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Abstract.    This study is devoted to the optimal design of compressed bars under axial tensile or 
compressive forces and exposed to a corrosive environment. Dolinskii’s linear stress corrosion model is 
adopted for analysis. Analytical and numerical results are derived for optimal variation of the cross-sectional 
area of the bar along its axis. 
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1. Introduction 
 

According to Shaw and Kelly (2006), “corrosion is degradation of materials’ properties due to 
interactions with their environments, and corrosion of most metals (and many materials for that 
matter) is inevitable. While primarily associated with metallic materials, all material types are 
susceptible to degradation.”Moreover, “several studies over the past 30 years have shown that the 
annual direct cost of corrosion to an industrial economy is approximately 3.1% of the country’s 
Gross national product. In the United States, this amounts over $276 B per year,” in accordance to 
the Historic Congressional Study (2002). 

Hansson (2011) writes: “Unfortunately,…corrosion resistance is often relegated to a lower 
priority when materials are selected on the basic of those properties essential to the specific 
application, such as strength, stiffness, and electrical conductivity. The result is that corrosion is 
ubiquitous, occurring in all forms of engineering materials from microelectronics to orthopedic 
implants to major civil infrastructures and to everyday objects in our lives…” 

Interaction of the stress level and the corrosion phenomenon was introduced by Dolinskii (1967) 
who suggested a linear model, whereas Gutman and Zainullin (1984) resorted to an exponential 
model. These models have been revisited recently by Elishakoff and Miglis (2011, 2012). 
Extension to the case of random applied loading was conducted by Elishakoff and Soret (2012) 
whereas Fridman and Elishakoff (2013), Fridman (2014) studied the deterministic optimization 
problem. 

In this paper we deal with design specifics of the bar in tension subjected to corrosive 
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environment with attendant optimization. 

 

 

2. Problem formulation 
 

We consider a bar whose cross sectional area represents an annulus, with inner radius R  and 

outer radius  𝑅̅̅ ̅. The bar is subjected to a tensile load Q. The normal stress σ(t) in the cross-section 

reads 

 
  22

RtR

Q
t







                           

(1) 

Outer surface of the bar is in contact with a corrosive environment. Therefore, through the 

corrosion process, the outer radius decreases whereas the inner radius remains constant. We 

express the outer radius from Eq. (1) as 

    2
/ RtQtR  

                         
(2) 

Note that since outer radius is a function of time, so is the resulting stress σ(t). We assume that 

the outer radius varies as a function of the corrosion velocity v(t) also referred as the corrosion rate 

as follows 

   dxxRtR

t


0

0 

                          

(3) 

where 0R is the initial value of the outer radius and t is the time instant when the outer radius is 

recorded. The problem consists in evaluating the durability of the structure and the associated 

time-dependent reliability. 

 

 

3. Linear relationship between corrosion rate and stress 
 

We consider the simplest possible relationship between corrosion rate and stress. According to 

Dolinskii (1967), the corrosion velocity v(t) linearly depends on stress value σ(t) 

   tmt   0                             
(4) 

where m is a coefficient dependent on both  the material and the corrosive environment. The 

expression in the right hand side must be equated in conjunction with the value of outer radius 

given in Eq. (2). The following equation is obtained 

    2
/ RtQdxxmtR

t

oo                      (5) 

Differentiation with respect to time t yields the first order differential equation with variable 

coefficients 

22



 

 

 

 

 

 

Design of bars in tension or compression exposed to a corrosive environment 

 
   

 
dt

td

RtQt

Q
tmo






22 /2 
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(6) 

We integrate Eq. (6) to get 

 

      





tt
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0
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
                

(7) 

Performing intégration in Eq. (7), we derive” 
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
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This expression can be simplified by making the following substitutions  

   tRRtQrt 
2

/ , 
0

2
/QmRp  ; 

2

02

mQ
n            (9) 

As a result, we arrive at 

0
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
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4. Design of annularcross- section 
 

In the final moment T of the operation of the structure we obtain the corresponding expression 

of structure’s life-time, or durability 

0

0

0

0 )ln(ln


rr

pr
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pr
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p

n
T T

T

T 










                   (11) 

where 

  TT RRTQr 
2

/ ; 
0

2

00 / RRQr  
            

(12) 

where σ(T) depends on the problem at hand. 

