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Abstract.  The present investigations introduce the shell-finite element discretization for the dynamics of 
slender marine pipelines. A long catenary pipeline, corresponding to a particular Steel Catenary Riser (SCR), 
is investigated under long-standing cyclic loading. The long structure is divided into smaller tubular parts 
which are discretized with 8-node planar shell elements. The transient analysis of each part is carried out by 
the implicit time integration scheme, within a Finite Elements (FE) solver. The time varying external loads 
and boundary conditions on each part are the results of a prior solution of an integrated line-dynamics model. 
The celebrated FE approximation can produce a more detailed stress distribution along the structural surface 
than the simplistic “line-dynamics” approach. 
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1. Introduction 
 

The fatigue damage of long, slender marine pipelines due to long-standing transient loading is 

one of the most important issues in the offshore engineering industry. Current-induced vibrations 

of free span pipelines, touchdown motions which induce large soil-reaction forces and oscillating 

motions of the top-end of risers are some of the most severe transient loading factors. Especially, 

the Steel Catenary Riser (SCR) is a structure of intensively varying curvature which can perform 

strongly nonlinear responses along its suspended part when subjected to the aforementioned 

conditions. 

The design guidelines for SCRs (American Petroleum Institute, 1998) refer to line-dynamics 

treatments of such slender structures in time-domain, implying line-element (rod, beam, pipe, etc.) 

discretization of the dynamic equilibrium system. Nowadays there are a number of important 

contributions that have been published regarding SCR transient line-dynamics analyses, via Finite 

Element Methods, Finite Difference schemes or Lumped Mass approximations. Among the 

plethora of relevant studies some indicative reports are those due to Chai et al. (2002), Meng and 

Chen (2012) and Chatjigeorgiou (2010a). In the recent years, more and more complex 

contributions alike the soil reaction force and Vortex Induced Vibrations (e.g., Nakhaee and Zhang 

2010, Katifeoglou and Chatjigeorgiou 2012, Riveros et al. 1999) or nonlinear tensioner modeling 
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such as the case reported by Huang et al. (2013) are taken into account within global dynamics 

solutions. Furthermore, integrated hull-mooring-SCR coupling reports are also desired in order to 

clarify the behavior of the complex marine infrastructure. Eom et al. (2014) have recently 

performed such simulations which focused in the local buckling of the touchdown region of a SCR 

model. Nevertheless, more detailed dynamic simulations of the shell-like SCR, e.g. by employing 

shell-elements have not yet been extensively reported. The present effort aims at investigating the 

“shell-dynamics” concept by partially modeling the tubular sections that assemble the whole 

sagbend region of a deepwater SCR up to its Touch-Down Point (TDP). 

 

 

2. Description of the physical problem and the FE approach 
 

All tubular pipelines of circular diameter, including the SCRs, can be considered as 

shell-structures of particular thickness. It is evident that an appropriate FE treatment with planar 

shell elements can provide more clear and dense information on the spatial distribution of stresses 

throughout the structural domain than a line-element treatment that can focus only at particular 

lengthwise nodes. Arabzadeh and Zeinoddini (2011) recently employed a 4-node shell FEM to 

simulate the dynamics of a submerged pipe at the Touch-Down Zone (TDZ) under impact loads. 

Hosseini Korkdheili and Bahai (2008) examined statically a riser-soil interaction problem by 

employing a pipe-elbow FEM in which they introduced an additional membrane-shell intensive 

behavior. According to the latter developments, it is obvious that more detailed depictures of the 

stress condition are desired, at least at particular locations of submerged pipes and succinctly, FE 

shell discretization can provide this information. However, there haven’t been any worth 

mentioning attempts yet as regards the transient analyses of SCR regions under long-standing 

excitations with equivalently detailed discretization schemes, namely extending the celebrated 

“line-dynamics” approach to “shell-dynamics”.  

In addition, the SCRs are virtually relatively large thickness structures in order to resist against 

large external pressures induced by the marine environment (Kyriakides and Corona 2007). Also, 

the severity of the bending and the buckling-like deformations at the lower sagbend region due to 

the boundary conditions at the TDP has been identified as a severe impact of paramount 

importance. These factors are mainly responsible for the amplification of the local bending 

moments and shear stresses when the SCR is set into cyclic motion induced by the floater where 

the top-end of the pipe is attached, and this is considered as a principal transient problem for 

SCRs.  

