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Abstract.   We develop in this work a new well-balanced preserving-positivity path-conservative central-
upwind scheme for Saint-Venant-Exner (SVE) model. The SVE system (SVEs) under some considerations, 
is a nonconservative hyperbolic system of nonlinear partial differential equations. This model is widely used 
in coastal engineering to simulate the interaction of fluid flow with sediment beds. It is well known that SVEs 
requires a robust treatment of nonconservative terms. Some efficient numerical schemes have been proposed 
to overcome the difficulties related to these terms. However, the main drawbacks of these schemes are what 
follows: (i) Lack of robustness, (ii) Generation of non-physical diffusions, (iii) Presence of instabilities within 
numerical solutions. This collection of drawbacks weakens the efficiency of most numerical methods 
proposed in the literature. To overcome these drawbacks a reformulation of the central-upwind scheme for 
SVEs (CU-SVEs for short) in a path-conservative version is presented in this work. We first develop a finite-
volume method of the first order and then extend it to the second order via the averaging essentially non 
oscillatory (AENO) framework. Our numerical approach is shown to be well-balanced positivity-preserving 
and shock-capturing. The resulting scheme could be seen as a predictor-corrector method. The accuracy and 
robustness of the proposed scheme are assessed through a carefully selected suite of tests. 
 

Keywords:  AENO reconstruction procedure; path-conservative central-upwind scheme; Saint-Venant-

Exner model; sediment transport processes 

 
 
1. Introduction 

 

One challenge in coastal engineering is to study the dynamic of sediment in shallow water 

systems. Such a problem can be modeled by a set of hyperbolic nonlinear partial differential equation 

coupling shallow water equations (SWE) and Exner equation. SWE used in predicting surface flows 

is obtained by vertical integration of three-dimensional (3D) flows under shallow assumptions and 

the Exner model describes bed evolution or morphodynamic is derived by the mass conservation of 

sediment equation. The obtained well-known Saint Venant-Exner (SVE) model is a non-

conservative sediment transport equation and can be solved by finite volume methods. The main 

difficulties with SVEs from a theoretical and numerical point of view come from the apparition of 

non-conservative products. For discontinuous solutions, this non-conservative product is not well-
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defined in the distributional sense. The concept of weak solution cannot be used in this case for 

instance. According to Dal Maso et al. (1995), the product can be understood as the Borel measure. 

Efficiency schemes for the SVE model with topography and bottom friction source terms are 

required for addressing problems on the transportation sediments. Several numerical methods have 

been developed to solve these problems. We cite Hybrid scheme coupling Beam and warming 

implicit finite difference and simple finite difference by Kalita (2022), well-balanced schemes (see 

for instance Rosatti and Fraccarolo (2006)); Central-Upwind(CU) schemes (see Xin et al. 2012); 

Finite volume based on Riemann solver approximations and  based on Roe solver of Roe (1982)  

approximations (see for instance Castro et al. (2009), Audusse et al. (2015)); explicit finite volume 

staggered grid (see Gunawan 2015); explicit finite volume methods with stabilization Moungnutou 

et al. (2022), Njifenjou (2022a, b); splitting schemes (see for instance Siviglia et al. (2022), Ngatcha 

et al. (2022a)), Flux limiter methods (see for instance Benkhaldou et al. (2012)), Carraro et al. (2018) 

using an efficient implementation of the Dumbser-Osher-Toro (DOT) Riemann solver for 1D SVEs. 

A 3D numerical model is proposed to study local scouring around single vertical piers with 

different cross-section shapes under steady-current flow. The model solves the flow field and 

sediment transport processes using a coupled approach Amir Bordbaret al. (2021) (see also Bakhtyar 

et al. (2016), Mohammad Barzegar and Palaniappan (2020)). Another HLL-type methods also can 

be used to simulate interactions between fluid flow and bottom Guozhen et al. (2022). 

However, the main drawbacks of some above schemes are what follows: (i) Lack of robustness, 

(ii) Generation of non-physical diffusions, (iii) Presence of instabilities within numerical solutions. 

For nonconservative equations, some above schemes (as the CU based schemes) are not applicable 

due to presence of nonconservative product into the  SVE  model. A strategy consists to 

discretize this product by using a linear path according to Parès (2006). The resulting path-

conservative methods are applicable for nonconservative problems. A such concept has been used 

by several authors, Carraro et al. (2018), Castro et al. (2009), Dumbser and Balsara (2016), Ngatcha 

et al. (2022b), Siviglia et al. (2022), Xin et al. (2015); the references therein. Path-conservative 

based schemes were designed to overcome these difficulties.  

Note that this method has been first introduced for 1D Shallow Water and 1D two-layer Shallow 

Water systems. But the strategy developed in their work to preserve exactly well balanced between 

flux and source terms fail for the SVE model. According to the above remarks, few numerical 

methods for non-conservative problems designed simultaneously satisfied the following properties: 

well-balanced that is exactly capable to preserve steady-state solutions (lake at rest states) even in 

presence of wet-dry interfaces; it stably simulates the wet-dry zones without numerical oscillations; 

it stably handle the discontinuities since the non-conservative products are well-defined. For 

example, classical path-conservative methods introduced by Parès (2006) may not satisfy the 

balance of flux gradient and source term at the steady state in discrete level and may introduce the 

oscillation near the discontinuities thus the scheme becomes unstable. 

The goal of this work is to develop a new high resolution first-order PCCU scheme for the non-

conservative SVE model with friction source term (also called PCCU-SVEs scheme for short) 

exactly preserving equilibria while maintaining the positivity of the water depth. The First order 

PCCU scheme is extended to the second order by using a special nonlinear reconstruction technique 

of unknowns. Here, we suggested to use a modified AENO reconstruction technique version to 

eliminate nonphysical oscillations near the strong gradients or extensive numerical dissipation. This 

reconstruction technique is obtained by modifying the AENO procedure originally developed by 

Toro et al. (2021). AENO results in a special averaging of the ENO polynomial and its closest 

neighbors, while retaining the stencil direction decided by the ENO choice. The AENO-hydrostatic 
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reconstruction procedure is also developed in this work to handle accurate and efficient dry-wet 

transitions. In this paper, our primary objective is to develop a robust and highly accurate well-

balanced positive PCCU-AENO scheme for a sediment transport problem. 

The proposed PCCU schemes are proven to be very advantageous compared to the CU schemes 

also presented here and which in some situations as presented below, fail to accurately 

capture solutions. This is due to the presence of the non-conservative product as mentioned above.  

