
 

 

 

 

 

 

 

Ocean Systems Engineering, Vol. 11, No. 4 (2021) 331-351 

https://doi.org/10.12989/ose.2021.11.4.331                                                       331 

Copyright © 2021 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=ose&subpage=7        ISSN: 2093-6702 (Print), 2093-677X (Online) 
 
 

 

 
 
 
 

Restoration of underwater images using depth and transmission 
map estimation, with attenuation priors 

 

Jarina Raihan A.*, P.G. Emeroylariffion Abas and Liyanage C. De Silva 
 

Faculty of Integrated Technologies, Universiti Brunei Darussalam, 
Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam 

 

(Received March 8, 2021, Revised August 16, 2021, Accepted September 3, 2021) 

 
Abstract.   Underwater images are very much different from images taken on land, due to the presence of a 
higher disturbance ratio caused by the presence of water medium between the camera and the target object. 
These distortions and noises result in unclear details and reduced quality of the output image. An underwater 
image restoration method is proposed in this paper, which uses blurriness information, background light 
neutralization information, and red-light intensity to estimate depth. The transmission map is then estimated 
using the derived depth map, by considering separate attenuation coefficients for direct and backscattered 
signals. The estimated transmission map and estimated background light are then used to recover the scene 
radiance. Qualitative and quantitative analysis have been used to compare the performance of the proposed 
method against other state-of-the-art restoration methods. It has been shown that the proposed method can 
yield good quality restored underwater images. The proposed method has also been evaluated using different 
qualitative metrics, and results have shown that method is highly capable of restoring underwater images with 
different conditions. The results are significant and show the applicability of the proposed method for 
underwater image restoration work. 
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1. Introduction 

 

A large part of the earth is covered with water, and underwater life plays an important role in the 

ecosystem. Therefore, it is very important to explore and discover the underwater world, and one of 

the ways that this can be done is, by capturing and collecting underwater images and videos. These 

pictures and videos can be used to explore the underwater world, and can also be used in underwater 

studies, underwater archaeology, marine ecology, assisting aquatic robots, species recognition, target 

detection, and underwater geology. As such, there is a requirement for the underwater data collection 

to be of high accuracy and high quality for proper interpretation of the information. 

However, due to the optical properties of water, the quality of the collected underwater images 

may be relatively poor. The red light from the visible spectrum is quickly absorbed and loses its 

strength, even in the first part of the ocean which is within 10m depth. It is for this reason; underwater 

images are commonly dominated by green and blue underwater shades. Deeper into the ocean,  
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Fig. 1 Light absorption in water and penetrating levels of different colors (Chiang and Chen 2012) 

 

 

orange, yellow, green, and blue lights from the visible spectrum are also absorbed by the water and 

cannot penetrate any further. Fig. 1 shows the light absorption property in water and penetrating 

levels of lights (Chiang and Chen 2012), at various depths. Other than absorption, scattering, 

diffraction, and polarization may also cause serious problems in the images. Scattering leads to low 

visibility in clear water, with almost no visibility in turbid water. All these varying properties, which 

differ at various depths and underwater conditions, make underwater images challenging to recover, 

and to decrypt their information. Even though artificial lighting may be used to tackle poor visibility, 

it may cause loss of information in the background, and unnaturally concentrates the illumination 

on the foreground pixels. Due to these problems, processing of underwater images is the need of the 

hour, and is required for various studies and scientific researches. 

Jarina et al. (2019) have provided a review of various underwater image restoration methods that 

are available in the literature; generally classifying underwater restoration methods into hardware, 

software, and network-based approaches. 

The hardware-based approach employs various hardware to process underwater images for 

restoration purposes. These include range-gated imaging techniques (Tan et al. 2006), polarizers 

(Schechner and Karpel 2005), imaging using stereo cameras (Roser et al. 2014), and remotely 

operated vehicles (Zhishen et al. 2003). Information captured using the selected hardware is then 

processed using different methods for the restoration of the underwater images. However, these 

methods have been shown to suffer from errors caused by the calibration of the hardware devices. 

The network-based approach involves the use of deep learning algorithms to process underwater 

images. Convolutional neural networks (Lu et al. 2018, Saeed et al. 2018) and generative adversarial 

networks (Fabbri et al. 2018, Li et al. 2017) are some of the neural networks that have been used for 

this purpose. However, deep learning methods commonly require a good dataset with a large number 

of underwater images, together with ground truth images, which are very difficult to acquire, in the 

case of underwater image processing. 

The software-based approach uses the Image Formation Model (IFM) to restore the captured 

underwater images, by finding background light and transmission maps. Dark Channel Prior (DCP), 

as proposed by He et al. (2011), uses IFM in image restoration, by assuming scene points closer to 

the camera as dark images and vice versa. But, due to the longer wavelength and faster attenuation 

property of red light, the method often fails to give proper results, and always ends up choosing the 

red channel as the darkest of all the channels. Variations of DCP have consequently been proposed 
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Restoration of underwater images using depth and transmission map estimation… 

for underwater images; using green and blue channels only (Wen et al. 2013, Drews et al. 2013, 

Simon et al. 2015), using the inverse of the red channel (Galdran et al. 2015), and using the 

maximum intensity prior (Carlevaris et al. 2010). The performances of these methods have been 

shown to vary depending on different lighting conditions and priors chosen. Instead of estimating 

the transmission map directly, Peng and Cosman (2017) use a depth estimation strategy that has been 

proven to show superior results. However, the authors have also shown that depth map, as well as 

transmission map, need to be efficiently estimated, to obtain satisfactory restoration results. 

Other than restoration and enhancement methods, few methods have also analyzed underwater 

images directly based on edge detection techniques, in order not to capture all the feature information 

in an image. This is done to distinguish the objects in the water, and to capture the underwater 

environment information. A bi-dimensional empirical mode decomposition technique has been used 

by Bo and Liu (2012) to extract multi-pixel edge features and to analyze objects in the image. Instead 

of a manual choice of threshold parameters, a feature detection algorithm based on ROC theory has 

been proposed by Bo (2016), to extract the multiscale edges. 

To overcome the problems in the above methods, this paper proposes a novel underwater image 

restoration method by utilizing a single-view image only, and without requiring large prior image 

datasets. It has been shown that the proposed method can properly restore underwater images, with 

good accuracy when compared to the ground truth as well as to other states of the art methods. The 

proposed software-based image restoration method utilizes blurriness information, and background 

light neutralization to find a depth map, which is then employed to find the transmission map. The 

transmission map then undergoes a refinement process and finally, is restored efficiently. 

