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Abstract.   In order to achieve the best performance, the automatic control with advanced technology is 
made of sheathed steel to withstand a wide range of wave loads. This model shows how to control the vibration 
of the fiber panel as a solution using the new results from the Lyapunov stability question, a modification of 
the bat that making it easy to calculate and easy to use. It is used to reduce the storage space required in this 
system. The results show that the planned worker can compensate effectively for the unplanned delay. The 
results show that the proposed controller can compensate for delays and errors. Fuzzy control (predictive 
control) demonstrated the external vibration can be reduced. 
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1. Introduction 

 

Offshore drilling rigs are structures commonly used to drill and produce oil and gas at offshore 

engineering sites. These offshore drilling rigs are inevitably exposed to external stressors from 

extreme environmental conditions such as weather, earthquakes, winds and waves (Hasan et al. 

2010), causing vibrations and potential environmental impacts. there is. Sea level monitoring in 

particular is one of the most important processes in the field of control systems. There is a risk of 

accidents because input control is required. Many of these issues occur when an operation fails. It 

can lead to serious consequences such as death, injury and financial loss. Factors that cause this 

include a lack of system equipment. Lack of trained inexperienced staff Poor communication and 

common hardware failures Active control is preferred for high efficiency among existing control 

mechanisms (Sakthivel et al. 2014). For jacket types with active damping devices (AMD), time 

delays (Sakthivel et al. 2014, Chen 2014) should be considered to correct these defect. The most 

famous learning structure is proposed. This is called an intelligent algorithm to prevent local 

resolution (Goldberg 1989). The revised algorithm can also be applied to various neural networks. 

The algorithm does not need to develop new formulas to train the variables of the structure. 

Therefore, in neural networks, training variables in neural networks is better than using traditional 

algorithms. 

Recently, several evolutionary algorithms have been used to adjust the parameters of neural 
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networks. To increase the likelihood of responding to the optimal solution (Chen et al. 2019, Hsiao 

et al. 2005, Yeh et al. 2007), such algorithms not only provide parallel search technology, but also. 

We also offer a unique approach to find a solution. To find a solution. Not only will you rate different 

points in the search area. Various evolutionary algorithms such as genetic algorithm (GA) (Goldberg 

1989), NN (Chen et al. 2019), fuzzy theory (Hsiao et al. 2005), LMI strategy (Yeh et al. 2007). The 

parameters were used to train the neural network. Several papers show the history of applying 

artificial intelligence tools to engineering problems. For example, Chiang et al. (2001, 2002, 2004) 

set new standards for systems. Chengwu et al. (2002), Systems and Hsiao et al. (2003, 2005) 

Utilizing the theory of artificial intelligence, Hsieh et al. (2006) published a stability analysis of 

artificial intelligence. Linetal et al. (2010). Provided the app. TLP system control application, Chen 

et al. (2006, 2007, 2009) also demonstrated the effectiveness of the neural network-based LDI theory. 

Liuetal (2009) developed the NN model. Structural biology algorithm. Meanwhile, Sakthivel et al.  

(2014) use reliable sample data control for the system. Chen et al. (2019, 2020) recently published 

some research findings on engineering applications for evolutionary models. Such algorithms do 

more than just provide parallelization and search techniques for finding solutions. Not only will you 

rate different points in the search area at the same time. This allows you to effectively train the 

parameters of your network's neural keys. Improves the output accuracy of the neural key network. 

Purpose is to investigate variables that affect stability under external wave power using a new 

evolutionary algorithm based on the evolutionary algorithm. He then proposed a distributed control 

set using parallel distributed compensation (PDC) technology and a powerful neurofuzzy algorithm 

(NFA) to overcome the effects of model errors. Make sure that stability is provided and there are no 

symptoms. The results are simulated and explained. And some conclusions were drawn.  

 

 

2. System description 
 
This paper presents research on active vibration compensation systems suitable for buildings. 