An extension to second order in time is obtained through the implementation of the third-order semi-

implicit Runge-Kutta (SI-RK3) method of Chertock et al (2015). Another difficulty is the presence 

of friction source term. This term does not appear in some finite volume schemes cited above. Note 

that the presence of the bottom friction source term increases the level of complexity in numerical 

computational. Another objective is to apply SI-RK3 method to deal the friction source term. This 

procedure sustains the well-balanced and positivity-preserving properties of the proposed fully 

discrete PCCU schemes. Therefore, the new second order fully PCCU scheme developed here, 

consists of a predictor stage for the AENO reconstruction of discrete fluxes and correction stage for 

the recovery of solution.  

We test the proposed PCCU schemes on various problems. The obtained results demonstrate 

good resolution with high accuracy in smooth regions and without any nonphysical oscillations near 

the steep gradients or extensive numerical dissipation. The proposed scheme can treat the 

discontinuities and capture shocks associated with Dam-break on erodible or non-erodible beds. 

The rest of the paper is organized as follows. In Section 2, we present the coupled SVE model in 

different forms and we propose several properties of the system. In section 3 we present first order 

Central-Upwind scheme for SVE model in a version Path-conservative. In section 4, we rigorously 

derive the PCCU-SVE scheme for a quasi-linear form of the SVE model. In section 5, we propose 

a well balanced discretization topography source term and AENO well-balanced preserving-

positivity reconstruction. Finally, in section 6, we present several numerical examples.  

 

 
2. Mathematical modeling and hyperbolicity study 

 
2.1 Governing equations 
 
The model used in this work is obtained by coupling Shallow Water Equations(SWE) Barre de 

Saint-Venant (1871) and the well-known Exner equation Exner (1925). The Saint-Venant-Exner 

equations writes 

2

0,

1
( ) ,

2

1
0.

(1 )

b
F

b b

p

h hu

t x

Zhu
huu gh gh S

t x x

Z q

t x

 
 

 

 
    

  

 
 

  

               (1) 

The system of Eqs. (1) is considered in a certain spatio-temporal domain  )T0,( ℝ  ℝ+
∗ . 

To obtain a well-posed problem we add to Eq. (1), some initial conditions and boundary conditions. 

In this model, [ ]h m  is the water depth, [ / ]u m s  is the vertically-averaged velocity components, 

[ ]bZ m is the bed level, [ ]t s  is the time, [ ]x m  is the streamwise coordinate and is the acceleration 
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gravity. The flow discharge per unit width is defined by 2[ / ].q hu m s The friction source  term 

writes | |F fS C u u  where 2 1/3( )fC gn h  is the friction factor (or the coefficient of hydraulic 

resistance) where  1/3[ / ]n s m  is the Manning’s roughness coefficient. Manning’s coefficient n

depends on the characteristic amplitude and spatial scale denoted by the irregular structure of the 

mobile bed 
.bZ . The Manning coefficient should be defined following  a wide range of scales of 

bed inhomogeneities. For the small-scale inhomogeneities the amplitude 0.8bZ   we can take 

  0.0025.n   For the large-scale inhomogeneities n  does not exceed 0.02 Tatyana Dyakonova 

and Alexander Khoperskov (2018). Notice that the friction term becomes a stiff damping term, 

which increases the level of complexity in the development of efficient numerical methods for the 

Eq. (1). 
bq is the bedload sediment flux per unit width and p is  the bed porosity. 

bq  is given 

by the Grass model Grass (1981) 

1
*| | , 0 4gm

b g gq A u u m


                        (2) 

where the constant 
2( / )gA s m   depends on experimental data and takes into account the grain 

diameter and the cinematic viscosity. The value is currently used, and strong interaction between 

fluid and sediment is simulated letting gA   be close to 1. SVEs can be written in the 

nonconservative form 

;(W)S(W)zbS
x

F(W)

t

W










 Ωx ℝ, t (0,T)               (3) 

where 
( )F W

x




  is the conservative term, 

2 2

2

1
,  is the vector unknowns;  ( ) ,

2

| |
(1 )

b

p

g

hu
h

W hu F W hu gh

Z

u u
A



 
 
  
  

    
  

   
 

 

 is the physical flux; 

( ) B( ) b
Zb

Z
S W W

x





,  , is the topography source term with

0

B( )

0

W gh

 
 

  
 
 

 ; and where 

0

( ) | |

0

fS W C u u

 
 

  
 
 

 friction source term.  Using this form the SVE can be solved by a CU scheme.  

Really, the SVE model is nonconservative since  the derivatives bZ appear in the nonconservative 

product. 

The nonconservative form of SVE model can be given by 
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t))S(W(x,
x

W
A(W)

t

W










  Ωx ℝ, t (0,T)                  (4) 

In Eq. (4) 

A(W) = A(W)-B(W)                               (5) 

2

0 1 0 0 0 0
( ( ))

( ) 2 0 ,   B( ) 0 0 .

0 0 0 0

F W
A W u gh u and W gh

W
u 

   
    

     
   
      

         

1

.
gm

b
g

q u
m Ag

q h





 


, is the measure of the intensity of total bedload in flow. Here, A(W) is a regular 

matrix-valued function from   to MN×N(ℝ). The model  is hyperbolic if the Jacobian matrix A(W)  

given by (5),as 3 distinct reals eigenvalues 
1 2 3( ( )) ( ( )) ( ( )).W W W   A A A  

Note that the vector B( )W , is linear in W  and depends only on c .gh  It is usual to write the 

nonconservative terms in terms of a matrix-vector product; but it is also possible to write it in terms 

of the vectors. 

 
2.2 Eigenstructure of SVE model 
 
The SVE system given byEq. (1) is strictly hyperbolic since we have three distinct real 

eigenvalues 1 2 3, ,    given by 

1 2 3

2 1 2 1
; 0, .

3 3 3 3
u u                             (6) 

where 
2 (1 ).u gh      We have well 1 2 3    . The three non-dimensional eigenvalues, 

can be analytically expressed as 

31 22 1 2 1
( ) 0, 0, ( ) 0;

3 3 3 3
Fr Fr Fr Fr

c c c

 
                    (7) 

where 
2 (1 ).Fr       These eigenvalues can develop either shock or rarefaction waves 

Riemann invariants are constant across linearly degenerate waves and rarefaction waves, whereas 

for shock waves generalized jump conditions should be satisfied. The three eigenvectors 

corresponding to the eigenvalues , 1,2,3i i   are 

1 1 2 3 3

2 2 2

1 3

1 1 1

,   0 ,  .