Eq. (10) should be used, for example to assess durability of the structural element during its 

operation, when the specified cross-sectional dimensions and the parameters of aggressive medium 

are known. The design phase requires determining the dimensions of the cross-sectional design 

element for a pre-specified period of its operation. To solve this problem, we rewrite (10) as 

follows 
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We transform this expression to get  
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Hence 
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which could also be directly derived from Eq. (12) by definition of the natural logarithm. As a first 

approximation, we set ez 1+z. Thus, we get 
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At t=T, we obtain 
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From (13), using (11) we find 0R  

𝑅̅0 = −𝐵 + √𝐵2 − 𝐶                          (14) 
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5. Stretched/compressed elements 
 

In the case of tension members, σ(T ) in (11) can be made equal to σy, the yield stress. 

With this in mind, we obtain 

2
R

Q
R

y

T 


                        

 (15) 

The critical stress for the struts at the final time T are accepted by Euler's formula 
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TT
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  (16) 

For circular cross-section moment of inertia of the cross-sectional area at the time T is defined 

as 

  4/
44

RRI T   ;   22
RRA TT    

Finally, we get 
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The lower limit of the external radius of the final time T is the inequality ,
T

Tcr
A

Q
 with 

(17) as 
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3
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The condition of applicability of the formulas (16) and (17) is limited by the inequality 

 y

T

Tcr
A

Q
                        (19) 

where the coefficient φ depends on the conditional flexibility  
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In the latter formula l and I are bar’slength and the radius of inertia of its cross section, 

respectively. As a result, we get  

E

RR

l
y

T

/
2

22






                    

(20) 

The values of the coefficient of φ according to [B] (SNIP II-23-81, building regulations of the 

former Soviet Union) are determined by the following expressions 
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for  5.4
 





51

332
2

                           (21) 

 

 

6. Optimization problem 
 

In general, at the design stage optimization problem usually reduces to minimization of the 

initial cross-sectional area of the structural element working in a corrosive environment for a 

predetermined period of operation. In our case, the goal of the optimization problem is to find the 

inner and outer (primary) radii, wherein the initial cross section area of the annulus ought to attain 

a minimum, i.e. 

min)(
22

00  RRA                         (22) 

In the case of tension members, taking into account that 0R is defined by (14), and TR by (15) the 

optimization problem reduces to finding a single parameter, namely the inner radius R . 
Regarding the columns, with substitution of Eq. (21) into (19) with (20) and taking into account 

the expression for 
TA , we observe that it is analytically unfeasible to find a relation ship TR

from R, similar to (18). In this case, the optimization problem(as opposed to tension members) 

reads as follows 

Find a vector of designs 

 TTRRX ,
                           

(23) 

such that 

      
min)(

22

00  RRA 
 
 

value 𝑅̅0 being determined by Eq. (14).   

To solve the problems of nonlinear mathematical programming (22) and (23) one can resort to 

the random-search algorithm, for example. 

 

 

7. Numerical results 
 

As an illustration of the numerical optimization we consider stretched and compressed elements 

of annular cross-section with the following data: 0
4106  м/year; Т=10 years; y 235 MPa; 

1l м (compressed element). By varying the load (
1Q =50 kN; 

2Q =100 kN; 3Q =150 kN;
4Q

=200 kN). We consider two options for different values of the v dependence of corrosion 

coefficient m. The values of the latter we set at either of two values (a) 
101017 m м/MPa; (b) 

71017 m м/MPa. Similar calculations were carried out with the introduction of additional 

restrictions on the annular cross-section 

10/D                             (24) 
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where 

RRR  0 ; RRR
RR

D 


 0
0 )
2

(2
                  

(25) 

The results of numerical analysis for a tension member are shown in Table 1-4. Variations in 

cross-sectional area 0A  versus the load for 4 four versions are shown in Fig. 1. The corresponding 

results for the calculation of the compressed element are listed in Tables 5-8 (see also Fig. 2). 