 

 

2. Literature review 
 

The image restoration process employs the Image Formation Model (IFM) given in Eq. (1), to 

obtain the original scene from a captured underwater scene. This process involves estimating the 

different parameters of the underwater IFM in Eq. (1). 

𝐼𝑐(𝑥) = 𝐽𝑐(𝑥). 𝑡𝑐(𝑥) + (1 − 𝑡𝑐(𝑥)). 𝐵𝑐 , 𝑐 ∈ {𝑅, 𝐺, 𝐵} (1) 

In the above equation, 𝐽𝑐(𝑥). 𝑡𝑐(𝑥) describes radiance 𝐽𝑐(𝑥) of the object as it travels in the 

underwater medium, whilst (1 − 𝑡𝑐(𝑥)). 𝐵𝑐 represents the scattering of background light 𝐵𝑐 as it 

travels towards the camera. Transmission map 𝑡𝑐(𝑥) describes the part of the object radiance that 

reaches the camera, after considering for absorption and scattering. Recovering the original object 

radiance 𝐽𝑐(𝑥)  from the acquired image 𝐼𝑐(𝑥)  at the camera requires knowledge of the 

background light 𝐵𝑐   as well as the transmission map 𝑡𝑐(𝑥) . This information is commonly 

estimated. 

Dark Channel Prior (DCP), originally introduced by He et al. (2011), uses Eq. (2) to estimate the 

intensity of the dark channel, from 𝐼𝑐(𝑥). This is given by 

𝐼𝑑𝑎𝑟𝑘
𝑐 (𝑥) = min

𝑦∈𝛺(𝑥)
{min

𝑐
𝐼𝑐(𝑦)}, 𝑐 ∈ {𝑅, 𝐺, 𝐵} (2) 

where 𝛺(𝑥) is the square patch centred at x. 

Background light 𝐵𝑐 and transmission map 𝑡𝑐(𝑥) are subsequently determined using Eqs. (3) 

and (4), to give the estimated background light 𝐵𝑐̃  and the estimated transmission map 𝑡𝑐̃    
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respectively (Chiang and Chen 2012, Liu et al. 2010, Yang et al. 2011). These estimates can then be 

used to estimate radiance 𝐽𝑐̃(𝑥) of the object using Eq. (5). 

𝐵𝑐̃ = 𝐼𝑐 (𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝑃0.1%
 ∑ 𝐼𝑐(𝑥)

𝑐

 ), 
 

𝑐 ∈ {𝑅, 𝐺, 𝐵} 

 

(3) 

𝑡𝑐̃(𝑥) = 1 − min
𝑦∈𝛺(𝑥)

{min
𝑐

𝐼𝑐(𝑦)

𝐵𝑐 }, 𝑐 ∈ {𝑅, 𝐺, 𝐵} (4) 

 

𝐽𝑐̃(𝑥) =
𝐼𝑐(𝑥) − 𝐵𝑐̃

max (𝑡𝑐̃(𝑥), 𝑡0)
+ 𝐵𝑐̃ , 

𝑐 ∈ {𝑅, 𝐺, 𝐵} (5) 

where the lower bound 𝑡0 for 𝑡𝑐̃(𝑥), is set to 0.1. 

Transmission map estimations for DCP based methods (Liu et al. 2010, Yang et al. 2011, Chiang 

and Chen 2012, Wen et al. 2013, Drews et al. 2013, Galdran et al. 2015) commonly follow Eq. (4), 

with few variations for underwater images. But the DCP methods work only in limited conditions 

and since underwater images have varying conditions, these methods often fail to accurately estimate 

the transmission map for challenging conditions. 

An alternative to estimating transmission map using Eq. (4) is by considering the object’s 

distance from the camera 𝑑̃(𝑥) or its depth, and the water attenuation coefficient 𝛽𝑐 in colour 

channel 𝑐 ∈ {𝑅, 𝐺, 𝐵} 

𝑡𝑐̃(𝑥) = 𝑒−𝛽𝑐 𝑑̃(𝑥), 𝑐 ∈ {𝑅, 𝐺, 𝐵}     (6) 

Methods proposed in references (Peng and Cosman 2017, Chang et al. 2019) estimate the 

transmission map using Eq. (6); which is more efficient as compared to estimating transmission map 

directly using Eq. (4). Fig. 2 shows a qualitative comparison of restoration results obtained using 

methods with and without depth estimation to determine transmission maps (Peng and Cosman 

2017). 

Carlevaris et al. (2010) have proposed a method for estimating depth and consequently, to restore 

underwater images. The authors have estimated the depth map of an acquired image using Eq. (6), 

by assuming a certain spectral attenuation coefficient 𝛽𝑐 value, which largely depends on water 

type. Attenuation prior difference between the three-color channels, by considering the channel 

with the maximum intensity, has been utilized by Carlevaris et al. (2010). Chiang and Chen (2012) 

have used DCP for underwater image restoration; using fixed attenuation coefficient measured for 

open ocean water. But, since DCP relies on the assumption which always ends up choosing the red 

channel, the restoration results do not give satisfactory outcomes. 

Peng et al. (2015) have proposed a method using blurriness information for depth map estimation. 

This depth map estimation is then used to find a transmission map of the underwater image using 

Eq. (6), by selecting attenuation coefficients 𝛽𝑐, as defined by Zhao et al. (2015). 

To capture an underwater image, light from the object of interest should reach the camera. Light 

travelling directly from the object without any interference is referred to as a direct signal, whilst light 

that reflects back to the camera’s lens of focus, due to its interactions with particles in the water 

medium is referred to as a backscattered signal. Backscattered signals, undergo scattering in an 

underwater environment due to interactions between the photons, molecules and particles of the 

medium. Major sources of distortion for backscattering signals are viruses, bacteria, suspended 

particulate matter, bubbles, phytoplankton, zooplankton, and soluble substances. Due to the different  
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(a) Original Image (b) without considering depth 

map 

(c) using depth map 

estimation 

Fig. 2 Examples of restoration results of Peng and Cosman (2017) with and without depth estimation 

 

 

sources of distortion experienced by direct and backscattered signals, it is very important to consider 

both signals separately; by accounting for the effect of scattering using separate attenuation 

coefficients for the two signals. 