( ) ( )
11 1

R R R

u u u

ghgh gh

 

 

    
    
    
      
    

          
    

            (8) 
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Therefore, 1 1 2 2 3 3. 0,  . 0,  . 0.W W WR R R         

There is at least a  genuinely non-linear field and such solutions can be constructed as simple 

non-linear k waves . The eigenvectors are linearly independent since we have: 

 1 2 3det , , 0.R R R   Hence the system is strictly hyperbolic. 

 
2.3 C-property of the model 
 
We recall that the steady states solution is satisfied by the following equation 

2
2

0

1
( ) | |

2

0

b
f

b

q

x

Zq
gh gh C u u

x h x

q

x







   

 






                  (9) 

As one easily can see, the system (9) admits nontrivial ( 0)u  steady states in the form 

, , bZ
q hu constant h constant constant

x


   


             (10) 

This solution corresponds to the situation when the water flows over a slanted infinitely long 

surface with a constant slope. It’s also the situation when the fluxes of sediment are zeros. The 

preservation of two equilibria ensures the positivity of the water height and the well-balanced 

property: 

-The steady states writes 
3/10

2

0
0 0 0

0

; ; ;bZ n q
q q K h h

x K

 
      

  
                (11) 

The steady states "lake at rest" reads 

0; bu h Z const                            (12) 

-the constant slope equilibrium writes 

; 0.b
x x xx b F

Z
h u Z S constante

x


       


                 (13) 

 
Remark. 1 

Next, we denoted W  the space of steady states which satisfy Eq. (11), by 0W  the space which 

guarantees that "lake at rest" solutions are exactly preserved at discrete level and by 0

W  the space 

which guarantees that "lake at rest" solutions are exactly preserved with the positivity of water depth 

at the discrete level. 

364



 

 

 

 

 

 

A well-balanced PCCU-AENO scheme for a sediment transport model 

Remark. 2 

Let us remark that the validity of the well-balanced property is of great interest when erosion 

near a steady state is considered. For certain cases, it’s needed that the projection of the Jacobian 

matrix of the nonconservative system onto steady states at rest space is non-singular. This is the case 

for SWE but not for SVEs. This can make it difficult to design a well-balanced PCCU-SVES scheme 

in the presence of bed sediment. A strategy of well-balanced discretization is developed here to solve 

this problem.  

Remark. 3 

SVEs given by Eqs. (1) and (2), arise in the modeling of sediment which occurs at very different 

time scales in rivers, lakes coastal estuaries. SVEs are widely used for describing the bed evolution 

in shallow water flows. 

 
 

3. Well-balanced Central-Upwind scheme and reformulation 
 
In this section, we start by presenting a CU scheme in a version path-conservative for the 1D 

SVE model given by Eq. (4) with uniform sediment size. We consider an open bounded domain of 

ℝ denoted . The grid of   considered here is uniform that is ix i x  , where are the small 

spatial scale and the corresponding finite volume cells  1/2 1/2  ,  .i i iK x x   The set of all the cells 

is denoted .T   We  have 
1

N

i

i

K


    where N  is the number of cells. We denoted by 
intE

(respectively 
extE  the set of interior edges (respectively the set of exterior edges) 

{ , } { , {1, }} ext

i iK i K i N   E ,     , , 1 . ,int

i iK i K i i N    E     (14) 

We assume that at a certain time level t the solution realized in terms of its averages is available.  

Integration of Eq. (4) over the cell iK  provides the first order semi-discrete CU scheme for the 

1-D SVE model 

1/2 1/2( ) ( )
( ) ( ( )) in inti i

i i

t td
W t S W t

dt x

  
   

 

F F
E              (15) 

where the discrete source term is given by (t))iWS((t))iW(zbS(t))iWS(    

The CU fluxes in Eq. (15) are given by 

 1/2 1/2 1/2 1/2 1/2 1/2
1/2 1/2 1/2

1/2 1/2 1/2 1/2

( ) ( )i i i i i i
i i i

i i i i

a F W a F W a a
W W

a a a a

     
      

     

   


  

 
F  

 1/2 1/2 1/2 1/2
1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2 1/2

21
( ) ( ) .

2
 i i i i

i i i i

i i i i i i

a a a a
F W F W W W

a a a a a a

   
      
        

     

 
    

   

  (16) 

We reformulate the CU numerical flux as follows 

 
1/21/2 1/2

01 1
1/2 1/2 1/2 1/2 1/2

1 1
( ) ( )

2 2 2

ii i

i i i i iF W F W W W
   

   

    

 
   F       (17) 
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where 

1/2 1/2 1/2
0

1/2 1/2

2i i i

i i

a a

a a


 
  

 

 





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1/2 1/2 1/2
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1/2 1/2

i i i

i i

a a

a a


 
  

 

 





 and where 

2

2

1
( )

2

(|

.

| )
(1 )

hu

F W huu gh

Ag
u u

p

 
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 
 

 
 
 
 
  

 

Notice that all of the indexed quantities depend on ,t  but from now on we will omit this 

dependence for the sake of brevity. Therefore, the first order semi-discrete CU scheme writes 

1/2 1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2

( ) ( ( ) ( )) ( ) ( ( ) ( ))
( ) ( ( ))

( ( ) ( ))
            ( ( ))

i i i i i i
i i

i i i i
i

t F W F W t F W F Wd
W t S W t

dt x

F W F W
S W t

x

   

     

   

   

     
   

 

   
  

 

F F

D D

 (18) 

where 1/2i



D  are the fluctuation given by 

1/2 1/2 1/2 1/2 1/2 1/2( ), and ( ).i i i i i iF W F W   

         D F D F           (19) 

Note that 1/2 1/2( ) ( )i iF W F W 

    in Eq. (18) can be expressed as a function of polynomial 

reconstruction. 

 

NB. 

It possible to use the spectral decomposition to compute fluctuation since the Jacobian matrix of 

the system is diagonalizable.   

 
Remark. 4 

For conservative systems, the first-order version of the CU scheme given by Eqs. (18) and (19) 

coincides with the semi-discrete HLL  scheme for nonconservative systems. In this semi-discrete 

scheme, we denoted 1/2 1/2  i iW and W 

   the  left and right intermediate values of polynomial 

reconstruction 

 (1) (2) ( )( , ) P ( ), P , ,...., ,
i

T
N

i K i i i i

i

W x t x P P P  X                (20) 

Here, X is the characteristic function, 
( )j

iP  are the polynomials of a certain degree satisfying 

the conservation and accuracy requirements defined for all i  by 

( ) ( )1
P ( ) ,   ( ) ( ) (( ) ), ;

i

j j s

i i i i
K

x dx W and P x W x O x x K
x

    
   
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with s  a (formal) order of accuracy. 
(1) ( )( ) ( ,...., )N tW x W W is the exact smooth solution. We 

are interested in left and right limiting values of reconstruction polynomials, often called boundary 

extrapolated values. The polynomial reconstruction is used to ameliorate the solution 

approximations at each mesh iK . The order of the scheme depends on the choice of the Pi functions. 

