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Abstract.    This study is devoted to the optimal design of compressed bars under axial compressive forces 
and exposed to a corrosive environment. The initial volume of the structure is taken as an optimality 
parameter. Gutman – Zainullin’s exponential stress corrosion model is adopted for analysis. Analytical and 
numerical results are derived for optimal variation of the cross-sectional area of the bar along its axis. 
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1. Introduction 
 

Elements of many engineering structures are exposed not only to loads and temperatures, but 
also to various corrosive environments. These factors often appear in highly unfavorable 
combinations, reducing the load carrying capacity and service life of the structure. Neglecting 
corrosive environments in analysis may lead to premature and often emergent halting of the 
system’s operation, causing great damage to both the environment and economy. As noted by 
Morgan (1981), mankind has entered a "century of corrosion.” With limited natural resources 
available these corrosion processes may have a determining influence on the speed of 
technological advance. On the other hand, development of technology results in the fact that the 
proportion of accidents involving management errors is projected to be on decline, while the 
proportion of hardware failures, due to corrosion damage, may be on the rise.  

Often the effect of the corrosion on the behavior of the structure is inadequately treated. This 
occurs when durability due to corrosion is defined as the product of an average corrosion velocity 
by the period of service.  

As noted in Ovchinnikov and Sabitov (1982), apparently the first model describing the 
corrosion process was the Faraday's 1st Law of Electrolysis linking mass of a substance, current 
and the process duration. Based on experimental results, we conclude that the corrosive process of 
structure in an aggressive environment is determined by the temperature, the stress-strain state, the 
nature of the aggressive environment and time span the structure resides in the corrosive 
environment. In certain circumstances the governing parameters may also include fluid pressure, 
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speed of fluid, or of aggressive gas, characteristic location of elements in the structure and other 
factors. Different researchers offered various models to describe the same process. In these 
circumstances, selecting one of many possible corrosion models depends, as aptly noted by 
Nalimov (1971) on the level of one’s “intellectual aestheticism.”  

The influence of stress on corrosion speed, known as the corrosion rate, was apparently first 
considered by Dolinskii (1967), who dealt with strength of thin-walled pipes subjected to a 
continuous corrosion rate as a linear function of stress. Exponential dependence of corrosion in the 
stress of the structure was proposed by Gutman and Zainullin (1984).  

Papers by Potchman and Fridman (1977,1995,1996), Fridman (2002), and Fridman and 
Zyczkowski (2001) utilized Dolinskii’s model for optimization study under corrosion. This study 
extends the above papers to the exponential stress corrosion model by Gutman and Zainullin to 
study the stability optimization in the corrosive environment.  

 
 
2. Problem statement 
 

We consider the problem of optimal design employing the criterion of a minimum weight of 
columns loaded with axial compressive P force, simply supported at both ends  (Fig. 1)  and 
prone to corrosion. We adopt the corrosion model introduced by Gutman and Zainullin (1984) 
which reads 

 

   2 exp expdb t
dt

    (1)

 
 

Fig. 1 Bar under axial compressive load P 
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where γηα ,, - constant coefficients, σ(t) = P/b(t)h is the stress, 0b and b(t) is the depth of the 
rectangular cross section in the initial and current states, respectively,  h  is the width taken as a 
constant. We consider the case when the corrosion affects both the top and bottom facets 
cross-section. This fact explains the factor 2 in Eq. (1) 

Separation of variables in Eq. (1) leads, with a notation a P hγ=  
  

 exp( / ) 2 exp( )a b db t dtα η− = −∫ ∫                    (2) 

 
Taking into account the familiar series expansion  
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we get from Eq. (2) 
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Invoking initial conditions at t = 0 we obtain 
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When t = T,  with T denoting the durability, while Tb  designating the height of the section at 

the  
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3. Lagrange function and optimality conditions  
 
The minimum weight of the column is achieved by the optimal distribution of the initial height 

of the rectangular cross section 0b  along column’s length. In terms of the volume 
 

  ( )∫∫ ==
2/1

0

2/1

0

22 dxxbhAdxV o                      (7) 

 
The conditions of optimality are expressed as equations Euler-Lagrange 
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  02

2

=+−= ′′′ yyyy f
dx
df

dx
dffδ                       (8) 

 

  0==
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b db
dff

o
δ                               (9) 

 
where f  is the so-called Lagrange function with additional condition in the form of Eq. (6) as 
follows 
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The governing equation for buckling of the column reads 
 

  0'' =+ PyEIy                               (11) 
 

Note that the buckling takes place at t T> in h direction since 12/3bhI =  corresponds to the 
smaller value of the moment of inertia than its counterpart in perpendicular direction 12/3hbI = . 
The quantity Tb  defined as follows 
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In these circumstances, Eq. (10) becomes 
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Evaluation of derivatives yields 
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Substituting these expressions into Eq. (8) results in  
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4. Chentsov’s method 
 