However, the general transmission map estimation in the literature (Peng and Cosman 2017, 

Chang et al. 2019), commonly, employs a single spectral coefficient 𝛽𝑐  for transmission map 

estimation using Eq. (6). Somehow, they neglect the effects of different distortions from the two 

distinct signals: direct and backscattered signals, resulting in less efficient scene restoration 

(Akkaynak and Tretbitz 2018). Separate estimations of transmission maps utilizing different 

attenuation coefficient values for the two signals, have to be made, for an efficient result. 

Furthermore, it is common to assume an identical attenuation coefficient i.e., 𝛽𝑅 = 𝛽𝐺 = 𝛽𝐵 

for the different color channels: red, green and blue. For hazy terrestrial images, transmission 

estimation is based on three assumptions: overcast lighting, spatially invariant attenuation 

coefficients, and wavelength-independent attenuation (Narasimhan et al. 2002). However, natural 

underwater illumination undergoes a color-dependent attenuation; violating the original wavelength-

independent attenuation assumption of terrestrial images. The method proposed in this paper 

differentiates the effect of direct and backscattered lights, as well as the effect on the different color 

channels. 

 

 

3. Proposed image restoration method 
 

The proposed method involves five stages: blurriness estimation, background light neutralization, 

depth estimation, transmission estimation along with transmission map refinement, and finally, 

scene radiance recovery, as shown in Fig. 3. Red-light intensity 𝐼𝑟(𝑥), blurriness estimated image 

𝑝blr and background light neutralized image 𝐵̃𝑐, are calculated from the input image 𝐼𝑐(𝑥). These 

are then used to estimate the depth 𝑑̃(𝑥) of the underwater image. The depth map 𝑑̃(𝑥) along with 

selected spectral attenuation coefficients is then used to determine the transmission map 𝑡𝑐̃(𝑥). The 

input image 𝐼𝑐(𝑥), estimated background light 𝐵̃𝑐 and transmission map 𝑡𝑐(𝑥) are used to find 

the final scene radiance recovered image 𝐽𝑐̃(𝑥). 

The novelty of the approach lies in the simplified way of estimating background light using the 

4 quadrants subdivision process, as well as the estimation of transmission map, using an aggregate  
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Fig. 3 Block diagram of the proposed restoration method 

 

 

of transmission maps found for direct signal and backscattered signal using specified attenuation 

coefficients. This is unlike other methods which commonly use Eq. (2); by assuming a general water 

attenuation coefficient 𝛽𝑐 for the transmission map estimation. 

 

3.1 Blurriness estimation background light estimation, background light neutralization 
and depth estimation 

 

The blurriness map estimation 𝑝blr is the first process in the restoration process, by estimating the 

refined blurriness map, through the initial map and rough map of the image (Peng and Cosman 2017). 

The background light estimation is the selection or estimation of the pixel, which is responsible for 

the source of light to the entire image. To determine the background light, the input image 𝐼𝑐(𝑥) is 

segmented into 4 quadrants, with mean value of pixels calculated, which represents the least number 

of quadrant sub-divisions that can be made, and hence, is simpler and more efficient, with reduced 

computational processing time as, compared to the method in reference (Peng and Cosman 2017). 

Eq. (7) is used to estimate background light 𝐵̃𝑐 

𝐵̃𝑐 = max (𝐼𝑞𝐵𝐿
𝑐 (𝑥))  (7) 

     

where, 𝐼𝑞𝐵𝐿
𝑐 =  𝑞𝑚𝑖𝑑 𝑞𝑚𝑖𝑑 ∈ {𝑞𝑖={1,2,3,4} − 𝑞𝑚𝑎𝑥 − 𝑞𝑚𝑖𝑛} (8) 
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The selected pixel, which constitutes the estimated background light 𝐵̃𝑐, may not be the brightest of 

all pixels in the entire input image, as the two quadrants have been excluded from the selection 

process. The estimated background light 𝐵̃𝑐 shall be used for the scene radiance recovery using 

Eq. (6).  

For the background light estimation process, the original input underwater image 𝐼𝑐(𝑥)  is 

segmented into 4-quadrants, with the mean of pixel intensities at each quadrant calculated using 

𝐼𝑞𝑖

𝑐 = 𝑎𝑣𝑔𝑥∈𝑞𝑖
(∑ 𝐼𝑐(𝑥)𝑐 )                             (9) 

Background light neutralized image 𝐼𝐵𝐿
𝑐 (𝑥) needs to be estimated to find the depth map of the 

underwater image. Initially, average light intensity 𝐼𝑞𝑎𝑣𝑔
𝑐  in the two quadrants, excluding the two 

extremes, is determined, and taken as the average of the underwater image 

𝐼𝑞𝑎𝑣𝑔

𝑐 = 𝑎𝑣𝑔𝑞𝑖∈𝑞𝑚𝑖𝑑
(𝐼𝑞𝑖

𝑐
)                             (10) 

where 𝑞𝑖 is the four quadrants 𝑖 = 1, 2, 3, 4, with 𝐼𝑞𝑖
𝑐  representing the average light intensity in 

the respective quadrant 𝑞𝑖. The brightest 𝑞𝑚𝑎𝑥 and darkest 𝑞𝑚𝑖𝑛 quadrants are neglected, as two 

extremes of the spectrum. 

This average light intensity 𝐼𝑞𝑎𝑣𝑔
𝑐  is then used to modify all the pixels of the input image 𝐼𝑐(𝑥) 

to retrieve the contrast neutralized image 𝐼𝑐𝑛
𝑐 (𝑥), as follows 

𝐼𝑐𝑛
𝑐 (𝑥) = 𝐼𝑐(𝑥) + 𝐼𝑞𝑎𝑣𝑔

𝑐
                            (11) 

To denoise the image, discrete wavelet transform (DWT) is applied on the currently formed 

contrast neutralized image 𝐼𝑐𝑛
𝑐 (𝑥), and the Gray version of the input image 𝐼𝑐(𝑥). Inverse discrete 

wavelet transform (IWDT) is finally applied to retrieve the background light neutralized image, with 

the approximation and the detailed coefficients modified based on the average of the approximation 

coefficients, and the max rule applied on the detailed coefficients. 