1/2 1/2 1/2 1/2 1/2 1 1/2( 0) P ( ), ( 0) P ( ).i i i i i i i iW W x x W W x x 

                    (21) 

1/2 1/2  i iW and W 

   are connected via Riemann fan by 1/2 1/2( , )i iW W  

    (a curve in phase space).  

For some smooth ,W we have 

,)()
s

iK1/2iW(x1/2iW 


 i ℤ                  (22) 

 
Proposition 

 

The one-sided local speeds of propagation 1/2ia

  are upper/lower bounds on the largest/smallest 

eigenvalues of Jacobian matrix given above 

2 2

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

2 2

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1

2 1 2 1
min ( ) 3 (1 ), ( ) 3 (1 ),0

3 3 3 3

2 1 2 1
max ( ) 3 (1 ), ( ) 3 (1

3 3 3 3

i i i i i i i i i

i i i i i i i i i

a u u gh u u gh

a u u gh u u gh

 

 

        

        

       

        

 
       

 

       /2 ),0 . 
 
 

 (23) 

In this case, we have the following restriction 

1/2 1/22max( , ) ; 0 1i ia a t CFL x CFL 

                       (24) 

where t is the step time. 

Note that the quantities 1/2 1/2, ,i i iW W a 

    depend on time, but we simplify the notation by 

suppressing this dependence. Note also that the conservative linear reconstruction cannot guarantee 

the positivity of the reconstructed point values 1/2ih

 even when the cell averages are positive for 

all i . 

 
Remark. 5 

The order of semi-discrete CU scheme Eqs. (17), (18), (20), (21) and (23) is given by order of 

the piecen polynomial reconstruction and the order of the ODE solver the system (18) is integrated 

in time. 

 CU scheme can be seen as the semi-discrete version of the HLL scheme developed by 

Harten (1983). 

 Under the condition that the reconstruction is non-oscillatory, the non-oscillatory property 

of the CU scheme is guaranteed. The latter is typically achieved using the AENO-based 

reconstruction introduced below. 

 The information obtained from the local speeds of wave propagation is very capital. The 

information obtained from the local speeds of wave propagation is very capital. 
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 The semi-discrete CU scheme is well-balanced when 1/2 1/2 0i iW W 

    for all i  at the 

steady states. In this context, the invertibility of the Jacobian matrix is not required. 

 CU scheme does not take into account the discontinuities of the nonconservative products 

at the cell interfaces.  

Let’s denote the approximation of the cell average value in the i th  cell at the time .nt t We 

have the following fully discrete first order CU scheme 

1 , , , , θ

1/2 1/2 1/2 1/2( ( ) ( )) S( ) n n n n n n n

i i i i i i i

t
W W F W F W W

x

     

   


       
D D        (25) 

Where the reconstructed values at first order
1/2 1 1/2,   i i i iW W W W 

    ., , , , ,  

For θ 0 , we obtain an explicit scheme and we obtain a semi-implicit scheme;  however the  

coupling in the semi-implicit scheme is only local to the cell. The fully discrete CU scheme neglect 

the nonconservative term then the resulting method is only consistent with smooth solutions. 

 

Remark. 6 

The fluctuations 
,

1/2

n

i



D in Eq. (25) do not include nonconservative term ( ) .bZ
B W

x




 This term 

is handle directly as topography source term. Therefore the CU based schemes for SVE are not 

applicable. For nonconservative systems a more elegant interpretation can be given in the sense of 

the definition of Borel's measure. It is possible to take into account the jump contribution due to the 

nonconservative product into the fluctuations by using the concept of path-conservative introduced 

by Parès (2006). 

 

 
4. New Path-Conservative Central-Upwind schemes 

 

In this section, we develop a first-order PCCU scheme for the nonconservative SVE model given 

by Eq. (5). The second order PCCU scheme is obtained by using a modified AENO reconstruction 

approach. 

 

4.1 First order PCCU-SVES scheme. 
 
According to remark 6, the design of the PCCU scheme requires the choice of sufficiently smooth 

paths 

(1) (2) ( ) ( 1)

1/2 1/2 1/2 1/2 1/2 1/2 1/2Ψ ( ) ( , ,...., , ) : Ψ( , , )N N

i i i i i i is s W W  

                   (26) 

connecting the two states 1/2 1/2,i iW W 

   across the jump discontinuity at 0x x  such that a local-

Lipschitz application Ψ:[0,1]   satisfies the following property 

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2Ψ(0, , ) and Ψ(1, , ) , , .i i i i i i i iW W W W W W W W       

               (27) 

We can define the nonconservative product as the Borel measure as in Dal Maso, Leveque, and 

Murrat (1989) 
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0 0

1

x 1/2 1/2 1/2 1/2 x
0

Ψ
(Ψ( , , )) ( , , )i i i i

d
s W W s W W ds

ds
    

   

 
  
 
 A            (28) 

where is 
0x is the Dirac function and 

0x is the fluctuation. This definition is similar to the one 

proposed by Volpert to define the nonconservative product. Generally, the concept of the weak 

solution and the definition of path-conservative schemes strongly depend on the chosen family of 

paths. Note that the choice of the family of paths is arbitrary. We take a particular example of the 

simplest linear segment path 

 1/2 1/2 1/2 1/2 1/2 1/2Ψ ( , , ) ( ), [0,1].i i i i i is W W W s W W s    

                     (29) 

However, we also can choose the nonlinear path. The generalized jump condition using 

the definition of paths writes:
1

1/2 1/2 1/2 1/2 Ψ Ψ
0

1/2 1/2 1/2 1/2 , 1/2 ,                           

Ψ
(Ψ( , , )) ( , , ) [ ( ) ]

           (                           

[B( ) ]

( ) ) B(   ) , (  

i i i i x x b

i i i i b i b

d
s W W s W W ds A W W W Z

ds

F W F W W W Z Z

   

   

    

    

   

   

 A

1/2

1/2 1/2

)

                                                                       ( ),

i

i iW W





 

  

 (30) 

where    is the speed of discontinuity propagation. The source term does not make any 

contribution to the jump conditions since it does not contain a derivative of .W   

The LHS term is the fluctuation which is split right moving waves arising in the Riemann solution 

the fluctuation is  defined by 

1

1/2 1/2 1/2 1/2 1/2 1/2
0

Ψ
( , ) (Ψ) ( , ) ( , )i i i i i i

d
W W ds W W W W

ds

       

       G A G G        (31) 

where 1/2 1/2 1/2 1/2( , ), ( , )i i i iW W W W     

   G G   are computed here by using the CU technique. 

