves respectively represent iHV , iVV , iLHV  and iLVV  

( 2,1i ) for fixed conditions 997.0r  and 21 hh  . (a) cases of 1 and (b) cases of 2  
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5. Conclusions  
 

Boussinesq equations for internal waves propagating in a two-fluid system bounded by rigid 

boundaries are mathematically examined in this paper. By incorporating the Padé approximants 

into the exact linear dispersion relation, the depth parameters Uz  and 
Lz  are uniquely 

determined to acquire the optimal equations. Based on the derived equations, dispersion relation 

and velocities of fluid particles are compared with those of linear wave theory. Some of wave 

properties predicted by present equations are good when relative water depth goes large. More 

excellent and accurate results are expected if a higher-order model is adopted.  
Based on present study, numerical simulation can be performed by applying the derived 

equations and relative results. Comparison with other wave models and further analysis will be 

carried out in the coming future.  
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