The blurriness map, the background light neutralized image, and the intensity of the red channel 

can be used for the depth estimation process (Jarina et al. 2020). The maximum intensity of the red 

channel, known as red channel map 𝑟(𝑥) of the image, is represented by 

𝑟(𝑥) = max
𝑦∈𝜑(𝑥)

𝐼𝑟(𝑦)                              (12) 

where, 𝐼𝑟 is the intensity of the red channel and 𝜑(𝑥) is a square local patch centered at x.  

The factors used for estimating depth are passed through a stretching function that is given by Eq. 

(13) (Jarina et al. 2020). 

𝑑𝑓(𝑥)(𝑥) = 1 −  𝐹𝑠(𝑓(𝑥)), 𝑓(𝑥) ∈ {𝑟(𝑥), 𝑝𝑏𝑙𝑟(𝑥), 𝐼𝐵𝐿
𝑐 (𝑥)}     (13) 

where, 𝑓(𝑥) ∈ {𝑟(𝑥), 𝑝𝑏𝑙𝑟(𝑥), 𝐼𝐵𝐿
𝑐 (𝑥)}  can either be the red channel map 𝑟(𝑥) , blurriness map 

𝑝𝑏𝑙𝑟(𝑥)  or background neutralised image 𝐼𝐵𝐿
𝑐 (𝑥) , to give 𝑑𝑟(𝑥) , 𝑑𝑝𝑏𝑙𝑟

(𝑥)  and 𝑑𝐼𝐵𝐿
𝑐 (𝑥) , 

respectively. 

𝐹𝑠(𝐯) =  
𝐯−min(𝐯)

max(𝐯)−min(𝐯)
                          (14) 

where, 𝑓(𝑥) ∈ {𝑟(𝑥), 𝑝𝑏𝑙𝑟(𝑥), 𝐼𝐵𝐿
𝑐 (𝑥)}  can either be the red channel map 𝑟(𝑥) , blurriness map 

𝑝𝑏𝑙𝑟(𝑥)  or background neutralised image 𝐼𝐵𝐿
𝑐 (𝑥) , to give 𝑑𝑟(𝑥) , 𝑑𝑝𝑏𝑙𝑟

(𝑥)  and 𝑑𝐼𝐵𝐿
𝑐 (𝑥) , 
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respectively. 𝐹𝑠(𝐯) is a stretching function, which accepts vector 𝐯 as its input. The final depth 

estimation can be found by Eq. (15) 

𝑑̃(𝑥) = 𝜃𝑏 [𝜃𝑎𝑑𝐼𝐵𝐿
𝑐 (𝑥) + (1 − 𝜃𝑎)𝑑𝑟(𝑥)] + (1 − 𝜃𝑏)𝑑𝑃𝑏𝑙𝑟

            (15) 

where, 𝑓(𝑥) ∈ {𝑟(𝑥), 𝑝𝑏𝑙𝑟(𝑥), 𝐼𝐵𝐿
𝑐 (𝑥)}  can either be the red channel map 𝑟(𝑥) , blurriness map 

𝑝𝑏𝑙𝑟(𝑥)  or background neutralised image 𝐼𝐵𝐿
𝑐 (𝑥) , to give 𝑑𝑟(𝑥) , 𝑑𝑝𝑏𝑙𝑟

(𝑥)  and 𝑑𝐼𝐵𝐿
𝑐 (𝑥) , 

respectively. 𝐹𝑠(𝐯)  is a stretching function, which accepts vector 𝐯  as its input where, 𝑓(𝑥) ∈
{𝑟(𝑥), 𝑝𝑏𝑙𝑟(𝑥), 𝐼𝐵𝐿

𝑐 (𝑥)}  can either be the red channel map 𝑟(𝑥) , blurriness map 𝑝𝑏𝑙𝑟(𝑥)  or 

background neutralised image 𝐼𝐵𝐿
𝑐 (𝑥), to give 𝑑𝑟(𝑥), 𝑑𝑝𝑏𝑙𝑟

(𝑥) and 𝑑𝐼𝐵𝐿
𝑐 (𝑥), respectively. 𝐹𝑠(𝐯) 

is a stretching function, which accepts vector 𝐯  as its inputwhere, 𝜃𝑎  and 𝜃𝑏  are 𝜃𝑎 =
𝑆(𝑎𝑣𝑔(𝐼𝐵𝐿

𝑐 ), 0.5))  and 𝜃𝑏 = 𝑆(𝑎𝑣𝑔(𝐼𝑟), 0.1)) , respectively. The values 0.5 and 0.1 for 𝜃𝑎  and 

𝜃𝑏 have been obtained from Peng and Cosman (2017), and the effectiveness of the values in the 

restoration process has been verified. The 𝑎𝑣𝑔(.) function gives the average of the input, whilst the 

sigma function S(a,v) is given as 

𝑆(𝑎, 𝑣) = [1 + 𝑒−𝑠(𝑎−𝑣)]
−1

                         (16) 

 

3.2 Transmission map estimation and scene recovery or restoration 
 

Peng and Cosman (2017) have given importance only to the direct signals, by estimating 

transmission map by considering the spectral attenuation coefficient of direct signal 𝛽𝐷
𝑐  only, whilst 

neglecting the backscattered signal. In the proposed method, transmission map estimation separates 

the effects of direct and backscattered signals. Transmission map estimations are accomplished by 

using two different spectral attenuation coefficients 𝛽𝐷
𝑐    and 𝛽𝐵

𝑐  , where 𝛽𝐷
𝑐    is the spectral 

attenuation coefficient of the direct signal and 𝛽𝐵
𝑐   is the spectral attenuation coefficient of the 

backscattered signal given as 

Generally, attenuation coefficients vary with depth 𝑑(𝑥), as stated in Akkaynak and Tretbitz 

(2018), where it has more role to play with the restoration of images. 