1/2 1/2,  i i

 

 G;G represent the differences between the numerical flux and the physical fluxes at both 

sides of the cell interface. We rewrite 1/2i



G as follows 

  
1/21/2

1
1/2 01

1/2 1/2 1/2 1/2
0

Ψ1
(Ψ ( )) .

2 2

ii

i
i i i i

d
s ds W W

ds

 
  
   


  G A        (32) 

By the definition of in Eq. (5), we have 

   
1/21/2

01
1/2 1/2 1/2 Ψ, 1/2 1/2 1/2

1
( ) ( ) B ,

2 2

ii

i i i i i iF W F W W W
 

    

     


    G        (33) 

with 

(1) ( )
1

1/2 1/2
Ψ, 1/2 1/2 1/2 1/2

0
B B(Ψ ( , , )) ,...., ,

T
N

i i
i i i i

d d
s W W ds

ds ds

   
   

  
  

 
           (34) 
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where  1/2 , 1/2 , 1/2 , 1/2Ψ Ψ ,Ψ ,Ψ
b

T

i h i hu i Z i     

With this new formulation of fluctuation, and using the definition of family path, we rerewrotehe 

CU scheme as 
1

1/2 1/2
0

P1
( ) (P ( )) B in inti

i i ii i i

dd
W t A x dx S

dt x dx

 

 

 
      

  
G G E       (35) 

Whereby the definition of linear piecewise reconstruction, we have 

1

1/2 1/2
0

P
(P ( )) ( ) ( )i

i i i

d
A x dx F W F W

dx

 

                   (36) 

and where iB  is discretized topography source term 

 
(1) (2) ( )

B B P ( ) , ,...,
i

N

i i i
i i i

K

dP dP dP
x K

dx dx dx

 
  

 
 T               (37) 

Note that a discretization of bed slope can be given by 

1/2 1/2
, 1/2 , 1/2

( )
B 0, ( ),0 in

2

T

int exti i
i b i b i

h h
g Z Z

 
  
 

 
  
 

E E            (38) 

Since 
1/2 1/2 1/2 1/2 1/2 1/2( ) , and ( ),i i i i i iF W F W   

        G F G F  with 1/2iF   defined by Eq. 

(17) the 1-D semi-discrete first-order PCCU scheme for SVEthe model rewritten as 

 1/2 1/2 Ψ, 1/2

1
( ) B  ( ( ))    ,i i i i i i

d
W t S W t i

dt x
        


F F H           (39) 

where we denoted the discrete nonconservative term Ψ, 1/2iH by 

1/2 1/2
Ψ, 1/2 Ψ, 1/2 Ψ, 1/2

1/2 1/2 1/2 1/2

B B .i i
i i i

i i i i

a a

a a a a



 
   





 

  

 
 

H            (40) 

with 

1/2 1/2
Ψ, 1/2 , 1/2 , 1/2

( )
B 0, ( ),0 in

2

T

int exti i
i b i b i

h h
g Z Z

 
  

  

 
  
 

E E         (41) 

The term Ψ, 1/2iH is the contribution of  the jumps of the nonconservative products at the cell 

interfaces. 

 

Remark. 7 

The proposed PCCU scheme is seen as a version of path-conservative HLL of Dumbser and 

Balsara,(2016),(see also Xin et al. (2015)) 

Note that this term makmakese PCCU scheme to become formally consistent with particular 

definition of weak solutions. Note also that this term play an important role in the robustness of the 

method presented here. The semi-discrete scheme can be extended to the second order by a 

reconstruction procedure newly developed. 
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Remark. 8 

A difficulty encountered in PCCU method for sediment transport models is the need for 

projection of the Jacobian matrix onto the steady states space to be non-singular. This makes it 

possible to make the scheme well balanced in the presence of a variable sediment bed (bedforms). 

In case of the SWE, the Jacobian matrix of said system is non-singular which ensure the invertible 

and the possibility to write a discrete space of equilibrium states. 

 
4.2 Second order scheme: modified AENO reconstruction for PCCU-SVEs scheme 
 
To increase the resolution of contact waves and smooth parts of the solution, one may want to 

use a second-order extension of the PCCU-SVEs scheme presented above. In this subsection, we 

show how to design such an extension using an AENO procedure. This procedure is nonlinear and 

uses a piecewise polynomial reconstruction defined as follows 

1/2 1/2P ( ) ( ); , with ,
2

i i
i i i i i i

x x
x W x x x K x  
                 (42) 

where ( )i iW   are the slopes that approximate ( , )iW x t  in a non-oscillatory manner using 

a nonlinear slope obtained by convex combination of 1/2i and 1/2i as follows 

1/2 1/2( ) (1 ) , [0,1]i i iW                               (43) 

where 

1/2

2 2
1/2

( ) with ,i

i

r
r r

r









 

  ò
                    (44) 

and where 

1 1
1/2 1/2, .i i i i

i i

W W W W

x x

 
 

 
   

 
                    (45) 

 is a positive parameter, ò is a small positive tolerance to avoid division by zero. The result of 

reconstruction procedure is a non-oscillatory linear polynomial iP  defined at time 
nt  inside each  

i  . This reconstruction is obtained by modifying  AENO reconstruction procedure proposed by 

Toro et al. (2021) and is proven to have a formal second accuracy. 

 
Remark. 9 

To obtain second order PCCU-SVEs scheme, we replace the piecewise polynomial 

reconstruction Pi
 in (21) by (42). Using Eq. (12), the PCCU-SVEs scheme obtained is non-well-

balanced even if 
1/2 1/2 0.i iW W 

    A strategy of well-balanced PCCU scheme has been developed 

for Saint-venant equations and for two layer Saint-Venant model with successful in Castro et al. 