First, we focused on point-to-point management of jacketed offshore platforms. Fig. 1 shows a 

schematic diagram of a system that combines a traditional tension platform (TLP) with an active 

mass damper (AMD). The platform can be designed from the beginning as a single-level 

independent system (SDOF). Maximum movement boost mode You can suppress vibration in this 

way. 

Model parameters for SDOF systems are represented by m 1 , m 1 , and m . x 1 The relevant 

coordinates associated with each and offshore platform movement are represented by x1 . Mass 

natural frequency. Also, the AMD displacement ratio is represented by m 2 , u 2 , and x 2 , respectively , 

and the AMD displacement is represented by x 2 . The controlled non-uniform variation is indicated 

by u and f by physical analysis. Get the movement of the unified system (2.1). This can be described 

by the following interrelated derivative variables 
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Neural networks are primarily used to represent network rules. This allows you to use well-

known neural network algorithms to practice the rules. The core process of a neural network consists 

of fuzzy rules, inference, and a knowledge base (Terroa et al. 1999, Reyes et al. 2010, Tsai et al. 

2012, 2015, Tim et al. 2019). The fuzzy defined by its predecessor and its result are used to 

determine the relationship between the input and the output. The inference process is primarily used  
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Fig. 1 Sketch of the TLP-AMD system 

 

 

to determine connections and inference methods (Chen 2011, 2014, Tim et al. 2020, Chen et al. 

2020, Tim et al. 2021, Zhen et al. 2021). Compared to Mamdani, TS neural types provide more 

meaning and integration. The first two processes This includes fuzzy rendering and manipulation 

similar to tick-type processes. In addition, the result of each rule is a function related to network 

input variables. To achieve this goal, we will use Neural TS. In other words, an evolutionary 

algorithm proposed for training variables (Chen et al. 2022, Hsiao et al. 2004, 2005, Chiang et al. 

2007, Liu et al. 2009, Liu et al. 2010, Hung et al. 2019). 

Defines a non- linear division pattern. I will explain as follows 
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Where )(j and )(jkg is a nonlinear vector-valued function and )(tx j is a )( jkj tx  state.

jk   It means the )(tu j  delay as an input and is njC  the connection matrix between the n and j 

subsystems . 

Over the last decade, the local linear input / output relationships of nonlinear systems using fuzzy 

dynamic models have evolved significantly from Takagi and Suke's pioneering work (Tsai and Chen 

2014, Tsai et al. 2016, Chen et al. 2000). The isolated j (no interconnect) subsystem of N was 

estimated by the fuzzy TS model with multiple delays. This is explained by the fuzzy IF-THEN rule. 

An important function of the TS model is to represent each linear law as follows 
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( jri   ,, 2 , 1    ) Is the IF-THEN rule number, )(~)(1 txtx jj  an initial variable with  ,ijA the 

ijB appropriate ipjM size and membership  jkiA . The final state of this dynamic model (2.3) is 

summarized as follows 
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To discuss the stability of equation (2.5), we design fuzzy controls using the NFA calculus in 

Section 3. 

 

 

3. Neural-fuzzy linear differential inclusion 
 

A neural-network-based model (3.1) can be described as follows (Hsaio et al. 2005) 

   (3.1) 

A neural network differential inclusion (NNDI) system can be a representation of state space and 

described as follows 
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The interpolation technique is reviewed in Eq. (3.2) 

    (3.2) 

where 

    

 

Finally, based on Eq. (3.2), the NN dynamic was rewritten in NNDI of Eq. (3.3) 

                        (3.3) 

where constant matrix is with an dimension. The NNDI form becomes 

                      (3.4) 

Based on the above model scheme, nonlinear systems can be represented as NNDI, a flexible and 

mathematical analysis tool for machine learning. To ensure the stability of the offshore platform, 

the TS machine learning model and stability analysis were modified. Furthermore, TS machine 

learning fuzzy models representing nonlinear systems can be described in the next section. 