 

3.2.1 Estimation of 𝛽𝐷
𝑐  

The transmission map of the direct signal is estimated using spectral attenuation coefficients 

calculated for red, green and blue channels, together with the calculated depth map 𝑑̃(𝑥) . The 

transmission map for the red channel can be calculated using 

𝑡𝐷
𝑟 (𝑥) = 𝑒−𝛽𝐷

𝑟 .𝑑̃(𝑥)                           (18) 

Restoration results are not sensitive to the spectral attenuation coefficient 𝛽𝐷
𝑟  of the red channel 

(Peng and Cosman 2017), with values between [0.125, 0.20] commonly used for oceanic water type 

I (Solonenko et al. 2015). Consequently, in this paper, the spectral coefficient value 𝛽𝐷
𝑟  of the red 

channel is set with a value of 0.142. To find the transmission map for the green and blue channels 

due to direct signal, transmission and attenuation coefficient for the red channel may be utilized 

(Zhao et al. 2015), as given by, 

 

𝑡𝑐̃(𝑥) =  𝑡𝐷
𝑐 (𝑥) + 𝑡𝐵

𝑐 (𝑥), 𝑐 ∈ {𝑅, 𝐺, 𝐵} (17) 
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𝑡𝐷
𝑘(𝑥) =  𝑡𝐷

𝑟 (𝑥)
𝛽𝐷

𝑘

𝛽𝐷
𝑟

, 
𝑘 ∈ {𝑔, 𝑏} 

 

(19) 

The linear relationship between the attenuation coefficients of the green/blue channels and the 

red channel, is given by Eq. (20), where constants m and i are the absorption and scattering 

coefficient constants, with values 𝑚 = −0.00113, and 𝑖 = 1.62517 (Gould et al. 1999). These 

values have been determined, by developing the linear relationship using a laboratory apparatus 

using case 1 and case 2 of Jerlov water types. Wavelength for the red, green and blue light is taken 

to be 620 nm, 540 nm, and 450 nm, respectively (Peng and Cosman 2017). 

𝛽𝐷
𝑘

𝛽𝐷
𝑟 =  

𝐵̃
𝑟
(𝑚λ𝑘 + 𝑖)

𝐵̃
𝑘
(𝑚λ𝑟 + 𝑖)

 𝑘 ∈ {𝑔, 𝑏} 

 

(20) 

here, 𝐵̃𝑘 is the background light estimated using Eq. (7), for the respective channel 𝑘 ∈ {𝑔, 𝑏}. 

 

3.2.2 Estimation of 𝛽𝐵
𝑐   

The backscattering coefficient is dependent on organic and inorganic particulate matters. Organic 

particulate matter includes viruses, bacteria, phytoplankton and zooplankton species, whilst 

inorganic particulate matter are suspended sediments, debris, clay and minerals. Air bubbles are also 

high sources of backscattering in water. Spectral attenuation backscattering has important 

applications in the interpretation of remote sensing, oceanography, underwater imaging 

(Shanmugam et al. 2011). Total backscattering coefficient 𝛽𝐵
𝑐   is a summation of pure water 

backscattering coefficient 𝛽𝐵𝑊
𝑐  and particulate matter backscattering coefficient 𝛽𝐵𝑃

𝑐  

𝛽𝐵
𝑐(𝜆) =  𝛽𝐵𝑊

𝑐 (𝜆) +  𝛽𝐵𝑃
𝑐 (𝜆)                       (21) 

Comprehensive researches have been made on the estimation of spectral attenuation 

backscattering coefficients, with Mie theory used to predict spectral behaviour. Whitmire et al. (2007) 

have used Slow Descent Rate Optical Profiler (Slow DROP), to experimentally calculate the 

backscattering coefficient of particulate matters in five research cruises at five different wavelengths 

covering the visible spectrum, for three years. Smith et al. (1981) have used UV submersible 

Spectro-radiometer to calculate the total backscattering coefficient of pure water at thirteen different 

wavelengths. Pure water backscattering coefficient 𝛽𝐵𝑊
𝑐  , particulate matter backscattering 

coefficient 𝛽𝐵𝑃
𝑐 , and total backscattering coefficient 𝛽𝐵

𝑐 , for the wavelength of the red, green and 

blue light, are shown in Table 1. Pure water backscattering coefficient 𝛽𝐵𝑊
𝑐  and particulate matter 

backscattering coefficient 𝛽𝐵𝑃
𝑐   are taken from reference (Whitmire et al. 2007). Total 

backscattering attenuation coefficients for each desired wavelength are then calculated using Eq. 

(21). 

Transmission map due to backscattered signal, may be derived from Eqs. (6) and (21) as follow 

𝑡𝐵
𝑟 (𝑥) = 𝑒−𝛽𝐵

𝑐 .𝑑̃(𝑥) 𝑐 ∈ {𝑟, 𝑔, 𝑏}  (22) 

Spectral attenuation coefficients of the direct 𝛽𝐷
𝑐  and backscattered 𝛽𝐵

𝑐  signals, may be used to 

estimate the raw transmission map, using Eq. (22). The estimated transmission is then further refined 

by using the guided filter (He et al. 2013), instead of soft matting (He et al. 2011), because of its 

better refinement properties. 
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Table 1 Determining the total backscattering attenuation coefficient βB
c (λ) 

Wavelength 𝜷𝑩𝑾
𝒄 (𝝀)(Smith et al. 

1981) 

𝜷𝑩𝑷
𝒄 (𝝀) (Whitmire et al. 

2007) 

𝜷𝑩
𝒄 (𝝀)  

450 nm 0.0022 0.0175 0.0197 

540 nm 0.0010 0.0126 0.0136 

620 nm 0.0006 0.0133 0.0139 

 

 

Scene radiance recovery involves the use of the estimated background light and transmission 

map to form the final scene radiance. The refined transmission map is used in Eq. (5) to acquire the 

final restored image. 

 

 

4. Results and discussions 
 
4.1 Performance metrics and dataset used 
 

The proposed method has been tested with four quality metrics; to ascertain its performance. 

 

1 Visibility recovery e and restoration quality r coefficients 

 

𝑒 =
𝑛𝑟− 𝑛𝑜

𝑛𝑜
                                (23) 

where, 𝑛𝑟 indicates the number of edges calculated using Canny operator in restored image and 

𝑛𝑜detects the edges calculated in the original image. 

𝑟 =
1

𝑛𝑟
∑ log (𝐼𝑐(𝑖))𝑖                          (24) 

For each pixel 𝑖 belonging to a visible edge, restoration quality 𝑟 computes the average ratio 

of the gradient in the restored image 𝐽𝐶(𝑥) and in the original image 𝐼𝑐(𝑥). 

 

2. Mean Squared Error (MSE) 

 

Mean Squared Error (MSE) is a measure of collective squared error between the original image 

and the restored image. This value should be low for a good restored image.  

