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Abstract.   The aim of this paper is to verify the velocity profile and the pressure variation inside the fluid 
domain over one wavelength obtained from a numerically simulated Smoothed Particle Hydrodynamics 
model with some exact qualitative results (i.e., increasing/decreasing trend or constant value of a flow field) 
from a fully nonlinear Euler equation for water wave model. A numerical wave flume has been modeled and 
a regular wave train is created by the horizontal displacement of a wave paddle on one side of the flume. A 
passive beach is used to dissipate the energy of the wave on the other side. The extracted numerical results are 
compared with some recently available exact results from a nonlinear steady water wave model based on the 
Euler equations for irrotational flow. The flow properties under wave crests, wave troughs, and along the 
distance from the wave crest to the wave trough over one wavelength are investigated. The horizontal and 
vertical velocity components and the pressure in the fluid domain agree well with the analytical results. 
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1. Introduction 

 

Wave load dominates the hydrodynamic effects on man-made structures in the ocean. The design 

of offshore structures requires detail information of loads and pressures exerted on the structures by 

ocean waves. Wave force can be investigated by physical test or numerical simulation. Physical tests 

are indispensable; however, they have some disadvantages which make physical modelling 

challenging. The cost of the model and the time for setting up are unavoidable. Moreover, the 

physical tests might face the impact of scaling problems for large structures. The analysis, design 

and optimisation of virtual models might be required before building a physical model for testing. 

This has led scientists to develop numerical tools. 

Numerical wave simulation has been performed using a variety of methods. To solve the Navier-

Stokes equations, the Lagrangian and the Eulerian are the two approaches. The Eulerian approach 

has been applied to study waves for decades. Nevertheless, the Eulerian method still faces the 
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challenge of simulating large deformations and violent surface interactions which require special 

meshing techniques on the surface boundary. On the other hand, the Lagrangian approach is 

naturally suited for large deformation problems (Monaghan 1994) since it requires no special 

treatment for monitoring and recreating free surface. Because of these, the Smoothed Particle 

Hydrodynamics (SPH) which is a Lagrangian method has received attention from scientists and 

engineers. 

In the literature, there has been many studies on simulation of wave using SPH (Liu and Liu 2010, 

Gotoh et al. 2018, Aly et al. 2011). Khayyer et al. (2008) proposed Corrected Incompressible 

Smoothed Particle Hydrodynamics method (CISPH) to monitor surface profile in breaking waves. 

Altomare et al. (2014) presented the study on numerical simulation of the complex geometries of 

breakwaters. Since the main objectives of the paper were the run-up values and breakwaters 

geometries, the surface wave elevation was monitored at a position which is closest to the wave 

paddle. Didier et al. (2014) studied the interaction of an incident regular wave and a vertical wall of 

a breakwater. The numerical wave height was validated with the experimental results however the 

numerical free surface elevation shows that the numerical model slightly underestimated the free 

surface elevation. Only the pressure on the wall was monitored while the variation of the pressure 

within the fluid domain was neglected. Altomare et al. (2015, 2017) reported a comprehensive study 

of wave generation and wave absorption using Weakly Compressible Smoothed Particle 

Hydrodynamics (WCSPH). The authors introduced applicability of SPH on examining wave loads 

on structures. The regular and irregular wave profiles were examined. The water surface was the 

main character for assessing the success of the numerical simulations (Altomare et al. 2015). In 

Altomare et al. (2017), the authors recommended the parameters for the SPH model using the 

DualSPHysics code. The SPH models of regular and irregular waves in a numerical wave tank were 

described in detail, the wave properties, such as water surface elevation and velocity fields, are 

shown. Omidvar et al. (2015) identified the disadvantage of artificial viscosity that aspects water 

surface representation. Chang et al. (2017) proposed a new SPH method where generated wave 

properties agreed well with the Second order Stokes' wave. Recently, Verbrugghe et al. (2018) 

coupled Finite Volume Method and the DualSPHysics code to simulate nonlinear wave in a large 

domain. In the above studies, the properties of the modeled wave, which are the surface amplitude, 

pressure, and velocity field, are studied and validated with the results from analytical methods and 

experimental simulations. However, the distributions and profiles of pressure and velocity field 

beneath the surface within the fluid domain are not completely examined. The previous studies 

mostly focused on the pressure and velocity at a specific position under generated wave. Hence, the 

objective of this paper is to investigate pressure and velocity variations within the fluid domain. 

Properties of the generated wave by linear theory have been mathematically described in many 

studies. The wave properties such as velocity field, pressure distribution and particle kinematics 

under a progressive wave were studied in (Lamb 1993, Milne-Thomson 1996, Dean and Dalrymple 

1991). Constantin and colleagues developed the study of Stokes' wave by mathematically 

investigating the nonlinear Euler equations for fluid flow properties in a fluid domain (Constantin 

and Strauss 2004, Constantin 2006, Constantin and Strauss 2010, Constantin 2013, 2016). Okamoto 

and Sho̅ji (2016) used another approach to prove Constantin's finding and confirmed Constantin's 

conclusion on particle trajectory. Basu (2016, 2017) applied the nonlinear wave model to study the 

interaction of the surface wave and the underlying current and developed an estimation of the wave 

height based on pressure data on the seabed. Since the aim of the present study is to analyse the flow 

properties under a progressive water wave, the numerical simulation results are validated against the 

exact results from nonlinear wave theory (Constantin and Strauss 2004). 