Hereinafter, we utilize method proposed by Chentsov (1936) (see also Rzhanitsyn (1955) to 

solve the Eq. (17). We introduce the following notation 
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Multiplying Eq. (17) by y, we represent it in the form 
 

  0'''' =− ykky                              (19) 
 

One can check by the direct differentiation that the integral of the latter equation is 
 

  Ckyyk =′−′                               (20) 
 

where С is an arbitrary constant. For further integration one should take into account that 0=C
for adopted boundary conditions. Indeed, assuming the buckling mode as being symmetric with 
respect to the middle cross-section of the column, we establish that y, yyy ′′′′ /, and k are even 
functions of x. Hence, the derivatives of y as well as k would be odd functions of x and thus vanish 
at 0x = . Therefore, letting in Eq. (20) 0=x , we get  0=C . Thus, Eq. (20) becomes 

 
  0=′−′ kyyk                             (21) 

 
Its integral is evaluated by separation of variables  
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  1k C y=                                   (22) 
 

where С1 is a new arbitrary constant. Returning to the original notation in Eq. (18), we find 
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Additionally 
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from which we determine the Lagrange coefficient 
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Substituting ( )xλ  into Eq. (23) leads to 
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5. Particular cases 
 

First let us consider case (a) when in the expansion of exponent in Eq. (3) the first two terms 
are retained. In this case we get a model of corrosion similar to the model of Dolinskii (1967).  

The Eqs. (6) and (26) become, respectively 
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 We introduce the following non-dimensional quantities  
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In this case, the Eqs. (27) and (28) become, respectively 
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The latter equation is derived as follows. From Eq. (28) we get   
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In view of the above notations we get 
 

  ( )
2

2

0

1 1
24T

B B h E y
P

η
χ χ α

⎛ ⎞⎛ ⎞
′′− = −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
                 (35) 

 
which results in            

  
6 2

E hV y
Pξξ

η
α

′′ ′′=                           (36) 

 
Taking into account that   

  
2

2 2

4 2,
4 6

y l V y E hV V y
y V y l F l

η
α

′′= = =
′′ ′′ ′′

               (37) 

129



 
 
 
 
 
 

Mark M. Fridman and Isaac Elishakoff 

We find from Eq. (33)  
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Substituting this expression into Eq. (32) in view of Eq. (29), we arrive at  
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Now we turn to numerical implementation of the procedure. Taking into account symmetry of 

the buckling mode with respect to y axis, we divide the column’s half-length into elementary parts 
of length ξΔ as shown in Fig. 2.  

 
 

Fig. 2 Discretization of half a column 
 

 
To determine the shape of the column in this case, in addition to Eq. (39) we use a relationship 

between the buckling mode and its second derivative in the central finite difference setting 
 

  1
2

1 2 +− −+′′Δ= iiii VVVV ξ                        (40) 
 

Starting from the arbitrary negative value of 11V  and 10 10 0V V ′′= =  (i.e., 9 11V V= − ), we 

determine the value 9V ′′ from Eq. (39) by using random search algorithm Gurvich et al. (1979).  
This algorithm, which is  based on the global random search incorporates the idea of 

controllable selection of test points and multiple lowering to approach a local extremum. The 
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original method for searching direction choice is proposed in the present contribution. The process 
of random search is realized as follows; we express 
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where  ∑  is a single random uniformly distributed vector; 21,γγ  are constants of tension 
(contraction) of the searched hypercube H, where ;11 ≥γ moreover, 12 <γ  and 121 >γγ ;  p is a 

number of random realizations of the vector ςX  at a constant ,H  { }pLp ,...,2,1= ; ( )kX 0  are the 
parameters corresponding to the lowest value obtained at the k-th stage of the search 

( )( )kXF 0 ,while signs ∑± H  represent the realization of  the double return of the test random 
point .ςX  

 In the next step from Eq. (40) we find 8V . The process is repeated until the values oV  and 

oV ′′ are determined. The solution is validated by evaluating oV ′ , since the latter must vanish due to 

the condition 1 oV V≈ . After the values of iV  and iV ′′  are found, values of Tiχ  and oiχ  are  
directly evaluated. 