(2019). This strategy is not adapted for sediment transport problems because the Jacobian matrix of 

system at discrete level projected in discrete space 
0W   is not non-singular. Therefore is not 

invertible. Here a strategy is developed for nonconservative sediment transport problem to maintain 

the scheme well-balanced.  
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5. Well balanced discretization topography source term and AENO well-balanced 
preserving-positivity reconstruction 

 

In this section, we propose a well balanced discretization of the topography such that 0W W   

by the second order PCCU-SVEs scheme. The result is used to propose AENO well-balanced 

preserving-positivity reconstruction. 

 
5.1 Well balanced discretization topography source term 
 

Fist, we note that the friction source term fS vanish at "lake at rest" states and therefore well 

balanced property of the scheme will be guarantees if the discretized cell average of geometric 

source term iS  exactly balances the rest of numerical fluxes so that the second component of RHS 

of (39) vanish for the data satisfying (12). For 0 ,W W  

1/2 1/2 1/2 , 1/2 1/2 , 1/2.i i i b i i b iw w h Z h Z     

                         (46) 

Therefore, he well balanced dicretization topography source term is given by the following 

relation 

 (2) (2) (2) (2) (2) (2) (2) (2)1/2 1/2
1/2 1/2 Ψ, 1/2 1/2 1/2 Ψ, 1/2 Ψ, 1/2

1/2 1/2 1/2 1/2

B B B .i i
i i i i i i i i

i i i i

a a

a a a a

 

 
         

   

      
 

F F H = F F    (47) 

where 
(2)

1/2 1/2 1/2( , )i i iW W 

  F F   is the second components of well-balanced numerical flux 

defined for reconstructed unknowns 1/2 1/2 0, ,i iW W 

  W that is 

1/2 1/2
(2) (2) (2)1 1
1/2 1/2 1/2 1/2 1/2 0

1 1
( ) ( ), with ,

2 2

i i

i i i i iF W F W W W
  

   

    

 
  F W      (48) 

where 
(2)Bi  is defined above and where 

(2)

Ψ, 1/2B i  is the second component of nonconservative 

topography term defined according to Eq. (46) as 

(2) 1/2 1/2
Ψ, 1/2 1/2 1/2B ( )( )

2

i i
i i i

h h
g h h

 

  





 


                    (49) 

The well-balanced discretization PCCU scheme is finally obtained by replacing iB  given by 

(37) in the semi-discrete scheme given by Eq. (35) by iB  given by Eqs. (47)-(49). 

With this discretization procedure the proposed scheme is proven second-order well-balanced 

PCCU methods. 

 
5.2 AENO positivity-preserving reconstruction 
 
Here, we propose a procedure called AENO-preserving positivity reconstruction to achieve both 

the positivity of water depth and C-property of scheme. We introduce reconstructed values by AENO 

technique 
1/2 1/2 , 1/2, ,i i b ih q Z  

  
 of the unknowns to left and right of 1/ 2i  . The velocity is 

calculated as 
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1/2 1/2
1/2 1/2

1/2 1/2

( ) ( )
,i i

i i

i i

hu hu
u u

h h

 
  
  

 

                        (50) 

The right/left bed elevation at the cell interface 1/ 2i  in right is given by 

, 1/2 , 1 , 1 , 1/2 , 1 ,min(max( , ), ), min(max( , ), )b i b i b i i b i b i b i iZ Z Z w Z Z Z w 

            (51) 

which should satisfy that 

, 1/2 1/2 1/2b i i iZ h w const  

                         (52) 

if the still water ( )i b ih Z const   is given. This treatment makes the reconstructed bed elevation 

equal to water level at the interface of the wet cell and the dry cell. In order to preserve the 

reconstructed water depth nonnegative, the face values of water depth are corrected as 

1/2 , 1/2 1/2 1 , 1/2 1max(0,min( , )), max(0,min( , ))i i b i i i i b i ih w Z h h w Z h 

              (53) 

which verify at the steady states  1/2 1/2i ih h 

   , and where 
, 1/2 , 1/2 , 1/2max( , ).b i b i b iZ Z Z 

     

Finally the rest of unknowns can be recalculated as 

1/2 1/2
1/2 1/2 1/2 1/2 , 1/2

1/2 1/2

( ) ( )
, , .i i

i i i i b i

i i

hu hu
u u w h Z

h h

 
     
     

 

              (54) 

With this reconstruction the proposed scheme is proven positivity-preserving of the water depth. 

 

Remark. 10 

The above proposed strategy allows us to design a path-conservative-central upwind scheme for 

more situation such that in the presence of dry zones and in the presence of steady states near the 

bottom. The numerical scheme proposed here has been proven well-balanced and preserving-

positivity. 

 
 

6. Numerical results  
 
Here, we assess the proposed PCCU-SVEs on a carefully selected, suite of test problems. For all 

the tests, the numerical stability is imposed by the Courant-Friedrich-Lewy (CFL) condition and the 

integration time step is evaluated by Eq. (24). 

The semi-discrete path-conservative central-upwind Saint-Venant-Exner scheme is a system of time-

independent ODEs that should be solved rigorously by an stable and efficient technique. We use 

here, third order semi-implicit Runge-Kutta (SI-RK3) time discretization based method  presented 

in Ngatcha et al. (2022a). In all of the examples in the following text the gravitation constant 9.81g  , 

the porosity is 0.3p   , the Manning roughness coefficient is 0.028n    (since 50l m  and 

0.8bZ  ). 
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Fig. 1 C-property of PCCU-AENO method. Left for Saint-Venat model, right for Saint-Venant-Exner 

model 

 

  
Fig. 2 High-resolution study: Comparison between the exact solution and numerical solutions obtained 

by both AENO CU-SVEs and AENO PCCU-SVEs schemes 

 
Table 1 Analytical solution: high-resolution study between both CU-SVEs and PCCU-SVEs schemes 

 

 

6.1 Steady states lake at rest: Verification of the C-property 
 
We begin by illustrating the well balanced property of the designed scheme. We show that our 

scheme can exactly preserves the steady state solutions thus satisfying the well-balanced property. 