 
 
4. Fuzzy control design and evolved NFA 
 

By improving the hybrid damping control, you can achieve the required movement. Please note 

that the hybrid damper control is genuine. I haven't designed the controller. The actual delay factor 

is given as a control signal. 

Pay attention to how you monitor, including tracking errors and rates, in other words, it is related 

to ideal and actual conditions. Only the actual signal can be predicted for actual use, further 

improving performance. The gray system theory DGM model (2.1) is used to design the predictions. 

It can be easily implemented in a microcomputer based on little known information. It is assumed 

that the sequence number n can be described as DGM. Gray Model as follows 

α(1)x(0)(k)+px(0)(k) = q,      Bh =Y                     (4.1) 

Once the prediction is complete, the actual value of the signal will be measured over time. It is 

difficult to guarantee absolute accuracy. This is due to the large effect of resting motion on random 
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stimuli. Compare the predicted value with the actual value. If the error is allowed, the predicted 

value is output. Otherwise, the actual signal will be sent directly. We assume that the short-term 

situation will not change significantly. The absolute difference between the current signal and the 

previous signal is 5 times the error limit. 

The next motion prediction  adds  a measurement to the footer and 

subtracts it to create a new sequence in the same order. Repeat the above steps 

to create a DGM (4.1) model based on the dynamics of the NN model using the control. 
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If satisfied, the system will be symptom-free and stable, which is valid by Eq. (4.3). 
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we have V <0, and the proof is thereby completed. A fuzzy evolutionary algorithm (NFA) based 

on nature has been proposed. First, the fitness program randomly selects raw R rules from the R 

subpopulation to generate a TNFN. Repeat the above steps in SelectionTimes using try and errors. 

 
 
5. Algorithm 

 
The overall design process can be summarized as the following algorithm.   

Step 1: The following equation shows how to generate TNFN. 

TNFNi={Ind1sel, Ind2sel, ….IndRsel}                  (5.1) 

where i is selection times, TNFNi is the ith generated TNFN, Ind represents the individual to form 

the TNFN, Sel means the selected index of the individual in the th j subpopulation.  

Step 2: The fitness program evaluates each TNFN prepared from step 1 to obtain a fitness value. 

The capacitance value is primarily used to indicate the performance of each TNFN. In other words, 



0 PPHH ij
T
ij
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it is the main process of development, because the exercise of value plays an important role in 

determining whether to seek the best solution. The value of the ability to conceive can help 

individuals make effective assessments, and vice versa. In this study, the well-known mean squared 

error (RMS) (Reyes et al., 2010) was used to assess the performance of TNFN because it can more 

effectively reflect the performance of the model. Eq. (5.2) describes the fitness function designed in 

this study. 

FitnessValue=1/ TNFNi                          (5.2) 

It can be seen from Eq. (5.2) means higher fitness value, which means TNFN output is close to 

output, and vice versa. 

Step 3: After receiving the fitness value of each selected TNFN, the fitness program will calculate 

the fitness value of each individual containing TNFN. Specifically, divide the fitness value obtained 

in step 2 by the number of cycles (i.e., R). After that, talent sharing value will be collected for 

selected individuals. To examine how each individual relates to the others, we discuss how the ability 

to choose values in a set behaves on the overall solution. Primarily used to prevent overpopulation 

of the best performers, allowing the overall solution to address the underperformers. This will 

maintain the best mix of individuals. 

Step 4: In the last step, each person's cumulative value will be divided by the number of times 

they have been selected. Subsequently, average competence represents the value of individual 

performance. equation. (5.3) shows the calculation of the average fitness value. 

fitness value Ind =FitnessValue Industry / Select Value Industry                   (5.3) 

where i=1, 2… R ; j=1, 2… SP 

In short, the proposed AEA can help address the various criteria by which individuals in each 

subgroup are assessed. More precisely, one can consider achieving such criteria for hybridization 

and mutation. Therefore, when the solution is far from the optimal solution, this step of development 

is not only to find a larger research space, but when the solution is closer to the optimal solution, the 

development can also narrow the search space to be searched. Therefore, AEA can provide a 

powerful method for assessing subgroups.  