The above features were the main motive to produce the celebrated the FEM analysis of the 

sagbend region of a particular deep-water SCR, discretized with planar shells. The parameters of 

the physical problem are: suspended length L=2024 m, external diameter D=0.429 m and large 

thickness h=0.022 m (D/h~20). The riser is installed at 1800m water depth under a pretension of 

1860 kN. Accordingly, the static analysis of the concerned structure estimates the length of the 

sagbend region to approximately 594 m. The physical and the mechanical properties of the steel 

structure are material density 7800 kg/m
3
 and Young’s modulus of elasticity 207 GPa. In addition, 

the kinematic boundary and load conditions required for implementing the FE model are 

introduced as time series of the velocities and the internal loading components which have been 

primarily derived by an efficient “line-dynamics” model.  

According to Bathe and Dvorkin (1986) the most appropriate finite elements for thick-shell 

structures, such as the particular pipeline, as well as for nonlinear problems and solutions that 
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require convergence, are the 8-node planar shells. Regarding the time-discretization scheme of the 

resulting equations, the unconditionally stable Implicit/Newmark method usually performs better 

for “inertial”/long-duration problems (Subbaraj and Dokainish 1989, Bathe 1979, Bathe 1996). For 

large deformation analyses (large displacements) and strongly varying internal loads alike the 

current case, the nonlinear formulation of the Newmark method should be employed (see e.g., 

Subbaraj and Dokainish 1989). The strong stability characteristics of the concerned method allow 

the employment of relatively large time discretization (∆t) for convergence. However, the adopted 

succession for the temporal intervals should be small enough for reasons of accuracy. The 

calculations which we performed in the context of the present study were based on the information 

of the previously mentioned studies (Subbaraj and Dokainish 1989, Bathe 1979). All numerical 

simulations were performed within the ANSYS Workbench 13.0 environment (ANSYS, 2007).  

The adopted shell element dimensions for the FEM mesh were 0.1×0.1×h (see Fig. 1), where h 

stands for the shell’s thickness. This resulted into approximately 100,000 elements and accordingly, 

into an equal number of differential equations. Based on this figure it is easy to realize the required 

computational capacity for the numerical simulations, taking additionally into account the eight 

nodes for each element, the time integration steps and the iterations which are needed for 

convergence. Clearly, such an approach requires enormous memory resources, whilst the time 

required for achieving the computations would be indeterminately large. Hence a further 

discretization of the sagbend region into 25 smaller pipe-segments (23.762 m long) was assumed 

and each of these segments was investigated individually. According to the considered 

configuration each segment extends between two successive nodes of the FD “line-dynamics” 

analysis (Fig. 2). 

 

 

3. Modeling the FE tubular parts  
 

3.1 Description of the “line-dynamics” model 
 
The present FE analysis of the shell tubular members along the sagbend region of a catenary 

riser relies on the knowledge of their kinematical details. These are determined via the 

“line-dynamics” approach which relies on the solution of the dynamic equilibrium system of the 

catenary pipeline, the latter being considered as a continuous elastica. To this end, the governing 

dynamic system that is composed by a set of partial differential equations (PDEs) must be treated. 

For the purposes of the present study the Newtonian derivation procedure which is described in 

Chatjigeorgiou (2010a, b, 2013) has been adopted. The cited publications outline in detail the 

methodology and eventually the final mathematical system that governs the 3D “line-dynamics” of 

catenary pipelines conveying an internal fluid without considering the torsion effects. Here we 

advance one step further by including torsion, which as discussed in the sequel requires a special 

numerical treatment. In addition, the inner flow effects have been omitted by our contemporary 

approach as they have admittedly a marginal effect. To support that statement reference is made to 

the works due to the present authors (Chatjigeorgiou 2010a, Chatjigeorgiou 2013, Katifeoglou et 

al. 2012) who showed that the inner flow, approximated alternatively by (i) the “plug-flow” model 

(Chatjigeorgiou 2010a), (ii) a potential theory model (Chatjigeorgiou 2010b) and (iii) a fully 

turbulent flow model (Katifeoglou et al. 2012), has negligible effects on the structural behavior of 

the pipeline. The authors reported some differentiations as regards the out-of-plane dynamics of 

the pipeline that originate mainly from the Coriolis effects.  
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Fig. 1 Design and discretization of a tubular part with planar shells: (a) full in-plane view of the part and 