186



 

 

 

 

 

 

A comparison of smoothed particle hydrodynamics simulation with exact results… 

To investigate the behaviour of flow beneath the numerically generated wave, a steady wave 

propagating over still water in a two-dimensional wave flume is numerically modeled. 

DualSPHysics which is an SPH code has been used in this research to generate the nonlinear waves. 

The DualSPHysics code was first introduced by Crespo et al. (2011) and the latest version 

DualSPHysics_v5.0.3 released in 2020 includes the basic examples of SPHysics and added new 

features. This code has been used in wave simulation (Altomare et al. 2015, 2017, 2014) and the 

simulated results have shown a good agreement with experimental tests. We first simulate a 

numerical wave train using DualSPHysics and then study the flow properties within the fluid domain 

over one wavelength. The velocity and pressure fields are investigated and the variation of these are 

validated against recently obtained exact qualitative results from the full nonlinear Euler equations 

(Constantin 2016).  

The rest of the paper is organized as follows. The SPH method and the exact qualitative results 

from the non-linear water wave theory are summarized in Section 2. Then, the numerical simulation 

is described in detail in Section 3. Numerical flow velocities and pressure distributions are studied 

and validated against the exact qualitative results in Section 4. 

 

 

2. Methodology 
 
2.1 Nonlinear model of water waves and exact qualitative results 
 

A two-dimensional periodic water wave in the (𝑥, 𝑦) plane, propagating over a still water region, 

has a velocity field (𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)). The wave is formed by the balance between gravity and 

inertia force, without considering Coriolis effect, capillary, and viscous force. The still water depth 

is 𝑑  and free surface is denoted by 𝑦 =  𝜂(𝑥) . The flow is irrotational, inviscid, and 

incompressible. The bottom boundary is impermeable and flat. The pressure at the free surface is 

constant and equals to the atmospheric pressure 𝑃 =  𝑃𝑎𝑡𝑚 . A solution of period 𝐿  to the 

governing equations for periodic traveling Stokes waves is provided by Constantin and Strauss 

(2004). The wave propagates over the still water region. 

The fundamental equations of motion of the waves in a moving frame (𝑥 − 𝑐𝑡) given by the 

Euler equations are 

{
 
 
 
 

 
 
 
 

(𝑢 − 𝑐)𝑢𝑥 + 𝑣𝑢𝑦 = −𝑃𝑥 in − 𝑑 < 𝑦 <  𝜂(𝑥 − 𝑐𝑡),

(𝑢 − 𝑐)𝑣𝑥 + 𝑣𝑣𝑦 = −𝑃𝑦 −𝑔 in − 𝑑 < 𝑦 <  𝜂(𝑥 − 𝑐𝑡),

𝑢𝑥 + 𝑣𝑦 = 0 in − 𝑑 < 𝑦 <  𝜂(𝑥 − 𝑐𝑡),

𝑢𝑦 = 𝑣𝑥 in − 𝑑 < 𝑦 <  𝜂(𝑥 − 𝑐𝑡),

𝑣 = (𝑢− 𝑐)𝜂𝑥 on 𝑦 =  𝜂(𝑥 − 𝑐𝑡),

𝑃 =  𝑃𝑎𝑡𝑚 on 𝑦 =  𝜂(𝑥 − 𝑐𝑡),
𝑣 = 0 on 𝑦 =  −𝑑,

            (1) 

where, 𝑐 is the wave speed and 𝑡 is the time variable. Using a stream function formulation, we get 

the system of equations 
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{
 
 

 
 

Δ𝜓 = 0 in − 𝑑 < 𝑦 <  𝜂(𝑥),
|∇𝜓|2

2
+ 𝑔(𝑦 + 𝑑) = 𝑄 on 𝑦 =  𝜂(𝑥),

𝜓 = 0 on 𝑦 =  𝜂(𝑥),
𝜓 = 𝑚 on 𝑦 =  −𝑑,

                   (2) 

where, 𝑚 is a scalar constant called the mass flux. 