𝑀𝑆𝐸 =  
1

𝑀
∗  ∑ (𝐼𝑐(𝑥) −   𝐽𝐶(𝑥))2𝑀

𝑥=1                    (25) 

where, M is the dimension of the image, 𝐼𝑐(𝑥) is the original image and  𝐽𝐶(𝑥)is the restored 

image. 

 

3. Underwater Colour Image Quality Evaluation (UCIQE) (Yang and Sowmya 2015) 

 

Underwater Colour Image Quality Evaluation (UCIQE) may be used to measure how well the 

blurriness and overall contrast of the restored image have been reduced; with a high UCIQE value 
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implying quality enhancement. It is represented by 

𝑈𝐶𝐼𝑄𝐸 = 𝐶1 ∗ 𝜎𝑐 + 𝐶2 𝑐𝑜𝑛𝑙 +  𝐶3 ∗  𝜇𝑠                 (26) 

where, 𝐶1= 0.4680, 𝐶2 = 0.2745, and 𝐶3 = 0.2576. 𝜎𝑐, 𝑐𝑜𝑛𝑙 and 𝜇𝑠 are the standard deviation 

of chroma, the contrast of luminance and the average of saturation of the restored image, respectively 

(Yang and Sowmya 2015). 

 

4. Underwater Image Quality Measure (UIQM) (Panetta et al. 2016). 

 

Underwater Image Quality Measure (UIQM) is a combined measure of colour, sharpness and 

contrast of the restored underwater image. Increase UIQM value implies increase in quality.  

𝑈𝐼𝑄𝑀 = 𝐶1 ∗ 𝑈𝐼𝐶𝑀 + 𝐶2 𝑈𝐼𝑆𝑀 +  𝐶3 ∗ 𝑈𝐼𝐶𝑜𝑛𝑀               (27) 

where, 𝐶1= 0.0282, 𝐶2 = 0.2953, 𝐶3 = 3.5753, and Underwater Image Colourfulness Measure 

(𝑈𝐼𝐶𝑀) , Underwater Image Sharpness Measure  (𝑈𝐼𝑆𝑀) ,Underwater Image Contrast Measure 

(𝑈𝐼𝐶𝑜𝑛𝑀), are the colourfulness , saturation and contrast measures of the image calculated as in 

reference (Panetta et al. 2016). Both UCIQE and UIQM are performance metrics dedicated to 

underwater images. 

Different datasets have been used in the paper, for performance comparison of the proposed method 

against other methods. This includes an image dataset from Peng and Cosman (2017), Li et al. (2019), 

and Duarte et al. (2016). Duarte et al. (2016) have provided 3D TURBID dataset; obtained from 

experimental simulations of underwater scenarios with a 1000 liters tank and fluorescent lamps, for 

evaluating underwater images. The 3D TURBID dataset uses information on the characteristics and 

structures of real seabed images, which were obtained from the Bahamas. High-quality images of 

the seabed were placed at the bottom of the water tank. Simulations were performed by gradually 

adding milk into the water tank to produce different levels of turbidity, and taking images of the 

seabed; with the use of two LED lamps to ensure uniform light. Degradation in visual clarity as 

turbidity is increased, is quantified using Structural Degradation Index (SDI) (Garcia and Gracias 

2011); which is defined from Structural Similarity Index (SSIM) (Zhou et al. 2004). As the dataset 

contains reference images, a quantitative evaluation of final restored images using MSE can be made. 

 
4.2 Qualitative analysis and quantitative evaluation 
 

Qualitative analysis involves a visual evaluation of the proposed method against various 

restoration methods used in the literature. Fig. 4-8 show the restored underwater images with various 

underwater conditions, using different methods. Different light absorption and penetration level, 

which affect the color of the underwater images, at varying underwater depth represent one of the 

main challenges in underwater image restoration work. As such, 5 underwater images with different 

underwater color tones and lighting conditions, have been selected for the evaluation of the proposed 

restoration method. All underwater images used has a resolution of 72 dots per inch (dpi). Fig. 4-8 

depict underwater images with natural lighting, with bluish shade, with greenish shade, with 

artificial lighting and backscattering, respectively. 

Fig. 4 shows the performance of the proposed method against other methods, in an open scene 

underwater image with natural lighting. Carlevaris et al. (2010) and Chiang and Chen (2012) are 

unable to remove the greenish color dominance of the original input underwater image. Serikawa et 

al. (2013) produce a similar result with over exposure and increased contrast. On the other hand,  
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(a) Original Image (b) Carlevaris et al. (2010) (c) Chiang and Chen (2012) 

   

(d) Serikawa et al. (2013) (e) Ancuti et al. (2012) (f) Proposed Method 

Fig. 4 Results on open scene image 

 

   
(a) Original Image (b) Carlevaris et al. (2010) (c) Chiang and Chen (2012) 

   

(d) Serikawa et al. (2013) (e) Ancuti et al. (2012) (f) Proposed Method 

Fig. 5 Results on ship image 

 

 

Ancuti et al. (2012) produce a restored image with a natural look. However, the proposed method 

shows the best result by removing the color dominance, and exactly depicting places of natural 

lighting, which are not obtained from restored images using other methods. 
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(a) Original Image (b) Carlevaris et al. (2010) (c) Chiang and Chen (2012) 

   

(d) Serikawa et al. (2013) (e) Ancuti et al. (2012) (f) Proposed Method 

Fig. 6 Results on fishes scene image 

 

  

(a) Original Image (b) Wang et al. (2019) 

  
(c) Shin et al. (2016) (d) Proposed Method 

Fig. 7 comparison with network-based methods 

 

 

Bluish shade is a common imaging phenomenon in underwater images. Fig. 5 depicts a bluish 

image of a shipwreck under the sea, and its restored results. Carlevaris et al. (2010) produce an over 

exposed image with high contrast, whilst Chiang and Chen (2012) fail to restore the image,  
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(a) Original Image (b) Drews et al. (2013) (c) Peng and Cosman (2017) 

   
(d) Ancuti et al. (2012) (e) Galdran et al. (2015) (f) Proposed Method 

Fig. 8 comparison on challenging underwater image from Li et al. ( 2019) dataset 

 

 

producing a low saturated result. On the other hand, the proposed method preserves the original 

features of the image, with its foreground and background pixels correctly classified and restored 

accordingly. 