(b) partial view of the mesh 
 

 

Fig. 2 In-plane view of the lower sagbend region of the pipeline: Distinction between the local, Cartesian 

coordinate system fixed on a tubular section of the sagbend region of the FE model (x, y, z) and the 

one of the FD line-dynamics model (t, n, b); s denotes the unstretched Lagrangian coordinate that 

takes values along the catenary 
 

 

Fig. 3 Equilibrium of forces and moments on the pipe-element of the FD line-dynamics model. In-plane 

and out-of-plane inclination angles 
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Let m, ma and w0 denote respectively the mass, the added mass and the submerged weight per 

unit length of the structure. Further, let E be the Young’s modulus of elasticity, D the outer 

diameter, dI the inner diameter, A the cross sectional area, Ip the polar moment, I the second 

moment of the pipe, ρc material’s density and G the shear modulus. It should be noted that the 

quantities m, ma, w0, A, I and Ip correspond to the unstretched condition. Having defined the 

physical and the mechanical properties of the investigated structural model we provide in the 

following the mathematical formulation that governs its dynamic equilibrium. The equilibrium is 

assumed at the stretched differential element (see the schematic of Fig. 3) and the final relations 

are expressed in terms of the unstretched counterparts. In particular, considering the pipeline as a 

curved elastica it can be shown that its dynamic behavior in 3D space including torsional effects 

can be fully described by the following system of PDEs (Chatjigeorgiou 2013) 
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The dynamic system of Eqs. (1)-(12) has been expressed in terms of the local coordinate 

system (t, n, b) of the Frenet frame for a space curve (see Hildebrand 1976), where t is tangent to 

the axis, n is perpendicular to t and b is defined such that the system of vectors is orthogonal and 

right handed. The unknowns of the problem compose the associated vector  

 TY  321wvuSST bn                (13) 

in which T denotes the effective tension, Sn and Sb are the shear forces in normal n and bi-normal b 

directions, u, v and w are the axial, normal and bi-normal structural velocities respectively, Ω1, Ω2 

and Ω3 define the torsional, the out-of-plane and the in-plane curvatures and finally, ψ, θ and  , 

denote the Euler angles of the Frenet frame. In this particular case ψ, θ and   are respectively the 

angle of torsion, the out-of-plane angle and the angle which is formed between the horizontal and 

the axis of the pipe in its 2D plane of reference. Finally Rdt, Rdn and Rdb are the drag forces along t, 

n and b unit vectors respectively. These are taken in the form suggested by the Morison’s formula, 

namely  
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where ρ is the water density, whilst Cdt, Cdn and Cdb are the associated drag coefficients. Hence 

the loading vectors shown in Fig. 3 are written as  bn SSTT ,  321 MMMM , 

where M1=GIpΩ1, M2=EIΩ2, M3=EIΩ3 and  dbdndt RRRR . The compatibility relation (4) 

implies that a linear strain relation has been considered as it was assumed that the local strain is 

given by e=T/EA.     

Clearly, all above mentioned quantities are functions of the time t and the spatial unstretched 

Lagrangian coordinate s that takes values along the unstretched length of the pipe. In the 
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concerned system, Eqs. (1)-(3) are the equations of motions, Eqs. (4) and (5) represent the 

compatibility relations, Eqs. (7)-(9) are the balance of moments equations and finally, Eqs. 

(10)-(12) have been introduced artificially to construct a system of 12 equations with an equal 

number of unknowns. In particular, they associate the torsional and bending curvatures, or in other 

words the elements of the Darboux vector of rotation, with the Euler angles of the Frenet frame.  

In the following we provide a brief description of the FD methodology applied for the solution 

of the system of Eqs. (1)-(12). Having defined the vector of the unknowns (13), the governing 

dynamic system that is composed by the PDEs (1)-(12) can be written according to the following 

matrix form 
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In the above matrix equation M, C, B, G and K are 12×12 square matrices and F is a 12×1 

column vector. The exact forms of the matrices and the vector can be found in Chatjigeorgiou 

(2013). This system is solved using an appropriate combination of Finite Difference schemes. 