 
 
6. Example 
 

In this section, we study network vibration controllers for jacketed offshore platforms. First, we 

describe the variables of wave structure and strength. Then discuss the impact of the time delays. 

Finally, compare the performance of the proposed controllers with the performance of different 

literatures. 

For offshore platforms (Tsai and Chen 2014), the water depth of the cover structure is d = 218 m, 

the total height of the platform is L = 249 m, the characteristic diameter D corresponding to the 

platforms at four legs is D=1.83 m, and modal mass m1 = 7,825,307 kg, then the natural frequency 

of the platform is u1 = 2.0466 rad/s and the structural damping ratio is x1 = 2%. As shown in Figure 

1, the AMD equipment is installed on a panel platform. The characteristics of AMD equipment are 

as follows: mass m2 = 78.253 kg, natural frequency u2 = 2.0074 rad/s, damping rate x2 = 20%. The 

system time sampling time is here T = 0.01 s, and its parameters are as follows (the wind and wave 

conditions are described in Tsai and Chen (2014)) 
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Fig. 2 Power spectrum density (PSD) of wave elevation 

 

 

Fig. 3 Power spectrum density (PSD) of wave force. 

 
 

 

Fig. 4 Irregular wave force acting on the offshore structure 

 
 

 
The wave height power and the wave power spectral density (PSD) are shown in Figs. 2 

and 3. We get the force of the irregular waves acting on the offshore platform, as shown in  
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Fig. 5 The best installation location for the offshore platform when the target order is high 

 

 

 

Fig. 6 Control results of the offshore platform structure 

 

 

Fig. 4. The performance index of the vibration control system of the offshore platform is 

R = 10-5, N = 210/T. The network between distributed equipment and offshore platforms 

differentiates from traditional point control systems. Due to the harsh environment, delays 

and loss of packages are usually unavoidable. 

In addition, for this examples, other known genetic algorithms are compared to the 

proposed NFA to provide reasonable evidence of the practical application of the proposed 

controller design. 
The Fig. 5 has this result is different from that for public buildings since the good position for 

public buildings, mainly focused on the first type, usually in the bottom of the building. This is 

because the size of the deck, i.e. the top floor, is more than that of the public structure. In addition, 

for the decision model, the best position for the offshore platform is neutral and this is the same for 

public buildings. 
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Compared to the vibration response in uncontrolled conditions, the control estimation can reduce 

the maximum deviation up to 40%, the average deviation up to 35%, the maximum varies from up 

to 45% and the average difference from 38%. The maximum control power is 10% of the object, 

and the average control power is 10%. In Figure 6, the control fails at 20 s. For the first 15 s, control 

has a 65% reduction in maximum control compared to instructions with a reduction of 70%. We 

only show 50 s in this experiment, and the whole experiment lasts for 16 minutes, with both controls 

standing still. 

 

 
7. Conclusions 

 
This paper proposes a model-related approach for designing efficient controllers for evolutionary 

algorithms to overcome the effects of model errors. Make sure your system is stable. Stability criteria 

are directly examined by the Lyapunov method. The NFA is based on a complex system of 

echolocation TS fuzzy TS models and solves problems based on this standard and distributed control 

system. A group that designs predictive signals and active controls. Finally, a numerical sample was 

provided to illustrate the stability analysis of the nonlinear response. And the application of this 

standard depends on the actual degree of vibration compensation of MDOF. The results of control 

strategies can also reduce the risk of industrial applications. The results of this paper also provide a 

practical perspective on risk analysis for the marine industry. Especially in the prevention of serious 

accidents in the design of large offshore drilling rigs. 
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