Fig. 6 shows the underwater greenish image of fishes in a reef. Carlevaris et al. (2010) is unable 

to produce a better restoration result; with the outcome looking identical to the original unrestored 

underwater image. Serikawa et al. (2013) produce a restored underwater image, which emphasizes 

the brightness of the overall image, whilst leaving the greenish nature still un-cleared. The proposed 

method deals gracefully with the underwater image, by producing a natural result and also, 

improving the overall pixel quality. 

Fig. 7 compares the performance of the proposed method against network-based methods. It can 

be seen that the proposed method performs well by preserving the exact color of the image, as well 

as being able to restore features of the object. Wang et al. (2019) restore the underwater image well 

but are unable to preserve the edges. Shin et al. (2016) fail to preserve the color and restores poorly; 

without any noticeable improvement. This is because network-based methods rely on a good and 

large training dataset, without which the methods lose their accuracy. 

Fig. 8 shows the comparison of the proposed method and its performance on a challenging image 

with a backscattering effect; where the turtle object in the original underwater image is hidden by 

the extreme greenish color layer on the image, with minimal information on the turtle object. This 

image is extracted from Li et al. (2019). Drews et al. (2013) and Peng and Cosman (2017) fail to 

restore the original color of the turtle object. Ancuti et al. (2012) manage to clear the greenish nature 

of the image, however, the restored image looks over exposed with high contrast and saturation. The 

proposed method shows a very good result concentrating on both foreground and background pixels, 

exposing the original color of the turtle as brown and black, as well as clearly restoring the 

background sand. As a result of the improved transmission estimation, the image affected by back  
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Table 2 Visibility recovery coefficient 𝑒 of different restoration methods 

 Open scene with 

Natural Lighting 

(Fig. 4) 

Bluish image 

of a shipwreck 

(Fig. 5) 

Greenish image of 

fishes in a reef (Fig. 6) 

Ancuti et al. (2012) 0.0637 1.4890 7.5038 

Carlevaris et al. (2010) -0.2039 1.3534 0.5354 

Chiang and Chen (2012) 0.1705 0.3123 0.1842 

Serikawa et al. (2013) 0.1490 0.0381 0.9163 

Proposed Method 4.5415 1.9987 18.134 

 
Table 3 Restoration quality coefficient 𝑟 of different restoration methods 

 Open scene with 

Natural Lighting (Fig. 

4) 

Bluish image of a 

shipwreck 

(Fig. 5) 

Greenish image of 

fishes in a reef (Fig. 

6) 

Ancuti et al. (2012) 1.7827 1.4890 0.9813 

Carlevaris et al. (2010) 1.3625 2.6018 5.3905 

Chiang and Chen (2012) 1.7812 1.7677 1.4304 

Serikawa et al. (2013) 2.1414 1.7677 1.4304 

Proposed Method 0.4990 0.1740 0.7645 

 

 

scattering is effectively restored. Over exposure of the image properties, such as brightness and 

contrast, have also been successfully controlled. 

Tables 2 and 3 show visibility recovery coefficients 𝑒 and restoration quality coefficients 𝑟, 

respectively, of the different restoration methods, on underwater images in Figs. 4-6. Figs. 4-6 depict 

an open scene of an underwater image with natural lighting, a bluish image of a shipwreck under 

the sea, and a greenish image of fishes in a reef, respectively. Visibility recovery coefficient 𝑒 
measures whether the method can retrieve the edges that have been lost due to scattering, whilst 

restoration quality coefficient 𝑟 reflects the quality of the restoration. Higher 𝑒 value and lower 𝑟 
value indicate that the restoration method is highly capable of restoring the underwater image. 

From the Table 2, Ancuti et al. (2012) performs well in retrieving edges of images in Figs. 5 and 

6. Visibility recovery coefficients 𝑒 of 1.4890 and 7.5308, are obtained for images in Figs. 5 and 6, 

respectively, using the restoration method by Ancuti et al. (2012). This shows that this method can 

retrieve the edges well in these underwater images. But in Fig. 4, its performance is poor since the 

image is highly affected by backscattering effect. Other methods by Carlevaris et al. (2010), Chiang 

and Chen (2012), and Serikawa et al. (2013), give lower visibility recovery coefficient 𝑒, and are able 

to recover only a smaller number of edges, as can be confirmed from visual evaluations of Figs. 4-

6. The proposed restoration method performs the best on all the three images, capable of recovering 

the edges, as well as able to correctly estimate the background and foreground pixels. Visibility 

recovery coefficients 𝑒 of 4.5415, 1.9987, and 18.134, for underwater images in Figs. 4-6, 

respectively, using the proposed method, represent the highest 𝑒 values among the restoration 

methods considered, for all three underwater images. 

Table 3 shows the restoration quality coefficient 𝑟 values, which measure the directional change 

in color of a restored image to that of the original image, of different restoration methods for images in  
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Fig. 9 comparison of various methods on 3D TURBID dataset (Duarte et al. 2016) 

Figs. 4-6. Since restoration quality coefficient 𝑟 is dependent on the visible edges, Ancuti et al. (2012) 

perform well and recover more spurious edges next to the proposed method in Fig. 6. However, its 

restoration performances are poor in Figs. 4 and 5; albeit it gives better restoration performance than 

other restoration methods for Fig. 4. Carlevaris et al. (2010), Chiang and Chen (2012) and Serikawa 

et al. (2013) have higher restoration quality coefficient values, since they estimate less visible edges 

i.e., low visibility recovery coefficients 𝑒. The proposed method outperforms other methods, by 

estimating the visible edges of the underwater images very well, and consequently, giving the lowest 

restoration quality coefficient 𝑟 values for all the 3 images. Restoration quality coefficients 𝑟 are 

0.4990, 0.1740 and 0.764, for underwater images in Figs. 4, 5 and 6, respectively, using the proposed 

restoration method. 