Similar systems have been solved in the past using the indefinitely stable, second-order accurate 

O(Δt
2
)+O(Δs

2
) implicit Keller-Box method (Hoffman 1993), where the partial differential 

equations of the governing system are evaluated at the middle of two successive temporal and 

spatial nodes, i.e., at i+1/2 and k-1/2, where i and k denote respectively the temporal and the spatial 

nodes. However, this method cannot be employed in the equations that involve a second-order 

time derivative, namely Eqs. (7)-(9). Hence these equations are treated using the Crank-Nicolson 

scheme (Hoffman 1993). The stencils of the employed FD schemes are shown in Fig. 4. According 

to the Crank Nicolson method the spatial derivatives are evaluated at the grid point [i, k-1/2] via 

the second-order centered-difference scheme. The order of this approximation is expected to be 

O(Δs
2
). The second-order time derivatives at spatial nodes k-1 and k are approximated by the 

second-order centered-difference estimates. The resulting finite difference approximations of Eq. 

(17) using the Keller-Box and the Crank-Nicolson schemes are given respectively by the following 

expansions.  

 

 

 

Fig. 4 Stencils of (a) the Keller-Box method and (b) the Crank-Nicolson method 
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The final system is solved using the relaxation method (Press et al. 1986). 

 

3.2 Solution of the FD model 
 

At first a single top-end applied oscillation of the investigated catenary (see Section 2), of equal 

amplitudes, Xa=Ya=Za=2 m along the axes of the Cartesian coordinate system fixed at the point of 

attachment has been modeled within the FD solver. The phasing between the excitation 

components was assumed to be zero and the excitation frequency equal to ω=1rad/s. The total time 

of the cyclic motions which corresponds with the simulation interval was 32 periods of top-end 

oscillations. For the employment of the “line-dynamics” approximation via the implementation of 

the FD methodology, the suspended length of the catenary was spatially discretized by 101 equally 

spaced nodes. The time step for the simulation was taken equal to Δt=0.2s.  

In Figs. 5-8 there are some indicative results for the time variation of the internal loading 

components and the velocities at specified locations along the catenary. Similar loading conditions 

have been tracked and extensively analyzed in previews efforts (Chatjigeorgiou 2010a, 

Katifeoglou and Chatjigeorgiou 2012). According to the depicted time histories the expected 

steady state condition of the forced excitation is established at the third period onwards. The 

occurrence of the superharmonics at the maxima and minima of the time series of the effective 

tension (Fig. 7) is clearly a contribution due to the nonlinear terms. The shear force (see Fig. 8) is 

small compared to the axial tension. Nevertheless it should be noted that the shear force performs 

larger amplitudes along the sagbend and, especially, close to the TDP. The latter remark yields an 

expectation for large, local in-plane bending and shear stresses at the vicinity of the TDP using the 

FE analysis. In addition, the output signals of the shear force between successive nodes are 

relatively asynchronous and show largely variant amplitudes. Moreover, the axial (Fig. 5) and the 

normal velocity components (Fig. 6) manifest a systematically increasing trend towards the 

excited top-end, as it should be expected. Apparently the normal component does not vary 
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significantly along the higher-suspended structure contrary, once again, to the lower – close to the 

TDP – region. It should be mentioned that the normal motions at the lower portion of the structure 

imply also a significant variability of the local bending and the shear stress state.  

 

 

 

Fig. 5 Time series of the axial velocity component (with respect to the local Lagrangian, moving 

coordinate system) at three selected nodes along the sagbend region at s=23.762 m, s=237.62 m 

and s=475.24 m, accordingly 

 

 

 

Fig. 6 Time series of the normal velocity component (with respect to the local Lagrangian, moving 

coordinate system) at three selected nodes along the sagbend region at s=23.762 m, s=237.62 m 

and s=475.24 m, accordingly 
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Fig. 7 Time series of the effective tension (with respect to the local Lagrangian, moving coordinate 

system) at three selected nodes along the sagbend region at s=23.762 m, s=237.62 m and 

s=475.24 m, accordingly 

 

 

 

Fig. 8 Time series of the in-plane shear force Sn (with respect to the local Lagrangian, moving coordinate 

system) at three selected nodes along the sagbend region at s=23.762 m, s=237.62 m and s=475.24 

m, accordingly 
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3.3 Design of the FE model  
 