 

 

Table 1 [
101017 m м/MPa] 

Q 

(kN) 

R  

(cm) 

𝑅̅0 

(cm) 

𝑅̅𝑇 

(cm) 

𝐴0 

(cm
2
) 

𝐴𝑇 

(cm
2
) 

𝜎0 (MPa) 
𝜎𝑇 

(MPa) 

50 0 1.43 0.827 6,38 2.13 78 235 

100 0 1.77 1,167 9,79 4,26 102 235 

150 0 2,02 1,43 12,9 6,38 116 235 

200 0 2,25 1,65 15,85 8,51 126 235 

 

 

Table 2 [
71017 m м/MPa] 

Q 

(kN) 

R  

(cm) 

𝑅̅0 

(cm) 

𝑅̅𝑇 

(cm) 

𝐴0 

(cm
2
) 

𝐴𝑇 

(cm
2
) 

𝜎0 (MPa) 
𝜎𝑇 

(MPa) 

50 0,71 1.85 1,08 9,14 2.13 55 235 

100 0,99 2,32 1,52 13,86 4,26 72 235 

150 1,23 2,69 1,88 18,01 6,38 83 235 

200 1,37 2,97 2,14 21,84 8,51 92 235 

 

 

Table 3 [
101017 m м/MPa] 

Q 

(kN) 

R  

(cm) 

𝑅̅0 

(cm) 

𝑅̅𝑇 

(cm) 

𝐴0 

(cm
2
) 

𝐴𝑇 

(cm
2
) 

𝜎0 (MPa) 
𝜎𝑇 

(MPa) 

50 3,186 3,891 3,29 15,67 2.13 32 235 

100 3,56 4,35 3,75 19,51 4,26 51 235 

150 3,86 4,72 4,12 23,05 6,38 65 235 

200 4,19 5,1 4,5 26,63 8,51 75 235 
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Table 4 [
71017 m м/MPa] 

Q 

(kN) 

R  

(cm) 

𝑅̅0 

(cm) 

𝑅̅𝑇 

(cm) 

𝐴0 

(cm
2
) 

𝐴𝑇 

(cm
2
) 

𝜎0 (MPa) 
𝜎𝑇 

(MPa) 

50 3,4 4,15 3,5 17,81 2.13 28 235 

100 3,87 4,72 4,04 23,0 4,26 43 235 

150 4,22 5,16 4,46 27,56 6,38 54 235 

200 4,53 5,54 4,82 31,83 8,51 63 235 

 

Таble 5 [
101017 m м/MPa] 

Q 

(kN) 

R  

(cm) 

𝑅̅0 

(cm) 

𝑅̅𝑇 

(cm) 

𝐴0 

(cm
2
) 

𝐴𝑇 

(cm
2
) 

𝜎0 

(MPa) 

𝜎𝑇 

(MPa) 
𝜆 𝜆̅ 𝜑 

𝜎𝑦𝜑 

(MPa) 

50 3,38 4,21 3,61 19,82 5,08 25 98.5 121 4,06 0.42 99.8 

100 3.68 4.64 4.04 25.0 8.63 40 116 110 3.67 0.49 116 

150 4.14 5.15 4.55 29.46 11.18 51 134 98 3.26 0.57 134 

200 5.03 6,01 5.4 33.96 12.45 59 161 81 2,72 0.69 161 

 

Таble 6 [
71017 m м/MPa] 

Q 

(kN) 

R  

(cm) 

𝑅̅0 

(cm) 

𝑅̅𝑇 

(cm) 

𝐴0 

(cm
2
) 

𝐴𝑇 

(cm
2
) 

𝜎0 

(MPa) 

𝜎𝑇 

(MPa) 
𝜆 𝜆̅ 𝜑 

𝜎𝑦𝜑 

(MPa) 

50 3.06 4.0 3.36 20.84 5.93 24 84 132 4.42 0.37 86 

100 3.57 4.62 3.95 27.03 9.0 37 111 113 3.77 0.47 112 

150 4.11 5.22 4.53 32.47 11.45 46 131 98 3.28 0.57 134 

200 4.42 5.59 4.89 36.89 13.82 54 145 91 3.04 0.62 145 

 

Таble 7 [
101017 m м/MPa] 

Q 

(kN) 

R  

(cm) 

𝑅̅0 

(cm) 

𝑅̅𝑇 

(cm) 

𝐴0 

(cm
2
) 

𝐴𝑇 

(cm
2
) 

𝜎0 

(MPa) 

𝜎𝑇 

(MPa) 
𝜆 𝜆̅ 𝜑 

𝜎𝑦𝜑 

(MPa) 