To investigate the ability of our PCCU-AENO method to preserve the correct steady-state solution, 

we apply the scheme to the benchmark test problem proposed in Benkhaldoun et al. (2012) and  

Tests 
0q  0H  n  bq  0h  

0 L
h h   

1 0.01 0.01 0.02 0.6106 0.34 2.571E-16 

2 0.01 0.02 0.02 0.0546 0.038 3.134E-16 

3 0.01 0.015 0.1 0.0127 0.133 7.34E-16 

4 0.01 0.018 0.1 6.044E-5 0.00735 1.834E-17 

5 
1/ 3  0.023 0.023 3.7904 0.185 5.67E-17 
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Hudson (2003). Here, the domain of simulation is [0, 1000]   and the initial conditions are 

defined as 

2 ( 300)
sin ( ) if 300 500,

(0, )    (0, ) 10 (0, ),   ( ,0) 0.200

0                         else
b b

x
x

Z x h x Z x u x


 

   



, , (55) 

The computational parameters are :    0.1CFL   , AENO reconstruction is performed using 

0.0001,  1.TOL  ò  

The results of the simulation are presented in Fig. 1. 
It is expected that the water free surface remains constant and the water velocity should be zero 

at all times. \We run the PCCU-AENO method using 200 gridpoints and the obtained results are 

displayed at a time   20000 .t sec  In Table 1, we present the water free-surface and the errors in 

the water free-surface for the SVE model. As can be seen, the water free surface remains constant 

during the simulation times and the proposed PCCU-AENO method preserves the C-property to the 

machine precision. The computed and analytical water free surfaces are virtually indistinguishable 

from the SVE systems of equations. An important point presented in Fig. 1 is that our proposed 

scheme can identify the behavior of the numerical scheme when the sediment transport vanishes 

since we recovered a relevant scheme for the classical SW model.   

We consider here an accuracy test where the smooth analytical solution exists. This solution 

refers to a steady-state condition for a subcritical water flow coupled with a linear-in-time bed 

erosion, as proposed by Berton. In this simulation, we let the friction term vanish   0.S W   The 

error between the numerical solutions and the reference solution is computed and the convergence 

rate is deduced. the error is evaluated in pL norm  at the time 7 .t s  

 
6.2 Accuracy test: comparison with exact solutions 
  
Here we verify the accuracy of our numerical method by studying empirical convergence rates 

using the nonlinear least squares. In this application, we use both AENO CU-SVEs and AENO 

PCCU-SVEs schemes to approximate the Saint-Venant-Exner model presented above in domain 

which are approximately second order in space and time and using the original nonlinear 

reconstruction technique presented here. The computational domain is discretized by a mesh point. 

The exact solution is given by Berton et al. (2012) 

1/3

3 2

,

1

( )

( )

2 ( )
1

2

anal

anal

anal
anal

anal

anal anal
b anal

anal

q

x
u x

Ag

q
h x

u

u gq x
Z

gu

 



 
  
 




 

                        (56) 

where 0.005.gA      
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Table 2 Estimate error between the exact solution and numerical solution obtained by using the proposed 

AENO PCCU-SVEs scheme. AENO reconstruction is performed with 0.0001, 1, 0.5.CFL  ò  

 h  u  
bZ  

N  L
 ( )O L  L

 ( )O L  L
 ( )O L  

50 3.38E-2 / 9.8E-2 / 3.5E-2 / 

100 1.95E-2 0.805 6.67E-2 0.55 1.95E-2 0.84 

200 1.08E-2 0.903 4.58E-2 0.54 1.03E-2 0.92 

400 5.71E-3 0.95 2.81E-2 0.704 5.33E-3 0.9504 

800 2.96E-3 0.7507 1.59E-2 0.821 2.71E-3 0.97 

1600 1.51E-3 0.984 8.48E-3 0.906 1.37E-3 0.984 

 
Table 3 Estimate error between the exact solution and numerical solution obtained by using the proposed 

AENO PCCU-SVEs scheme. AENO reconstruction is performed with 0.0001, 1, 0.5.CFL  ò  

 h  u  
bZ  

N  1L  
1( )O L  

1L  
1( )O L  

1L  
1( )O L  

50 1.16E-2 / 2.74E-2 / 6.54E-3. / 

100 3.59E-3 1.69 1.029E-2 1.425 2.29E-3 1.28 

200 1.09E-3 1.81 3.38E-3 1.59 1.13E-3 1.25 

400 3.29E-4 1.72 1.03E-3 1.714 5.02E-4 1.17 

800 9.49E-5 1.79 2.92E-4 1.81 2.32E-4 1.11 

1600 2.6E-5 1.84 7.86E-5 1.89 1.11E-4 1.06 

3200 6.87E-6 1.901 2.05E-5 1.93 5.43E-5 1.03 

 

 

The comparison is made for both analytical and numerical solutions obtained by both CU-SVEs 

and PCCU-SVEs schemes. Results displayed in Fig. 2, demonstrate that the proposed scheme 

describes the bed level and water height evolution with good accuracy. We can see that the analytical 

solution is well approximated by both schemes. We can see that both numerical solutions converge 

to the analytical one. 

We can see that the analytical solution is well approximated by both schemes. We can see that 

both numerical solutions converge to the  analytical one. We can also see that both schemes 

converge to the same solution, but the convergence of the AENO PCCU-SVEs scheme is much 

faster, which confirms the high resolution and robustness of the proposed AENO PCCU-SVEs 

approach. 

Here, we also compute first and second-order PCCU schemes. Table 2 shows the discrete where   

1,p    of the error for ,h q  and 
bZ  in the first order and second order respectively at the final 

time step 7t  . We can see clearly that the second order AENO PCCU-SVEs proposed in this work 

have a good convergence rate 1( )LO  in various grid numbers where it tends to 2 for the AENO 

PCCU-SVEs scheme and to 1 for first order PCCU-SVEs scheme. The convergence rate of discrete 
1L norm  in and 

bZ are shown nicely increasing along with the increasing number of points. 
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Fig. 3 Unstable bump evolution using non-weel-balanced CU-SVEs scheme 

 

  
Fig. 4 Bump evolution Ag=0.009, the CFL condition is 1. Left without friction source term, right with 

friction source term; ANEO-type reconstruction is performed using 0.0001ò  and 1.   

 

 

6.3 Short term propagation of a small sediment hump 
 
Here, we reproduced bed movement under shallow water flow. The initial conditions are obtained 

by running equation following 

2(0, ) 0.1 0.1exp( ( 5) ),   (0, ) 0.4 (0, ),   (0, ) 0.6.b bZ x x h x Z x q x       , , , , (57) 

We first use the non-well-balanced scheme which is the scheme without AENO-preserving 

positivity reconstruction proposed in subsection 5.1. The non-well balanced discretization uses the 

bottom discretization given by Eq. (28). The solution using that is displayed in Fig. 3. 
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Fig. 5 Dam break over dry bed. Sediment transport is inhibited setting Ag=0.005, in Grass formula. The 

computational parameters are: N=200, Tfinal=1s, CFL = 0.9, AENO reconstruction is performed using 

0.0001ò  and 1.   