The design of the geometry, the mesh and the introduction of the kinematic and load conditions, 

have been performed as follows (see Fig. 2): (i) each part extends between two successive nodes of 

the FD model; (ii) a simple (hinged) support is applied at the TDP’s lower edge; (iii) the FD 

kinematic and internal loading results for the first node above the TDP (i.e., for k=2) are set as 

input conditions for the first FE part; (iv) accordingly, all successive FD results are introduced as 

input conditions for the corresponding successive sections. There is a total number of 25 parts 

attached to each other which assemble the complete sagbend region of the structural model. As 

previously highlighted, the FE analysis focus explicitly in this area in which the strongest 

vibrations are encountered. 

The time series of the internal loading terms are applied at the two end-edges of each shell-like 

section to secure its dynamic equilibrium. Such time varying loads apparently, cause a variable 

intensive condition. At the same time, a space velocity vector is applied on the investigated section. 

Again the velocity vector was obtained via the FD “line-dynamics” methodology. Finally the 

solution of the dynamic equilibrium problem of the translational shell parts is performed by the FE 

algorithm outlined in Section 2. The total simulation time for each of the numerical tests 

(corresponding to each of the 25 tubular sections) was 19.2s, which is slightly above the interval 

corresponding to three periods of excitation. It is reminded herein that the three periods time 

interval was the remarkable time required to achieve a steady state response (see e.g., Figs. 5-7). 

For the temporal discretization and in order to comply with ANSYS (2007) benchmarks for the 

“selection of a piecewise initial time step”, Δt was set equal to 0.0045s.  

 

 

4. Validation of the FE model 
 

Prior to the numerical simulations to highlight the details of the dynamic response of the 25 

shell-like sections that assemble the complete sagbend region, a limited number of analyses were 

carried out explicitly dedicated to the first section (between nodes k=1 and k=2) which is the 

closest to the TDP. The associated calculations were performed for validating the current approach. 

First, two relatively extended (80s) numerical simulations were performed for different shell 

elements: (i) 4-node shell elements and (ii) 8-node shell elements aiming to examine the adequacy 

of each discretization to describe properly the sought normal and shear stress distributions. As 

already mentioned in Section 2, the 8-node shells are preferred for the nonlinear analysis of thick 

shell structures like the one examined in the present. For validating the efficacies of the 4-node and 

the 8-node shell elements and justifying why the latter were finally preferred, Fig. 9 is provided, 

which depicts indicative time histories of the maximum dynamic von Mises stresses for both 

element types. It is immediately apparent that for an extended time interval, up to 40s, there is an 

overall similar behavior of the depicted von Mises stresses for both element types, while the 

4-node shells result in generally higher peaks. After that point, the results obtained through the 

4-node and the 8-node approximations clearly disagree. In particular the 8-node shell stresses tend 

to converge efficiently whilst the 4-node approximation is clearly divergent.   

The employed FE approach was validated against the results of the FD “line-dynamics” 

approximation according to the following procedure. The FD solution method assumes by default 

that the structure is slender and hence the obtained internal loading components can be regarded as 

point loadings. In the same sense the produced stresses should be considered uniform, namely 
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having an equal value in all finite elements of the cross section. Thus, this uniform stress 

distribution can be determined quantitatively by taking the ratio between the force and the overall 

cross sectional area, which according to the Euler-Bernoulli beam formulation is constant along 

the pipeline. The generalized FE approximation however requires to consider the general condition 

of the non-uniform distribution of stresses. To validate the FE approach the stresses obtained by 

the FE solution were integrated over the cross sectional area providing a single force component 

which accordingly was transformed into the equivalent uniform stress by simply dividing by the 

sectional area. The latter “uniform” load was finally compared against the associated prediction of 

the FD “line-dynamics” solution. Indicative results for the axial (normal to the section) stresses 

obtained through both approaches are showing in Fig. 10. Given the inevitable differences of the 

two numerical methods and taking into account that the distribution of stresses obtained by the FE 

solution was converted into a single loading component, it can be said that the numerical 

predictions of the depicted, relatively extended time interval, are roughly equivalent. Undoubtedly, 

a single loading component can be effectively derived by the FD approach. This however does not 

answer crucial questions on the actual distribution of stresses which are responsible for 3D effects 

on the shell. 