50 3.66 4.46 3.86 20.47 4.77 24 105 113 3.77 0.47 111 

100 4.31 5.17 4.57 25.76 7.4 39 135 95 3.2 0.59 137 

150 4.44 5.4 4.8 29.76 10.53 50 142 92 3.07 0.61 144 

200 4.92 5.92 5.32 33.91 12.74 59 157 83 2,77 0.68 159 
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Таble 8 [
71017 m м/MPa] 

Q 

(kN) 

R  

(cm) 

𝑅̅0 

(cm) 

𝑅̅𝑇 

(cm) 

𝐴0 

(cm
2
) 

𝐴𝑇 

(cm
2
) 

𝜎0 

(MPa) 

𝜎𝑇 

(MPa) 
𝜆 𝜆̅ 𝜑 

𝜎𝑦𝜑 

(MPa) 

50 3.75 4.58 3.93 21.58 4.36 23 114 110 3.69 0.49 115 

100 4.26 5.2 4.54 28.08 7.7 36 130 96 3.22 0.58 136 

150 4.66 5.68 5.0 33.08 10.15 45 148 88 2.94 0.64 150 

200 5.0  6.07 5.37 37.56 12.47 53 160 82 2,74 0.68 162 

 
 

 

Fig. 1 Variation of cross-sectional area 0A  with load Q 

 
 

 

Fig. 2 Variation of cross-sectional area 0A with loadQ 
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8. Conclusions 

 

As can be seen from Table 1,in the case of a weak dependence of corrosion on the stress state 

the optimal cross section for member in tension is circular. This trend is changing with increase of 

the parameter m. This can be deduced from Table 2, where the inner radius R is not equal to zero. 

Optimization results for thin annular cross section are listed in Tables 3 and 4 indicating that the 

initial cross-sectional area 0A increases as compared with the corresponding results of Table 1, by 

about 1.45 to 2.45 times (see also Fig. 1).As for the optimization results obtained for compression 

members it is obvious that the compression case the best cross-section is a thin ring.  

In this paper an analytical expression of durability is derived for the bar under tensile or 

compressive load in the corrosive environment. Design problem is solved to determine the size of 

the elements of annular cross-section for a given period of operation, utilizing the linear model. 

 

 
References 
 
Dolinskii, V.M. (1967), “Analysis of loaded tubes subjected to corrosion”, Chemical Oil Ind. Eng., 2, 21-30, 

(in Russian).  

Elishakoff, I. and Miglis, Y. (2011), “Revisiting exponential stress corrosion model”, Ocean Syst. Eng., 1(2), 

121-130. 

Elishakoff, I. and Miglis, Y. (2012), “Durability of an elastic bar under tension with linear and non-linear 

relationship between corrosion rate and stress”, J. Appl. Mech. - ASCE, 79(2), 021013. 

Elishakoff, I. and Soret, C. (2012), “Reliability of an elastic bar under tension in a corrosive environment”, 

Ocean Syst. Eng., 2(3), 173-187. 

Fridman, M. and Elishakoff, I. (2013), “Buckling optimization of compressed bars undergoing corrosion”, 

Ocean Syst. Eng., 3(2), 123-136. 

Fridman, M. (2014), “Optimal design of compressed columns with corrosion taken into account”, J. Theor. 

Appl. Mech., 52(1), 129-137. 

Gurvich, I.B., Zaharchenko, B.G., Pochtman, Y.M. (1979), “Randomized algorithm for solution of problems 

of nonlinear programming”, Eng. Cybernetics, 5, 15-17, (in Russian).  

Gutman, E.M. and Zainullin, R.S. (1984), “Kinetics of mechanical-chemical collapse and durability of 

structural elements under tension during elastic-plastic deformation”, Phys. Chem. Mech. Machine Eng., 2, 

14-17, (in Russian). 

Hansson, C.M. (2011), “The impact of corrosion on society”, Metall. Mater. Trans., 42, 2952-2962. 

Historic Congressional Study : Corrosion Costs and Preventative Strategies in the United States, a 

supplement to Materials Performance, NACE International, Houston, TX, July 2002. 

SNIPII-23-81 (1990), Building Regulations. Steel Structures, “Stroiizdat” Publishers, Moscow, (in Russian).  

 

 

 

30