 

 

The Fig. 3 show that non-use of the AENO well-balanced preserving-positivity reconstruction 

into the CU scheme can produce unphysical and oscillatory bed profile. As one can clearly see, even 

under a weak-energetic flow considered in this example, the non-well balanced discretization  

cannot predict a stable bed erosion process. Our AENO reconstruction allows us to be agreement 

with the physics of the problem studied. The well-balanced solutions obtained by this reconstruction 

is plotted and presented in Fig. 4. 
Fig. 4,shows the evolution of a sediment bump due to the mean current velocity. The bump moved 

upward with water flow and reduced its height. Especially in the front of the bump, the gradient of 

sediment discharge is positive due to the increase in flow velocity and this causes bed erosion that 

is . 0.
q q

q q


   Conversely deposited on the back of the dune where the gradient of sediment 

discharge is negative i.e., . 0
q q

q q


 . The variation of discharge is due to the redistribution of flows 

around sedimentary forms in the direction of flow. This variation coupled to advection has strong 

effect on the evolution of the bump on one hand by moving it in the flow and on other hand by 

modifying its geometry. The numerical results  presented in Fig. 4, demonstrate that the proposed 

scheme describes the bump evolution with good accuracy, similtorom those obtained by Putu (2015).  

 
6.4 Erodible dam break tests 
  
6.4.1 Comparison between CU-AENO scheme and PCCU-AENO scheme 

Similar tests have been presented in Wu (2005) and reproduced in Audusse et al. (2016). Few  
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Fig. 6 Dam break over wet bed. Sediment transport is inhibited setting Ag=0.005, in Grass formula. The 

computational parameters are: N=200, Tfinal=1s, CFL = 0.9, AENO reconstruction is performed using 

0.0001ò  and 1.   

 

 

work reproduced with accuracy this problem with very small water depth. One are not adapted to 

handle vaccum at least in the way we computed them. The sediment load is  0, 0,bZ x  fluid velocity 

(0, ) 0u x  and friction term is introduced, the final time is 1.t   The domains of simulation are 

[0,10]   and   [0,1]      with a dam located at the middle of .   For a first test, The dam 

separates two initial water depth exhibits wet zone are (0, ) 2h x m   at the left side and at 

(0, ) 0.125h x m or the right side of the domain. The both AENO CU-SVEs and AENO PCCU-SVEs  

schemes are computed and plotted in Fig. 6. For the second test, the dam separates by (0, ) 2h x m

at the left side and 10(0, ) 10h x m  (very small water depth) at for the right side of the domain. Both 

CU and PCCU schemes are computed and plotted in Fig. 5. 

The results (Fig. 6) of dam break on wet bed problem are agreement with  results given by using 

a Riemann solver presented in Audusse et al. (2015) . The non-entropic character is not observed in 

rarefaction wave zone by the simulations. The scheme shows very well the evolution of movable 

bed. It observe that, both AENO PCCU and AENO CU solutions exhibit quite similar behavior at 

small times. At larger times, however, the two schemes begin to produce very different results. The 

numerical simulations show that the AENO PCCU-SVEs scheme is able to treat accurately dry-wet 

transitions. 

 
6.4.2 Dam break test with different grain sizes 
Ones compare in this test different profiles of free surfaces, bed levels and velocities using our 

PCCU-AENO scheme and different sediment diameters 
1 2 3 40.001, 0.08, 0.01, 0.1d d d d    . The 

sediment load is  0, 0,bZ x  fluid velocity (0, ) 0u x   and friction term is introduced, the final 

time is 1.t   The domains of simulation are [0,8]   with a dam located at the middle. The 

water depth is given as in first case above (wet zones). The results are plotted in Fig. 7. The test  
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Fig. 7 Dam break test with different grain sizes 

 

 

shows that the proposed numerical modeling is able to simulate a wide range of sediment class size.   

We expected that the performance of our scheme can depend on sediment diameter. This is due 

to the Exner model. In fact, this classical model uses some empiric formulas which gives 

approximate results only on a certain flow regime and sediment diameter. Certain of these formulas 

become uncertain when the sediment diameter become greater.  

 

6.5 1D Riemann problem 
 

We consider here a similar the test case used in Bhole et al. (2019). Its a Riemann problem where 

initially 

0.02 if 5,
0, 0,

0.01 if 5.
b

h x
u Z

h x

 
  

 
                    (58) 

For this Riemann data, we can compute the associated analytical solution (but is not plotted here). 

Numerical approximations is performed with AENO PCCU-SVEs and AENO CU-SVEs. The results 

are displayed and presented in Fig. 7. 
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Fig. 8 Dam break computed using the PCCU-SVEs and CU-SVEs schemes with 200 cells and second 

order approximations. The computational parameters are: N=200, CFL = 0.5, AENO reconstruction is 

performed using 0.0001ò  and 1.   

 

 

It observed that, both AENO PCCU-SVEs and AENO CU-SVEs solutions exhibit quite similar 

behavior at the first moment of the break. During the time, however, the two schemes begin to 

produce very different results. The AENO CU-SVEs solution begins to develop small perturbation 

after a certain moment and will eventually become unstable. This is not the case for the AENO 

PCCU-SVEs solution which remains stable at all time simulation. This is another strong evidence 

of the robustness of the proposed AENO PCCU-SVEs scheme. 

 

 

7. Conclusions 
 

In this paper, a new  numerical method has been developed to solve a sediment transport 

problem by means path conservative central-upwind technique coupled with a AENO based 

methodology. The model studied here consists of a coupling of hydrodynamical component that is 

modeled by a 1D shallow-water system and a bed evolution model given by Exner equation. A 

strategy of well-balnaced discretization has been proposed to maintain equilibria. AENO-hydrostatic 

reconstruction has been proposed to maintain the positivity of the water depth. SI-RK3 method has 

been implemented to achieve the second order of accuracy in space and time.  

After a careful study of the resulting the systems of PDEs, we proposed a methodology for their 

numerical solution in the framework of Godunov-type method. Finally we assess the robustness of 

our scheme considering different test cases. Results demonstrate that the solution converge correctly 

to second order of accuracy in space and time, satisfies the well-balanced property and preserves the 
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positivity of water depth. We have seen that AENO PCCU scheme gave better results than the 

original CU scheme. The numerical tests show also that our nonlinear slope limiter is very interesting 

and is able to eliminate of oscillations near the discontinuities. The developed scheme has good 

performance and can solve several sediment transport problems well. Future work is extended to 

study the numerical solutions of the two-dimensional case. 
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