 

 

5. FE results 
 

The snapshots in Figs. 11 and 12 depict instantaneous configurations which represent the 

dynamic response for two tubular sections (out of the 25) along the sagbend region of the 

investigated catenary pipeline. The figures show the orientations of the concerned sections at 

several time steps within the 19.2s simulation interval. For display reasons the snapshots are 

restricted on the 2D plane of reference albeit the excitation incorporates out-of-plane components. 

It can be immediately apparent that the out-of-plane excitations are small compared to the in-plane 

components, as expected. The first snapshots (upper-left) in both figures are the benchmark 

positions that correspond to the static equilibrium position (at t=0) in which the local Cartesian 

coordinate system coincides with the local (t, n, b) Lagrangian system. As the dynamic 

phenomenon evolves, the moving Lagrangian system and subsequently the pipe-section is 

detached from its original (at t=0) position. In particular Fig. 11 corresponds to the 13th tubular 

section which is close to the middle of the sagbend region (at s=297.025 m), whilst Fig. 12 show 

the respective snapshots for the last tubular section at the end of the sagbend (at s=594.05) where 

the pipeline becomes straight and nearly vertical. In addition, it can be easily deduced that the 

strongest vibrations of the sagbend can be encountered at the middle of its length and that is 

demonstrated by the instantaneous orientations of the segment in Fig. 11. It should be mentioned 

that analogous heavy vibrations were observed for sections closer to the TDP. The concerned part 

of the segment performs translational displacements and rotational motions around the bi-normal 

axis. Apparently there are no significant axial displacements occur and the planar dynamic 

behavior of the shell element, and accordingly of the pipeline, is governed by its normal motions 

and the plane rotations. Indeed the latter are significantly large as it is demonstrated e.g., by the 

nearly 90
o
 rotation (with respect to the original position) at 8.5s and the nearly horizontal 

placement at 17.1s (see Fig. 11). As expected the oscillations are reduced at the end of the sagbend 

region, where the pipeline admits a nearly vertical configuration (Fig. 12). This can be traced back 

to the larger tension force applied at that area, which acts as a restraining mechanism as regards 

the expected vibrations. Also, it must be underlined that the motions of the shell elements do not 
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follow the periodicity of the excitation. This is clearly the outcome of the strong nonlinear 

characteristics of the concerned dynamic system.  

 

 

 

Fig. 9 Time series of the maximum von Mises stresses on the surface of the first tubular section along the 

sagbend region (out of 25), the middle of which is located at s=23.762 m 

 

 

 

Fig. 10 Time series of axial stresses on the right edge of the first tubular section along the sagbend region 

(out of 25), the middle of which is located at s=23.762 m, using both numerical approaches. On 

the left edge the values are opposite 
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Fig. 11 Snapshots of the instantaneous orientations of the 13th tubular section along the sagbend region 

(out of 25) the middle of which is located at s=297.025 m. The depicted axes correspond to the 

local Cartesian system fixed on the middle of the segment at the original static position (at t=0) 

 

 

 

Fig. 12 Snapshots of the instantaneous orientations of the 25th tubular section along the sagbend region 

(the terminal segment) the middle of which is located at s=594.05 m. The depicted axes 

correspond to the local Cartesian system fixed on the middle of the segment at the original static 

position (at t=0) 
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The next series of snapshots (Fig.13) depict a more clear, perspective view of the evolution of 

shear stresses σyz for the 16
th
 part along the sagbend with respect to the local Cartesian (immovable) 

coordinate system. It can be clearly deduced that the maximum stresses occur at the end of the 

third period of excitation (18.8s-19.2s). The same has been tracked for the rest stress components 

(σx, σy, σz, σxy, σzx) as well. The presented herein shear stresses are originated by the external 

pressure and the local bending loads and along with the bending normal stresses, σy and σz are 

directly connected with buckling-like fatigue of marine pipelines. The most common shape of 

lateral and/or shear buckling deformation of similar-task structures is the “ovalization” of the 

initially circular cross-section (see e.g., Kyriakides and Corona 2007). Indeed according to the 

depicted results, the calculations demonstrate the possibility for the occurrence of “ovalization”. At 

the beginning of the phenomenon, the structure (here represented by a single shell element) 

remains undeformable and the nonzero stress distribution is attributed to the static loading. 