Fig. 9 compares the performance of the proposed restoration method against other methods, on 

the 3D TURBID dataset (Duarte et al. 2016). The dataset contains 19 simulated underwater images 

(𝐼𝑖, 𝑖 = 0, 1, … ... 18); with I0 having the lowest turbidity and I18 having the highest turbidity. Structural 

Degradation Index (SDI) (Garcia and Gracias 2011); representing the differences between the turbid 

image and original ground truth image, has been calculated for each of the images. Different 

restoration methods were then used to restore the turbid images, with MSE values calculated using 

the original ground truth images and plotted in Fig. 9. It is noted that for effective restoration, the 

method must be able to reduce MSE values to that below of the original turbid images line 

(represented in the figure by the magenta line with diamond marker), and ideally, should be able to 

reduce MSE values for the particular images as low as possible. 

As can be seen from Fig. 9, at high SDI value i.e. high turbidity, all the restoration methods can 

successfully restore the original underwater image, by giving SDI values lower than that of the 

original image. However, as SDI is reduced (by reducing turbidity), He et al. (2011), Ancuti et al. 

(2012), Codevilla et al. (2016) and Galdran et al. (2015), fail to effectively restore underwater  
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Table 4 Average UCIQE and UIQM score on Li et al. (2019) dataset 

Methods UCIQE UIQM 

Ancuti et al. (2012) 0.6305 0.6312 

Fu et al. (2014) 0.6062 1.4338 

Drews et al. (2016) 0.5852 1.6297 

Li et al. (2017) (Hybrid) 0.5971 1.2996 

Peng et al. (2018) 0.5993 1.4301 

Galdran et al. (2015) 0.5421 1.2147 

Li et al. (2016) 0.6778 1.5440 

Peng and Cosman (2017) 0.6001 1.3757 

Proposed Method 0.6414 1.6097 

 

 

images below certain SDI values; showing an increase, rather than decrease, of MSE value with 

their restoration methods. He et al. (2011) fails to effectively restore underwater images with SDI 

values of less than 0.07, whilst Ancuti et al. (2012) and Codevilla et al. (2016) perform better; failing 

only to restore underwater images with SDI values of less than 0.055. Galdran et al. (2015) only 

fails to reduce MSE of the original image at SDI values of less than 0.012. On the other hand, the 

proposed restoration method is successful in reducing MSE even at a low value of SDI. In fact, the 

proposed restoration method is the only restoration method that is capable of reducing MSE over all 

ranges of SDI and hence, over all turbidity levels. Since Peak Signal to Noise Ratio (PSNR) is 

inversely proportional to MSE, it can also be derived that the proposed method would also give a 

good PSNR. 

Admittedly, other restoration methods do manage to outperform the proposed restoration method 

above certain SDI values. At SDI of just above 0.08, both Codevilla et al. (2016), and Galdran et al. 

(2015) manage to outperform the proposed method by giving lower MSE values, whilst He et al. 

(2011) and Ancuti et al. (2012) outperform the proposed method at SDI value above 0.065. However, 

the ability of the proposed restoration method to consistently improve the underwater image with 

different turbidity levels, makes the proposed restoration method an attractive proposal to be adopted 

for underwater applications, which by its very nature, will temporally and spatially, vary.  

In Table 4, two non-reference metrics namely; UCIQE (Yang and Sowmya 2015) and UIQM 

(Panetta et al. 2016), have been used to compare the performance of the proposed restoration method 

against other restoration methods, based on an image dataset from Li et al. (2019). The proposed 

restoration method performs well, in terms of UCIQE scores, as compared to other restoration 

methods, except for Li et al. (2016). The highest UCIQE score of 0.6778 is obtained by Li et al. 

(2016), followed by the proposed restoration method with UCIQE scores of 0.6414. In terms of 

UIQM, which is more consistent with human perception, the proposed restoration method supersedes 

Li et al. (2016), with a high UIQM score of 1.6097. This UIQM score is higher as compared to other 

restoration methods, except for Drews et al. (2016), with an UIQM score of 1.6297. 

Drews et al. (2016) have the highest UIQM score among all the methods considered. But it cannot 

handle backscattering effects in an underwater image, which reduce contrast, produce a foggy effect 

in an image, and entirely affecting the object of interest. It also fails to restore images, which are 

affected by high backscattering effects; with the image selected from Li et al. (2019) dataset and 

given in Fig. 8, being one of the examples. However, the number of such images with backscattering 
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effects and distortions, are comparatively less in Li et al. (2019) dataset, which increases the score 

of Drews et al. (2016). Other restoration methods show results that produce lower performance. This 

indicates that the proposed method performs well on all kinds of lightings, variations, color 

dependencies, color tints, and scene configurations, when compared to the other methods. 

 

 
5. Conclusions 
 

In this paper, a novel methodology to restore underwater images taken in challenging underwater 

environments has been proposed. This is done by estimating the depth map using blurriness 

estimation, red light intensity and back ground light neutralization process; before using the 

estimated depth map to estimate transmission map, by accounting for direct and backscattering 

signals. The estimated transmission map and background light estimation are then used to restore the 

final scene radiance. 

Qualitative and quantitative analysis have been performed on the restored underwater images 

using the proposed method. The results produced by the proposed method have been compared with 

many state-of-the-art methods that are available in the literature. It has been shown, qualitatively, 

that the proposed method can effectively restore underwater images with varying underwater 

conditions, including open scene underwater images, bluish and greenish images, as well as 

challenging underwater images affected by backscattering effects. Artificial illumination problem is 

also handled gracefully due to the background light neutralization method. For quantitative 

evaluation, four different quality metrics that measure the recovery of edges, restoration quality, 

amount of error and color quality of a restored image, have been used. In terms of visibility recovery 

and restoration quality coefficients, the proposed method performs the best among the considered 

restoration methods. It has been shown that the proposed restoration method is the only restoration 

methods that can reduce the amount of error from underwater images, and effectively restore 

underwater images over all range of turbidity; proving the flexibility of the method. The proposed 

method also performs well on the color quality scores, as compared to other restoration methods. 

Although, the underwater images used for testing the proposed method have different color 

dominances, artificial illumination and various scene configurations, it is agreeable that it is 

impossible to include images that cover the entire range of underwater conditions that includes 

different coastal and oceanic water types, sources of errors causing distortions, depth from different 

viewpoints and other large factors, for testing the proposed restoration method. However, a good 

number of underwater images with varying conditions had been used to test the proposed restoration 

method outside the confinement of this paper, with focus given on the most challenging underwater 

images in this paper, to highlight the effectiveness of the proposed method. These demonstrate that 

the proposed restoration method is significant, and can be used to provide high quality underwater 

images for various oceanic activities. 
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