 Let us consider the particular case (b) with 2n = . In this case, the Eqs. (6) and (26) lead to 
the following  
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or the non-dimensional quantities 
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From Eq. (44) we find 
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Substituting the expression into Eq. (43) with Eq. (29), we derive 
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where ( )VVCBf ′′,,,1  depend on , ,  .B C V and V ′′  

 Let us now consider the special case (c) when in Eq. (3) n = 3 terms are retained. In this case, 
the Eqs. (6) and (26) into the following  
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or in a non-dimensional form 
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We find out 0χ  in Eq. (51). We obtain the following cubic equation 
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The solution is found by applying the Cardan’s formula to the equation 
 

  3 0z pz q+ + =                              (54) 
 

where  

  
2 3

2 1 1 1 2
0 1 3

3 2/ 3, ,
3 27 3

r r r r rz r p q rχ −
= + = = − +               (55) 

 
If discriminant D is positive, i.e., if  
 

  ( ) ( )3 2/ 3 / 2 0D p q= + >                        (56) 
 

the solution reads 
 

  33, / 2 , / 2sz u v u q D v q D= + = − + = − −               (57) 

 
If discriminant is negative, or if 0D < , then  
 

  ( )32 cos / 3z r ϕ=                         (58) 
 

  ,27/3pr −=  rq 2/cos −=ϕ                  (59) 
 

Defining 0χ  and substituting into Eq. (50). We have similar to the case where n = 2 
 

( ) ,,,,2 AVVCBf =′′           (60) 
 

where ( )VVCBf ′′,,,2  depends on , ,  and .B C V V ′′  
 
 
6. Numerical results 
 
Optimum shape of the initial form of the height of the rectangular bar χо(ξ ) was derived for 

alloy D16T with the following rates of corrosion models (1): 4108.4 −⋅=σ m/year; 410588.0 −⋅=γ

m2/T; 091.0=η  year-1; Е= 7107 ⋅ Pa. Parameters have been fixed at 210−=h m; P=10 kH; Т=10 
years; l=1 m. In this case the non-dimensional quantities are A=1.484; B=0.557; C= 40.625− . 
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Note this for all three cases, the optimized shapes turn out to be almost identical (Fig. 3). 
 

Fig. 3 Optimum initial shape and its final form 
 

 
Similar results were obtained with the P=1.79 T; Т=7.62 years; l=1m. In this case the 

associated non-dimensional quantities are A=1; B=1; 73−=C . Optimum initial shape of the height 

of the rectangular bar χо(ξ ) and its form at t≈T: χT(ξ ) are shown in Fig. 4. Here, too, for all three 
cases, they are almost identical. 
 

Fig. 4 Optimum initial and final shapes for B=1 
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For Fig. 5 the numerical results were obtained for the following data: P=1.79 T; Т=7.62 years; 
l=1 m; A=1; C=-73; B=5. The new value of B with remaining parameters kept is associated with a 
dramatic increase on corrosion rate, i.e., of the parameter 41094.25588.0 −⋅=×=γ m2/T. 
Optimum initial form is characterized by the height of the rectangular bar χо(ξ ) and its form when 
t≈T, namely χT as shown in Fig. 5. 

 
 

Fig. 5 Optimum initial and final shapes for B=5 
 
 

7. Conclusions 
 

In this paper the general and particular optimization solutions are obtained for the 
Gutman-Zainullin corrosion model. 

The results of numerical evaluation shown in Figs. 3 and 4 show that the increase in the number 
of terms in the expansion in Eq. (2) does not produce significant changes for the chosen sets of 
parameters. In all three cases, the optimal initial shape of the height of the rectangular bar χо(ξ ) 
and of its counterpart for t≈T, namely χT(ξ ) are almost identical. This closeness in results may 
have the following explanation. By substituting values obtained for Tχχ ,0  in Eq. (50), one 
observes that the terms in front of B and even more in front of B tend to zero. Increasing the value 
of factor B (with other values fixed at 4108.4 −⋅=α m/year; 410588.0 −⋅=γ m2/T; 091.0=η

year-1; Е= 67 10⋅ T/m2) should lead also to increase of the force P, this in turn leading to a sharp 
increase in Tχχ ,0 . Since these terms appears in the denominators in (50), then respectively, the 
contribution of terms containing B² and B3 are decreased.  
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An increased slight difference (between 1.5-10%) in all three cases occurs when the corrosion 
rate depends strongly on B, as shown in Fig. 5. 

Summing up the above, the use of corrosion model by Dolinskii allows one to get a sufficiently 
accurate of the optimization problem for bars in axial compression in corrosive environment, when 
corrosion rate does not depend strongly on B. However, when corrosion rate strongly depends on B, 
one is recommended to utilize the model by Gutman and Zainullin. The results of his study include, 
as a particular case, the analysis associated with the Dolinskii’s corrosion model. As such it 
represents a generalization of previous study by Fridman and Zyczkowski (2001). It appears that 
the future studies on buckling optimization ought to include linear and/or exponential corrosion 
models depending on the corrosive environment the structure is residing in. 
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