However, as the dynamic phenomenon evolves, the distribution of the concerned shear stresses is 

modified, mainly at the edges of the element and at the end of the investigated interval (when the 

steady condition is established) the pattern of the distribution of stresses is transformed throughout 

the shell surface (see in Fig. 14 the snapshot corresponding to 19.2s). It should be noted that the 

shear stresses σyz are applied normal to the depicted surface. Hence, according to the colormap in 

Fig. 14, there are opposite stress distributions which are concentrated on the edge of the shell and 

evidently, they imply potential occurrence of “ovalization”.  

 

 

 

Fig. 13 Perspective contours of the shear σyz stresses for the non-deformed configuration of the 16th 

tubular section along the sagbend region. The depicted axes correspond to the local Cartesian 

system fixed on the middle of the segment at the original static position (at t=0). The depicted 

snapshots correspond with times (s) 0, 2.1, 4.2, 6.4, 8.5, 10.7, 12.9, 15.0, 17.1, 19.2 
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Fig. 14 Deformed contours depicting the distribution of a. normal σy stresses, b. normal σz stresses, c. 

shear σyz stresses (Pa) (with respect to the local Cartesian coordinate system; y-axis points 

inwards), acting on the edge of the 5th part (at the time instance of occurrence of maximum 

stresses, 19.0s)  

 

 

Fig. 14 shows the deformed, “ovalized” edge contours of the same segment at the time step that 

corresponds to the maximum stresses (around 19.0s), with respect to the local Cartesian coordinate 

system. The associated pattern is primarily affected by the contribution of the maximum normal σy 

stress and much less from σz. The derivation of such large stress values (of hundreds of MPa) that 

approach limit-design values for several steel-structures, underlines the need for a limit-state 

control investigation, with respect to existing guidelines and recommendations. A number of 

limit-state analyses regarding SCRs have been performed by Estefen et al. (1995) and Howells 

(1999). Howells (1999) observed that in extreme environmental conditions the ratio of the 

dynamic von Mises stresses to the failure stress of the steel structure should be within the range 

0.3-0.8 (the lower values should be close to TDP, since this particular location is frequently 

prospective for failure in extreme conditions). According to the reviews of Estefen et al. (1995) on 

the international standards on limit-state conditions for thick pipes (SCR members of D/h<30) the 

maximum permitted value for the axial-tension stress is the first yield stress of the material (in 

particular: 800 MPa~1 GPa). Only DetNorske Veritas introduces a factor of safety for thinner 

pipes (Estefen et al. 1995). Due to large pretensions applied on SCRs, the occurrence of large axial 

stresses is not an infrequent condition. However, as it was remarked in the preceding paragraphs, it 

is the developing cross-sectional bending and shear stress conditions which involve the largest 

amount of fatigue loads. For thick SCRs, the American Petroleum Institute (1998) introduces a 

limit value of 487 MPa under local bending stresses and a limit value 336 MPa under external 

pressure buckling stresses, while DNV (Estefen et al. 1995) defines values of similar order. The 

calculated maximum stresses via the employment of the FEM solution (see Fig. 16), with respect 

to the local-Cartesian structural system are much lower than the above limit-state values.  

 

 

6. Conclusions 
 

Nonlinear FE analyses under extended time-varying excitations were carried out for 25 

shell-like parts of a catenary pipeline, discretized with 8-node planar shells. These segments 

assemble the sagbend region of a SCR of total suspended length 594.04 m. The transient boundary 

and load conditions were determined by a benchmarked FD “line-dynamics” model. The FE 
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solutions were in favorable agreement with the FD model predictions as regards the evolution of 

spatial and temporal distributions of stresses. Succinctly, the higher parts of the suspended region, 

of nearly vertical configuration did not perform as heavy vibrations as the lower-close to TDP, 

parts which corresponded with the most curved region of the pipeline. The latter remark has been 

evident in the celebrated shell-dynamics approximation. However, the motions of the shell 

elements did not follow the periodic profile of the excitations and this was attributed on one hand, 

due to the overall nonlinear characteristics of the particular dynamic system and on the other, due 

to the more complex relations involved in the discretization of the FE model. In general, the 

present FE-treatment’s effectiveness has been highlighted for dynamic solutions of SCRs when 

more detailed numerical solutions than the ones derived by the usual line-dynamics 

approximations, are desired. 
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