The stream functions are constant along the upper and the bottom boundaries and can be written 

as 

𝜓(𝑥, 𝑦) = 𝑚 + ∫ [𝑢(𝑥, 𝑠) − 𝑐]𝑑𝑠.
𝑦

−𝑑
                       (3) 

Due to Eq. (3), the streamlines 𝜓 =  𝑘 with 𝑘 ∈  [0,𝑚] provide a foliation of the closure 

Ω̅ of the fluid domain Ω, where the free surface corresponds to 𝜓 =  0 and the flatbed to 𝜓 =
 𝑚. The wavelength is normalised with 𝐿 =  2𝜋, and it is assumed that in the moving frame the 

wave crest is at the point (0, 𝜂(0)) and the wave troughs are at the points (±𝜋, 𝜂(±𝜋)). Denote 

{
Ω+ = (𝑥, 𝑦) ∈ 𝓡

2: 𝑥 ∈ (0, 𝜋),−𝑑 < 𝑦 <  𝜂(𝑥),

Ω− = (𝑥, 𝑦) ∈ 𝓡
2: 𝑥 ∈ (−𝜋, 0), −𝑑 < 𝑦 <  𝜂(𝑥),

               (4) 

and let 

𝑆+ = 𝑥 ∈ (0, 𝜋), 𝑦 =  𝜂(𝑥); 𝑆− = 𝑥 ∈ (−𝜋, 0), 𝑦 =  𝜂(𝑥)  

be the two halves of the free surface S in one period of the fluid domain Ω, and further 

𝐵+ = 𝑥 ∈ (0, 𝜋), 𝑦 =  𝑑; 𝐵− = 𝑥 ∈ (−𝜋, 0), 𝑦 =  −𝑑  

be the two halves of the flatbed 𝐵. The crest line is 𝑥 =  0, 𝑑 <  𝑦 <  𝜂(0) while the trough 

line is 𝑥 =  ± 𝜋, 𝑑 <  𝑦 <  𝜂(± 𝜋). By assumption, the wave profile is symmetric about the 

crest and 𝜂𝑥  ≤  0 on 𝑆+. Further details are available in (Constantin 2011). The exact results are 

summarized as follows. 

 

 

Fig. 1 Transformation of the domain 
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The horizontal velocity component 𝑢 decreases along the three sides of the domain, Ω+, from 

the wave crest to the wave trough. The resulting inequalities are 

{

𝑢𝑦(0, 𝑦) > 0 for 𝑦 ∈ (𝑑, 𝜂(0)),

𝑢𝑥(𝑥, 𝑑) < 0 for 𝑥 ∈ (0, 𝜋),

𝑢𝑦(𝜋, 𝑦) < 0 for 𝑦 ∈ (𝑑, 𝜂(𝜋)).

                     (5) 

In addition, the vertical component of the velocity is proved to be equal to 0 along three sides of 

the flow domain from the wave crest to the wave trough 

{

𝑣𝑦(0, 𝑦) = 0 for 𝑦 ∈ (𝑑, 𝜂(0)),

𝑣𝑥(𝑥, −𝑑) = 0 for 𝑥 ∈ (0, 𝜋),

𝑣𝑦(𝜋, 𝑦) = 0 for 𝑦 ∈ (𝑑, 𝜂(𝜋)).

                     (6) 

Considering the pressure variation, Constantin and Strauss (2004) stated that the minimum 

pressure is equal to 0 along the free surface, while the maximum is at the point on the flatbed directly 

under the wave crest. 

 

2.2 Smoothed particle hydrodynamics 
 
Smoothed Particles Hydrodynamics (SPH) is a Lagrangian method for computational fluid 

dynamics which considers flow comprising of particles. In SPH, each particle has its own density 

and velocity, thus the change of the properties of the flow field is also associated with the change in 

particle properties. At each time step, the particle properties are updated by interpolating properties 

of the neighboring particles. The driving external force in this case is gravity only. 

Any continuous quantities of fields, their gradients and Laplacian can be approximated using 

SPH formulas. The fundamental Navier-Stokes equations for flow are expressed in an SPH form 

for a particle with index ′𝑎′, as follows 

𝑑 𝒗𝑎

𝑑𝑡
= −∑ 𝑚𝑏 (

𝑝𝑎

𝜌𝑎
2 +

𝑝𝑏

𝜌𝑏
2 + Π𝑎𝑏)∇𝑎𝑊𝑎𝑏 +𝒈𝑏                   (7) 

𝑑 𝜌𝑎

𝑑𝑡
= ∑ 𝑚𝑏(𝒗𝑎 − 𝒗𝑏)𝛻𝑎𝑊𝑎𝑏𝑏                        (8) 

where, 𝑚, 𝜌, 𝑝 and 𝒗 are the mass, density, pressure, and velocity respectively with the subscript 

denoting index for the individual particles. In addition, in Eqs. (7) and (8), 𝒈 is the gravitational 

acceleration, 𝑊𝑎𝑏 is the kernel function and ∇𝑎𝑊𝑎𝑏 is the gradient operator taken with respect to 

particle ′𝑎′ in a discrete form defined between particles with index ′𝑎′ and ′𝑏′. 
The viscous force term Π𝑎𝑏 between two particles with indices ′𝑎′ and ′𝑏′ has a general form 

Π𝑎𝑏 = {
−𝛼𝑐𝑎̅𝑏𝜇𝑎𝑏+𝛽𝜇𝑎𝑏

2

𝜌̅𝑎𝑏
;  𝒗𝑎𝑏 . 𝒓𝑎𝑏 < 0;

0; 𝒗𝑎𝑏 . 𝒓𝑎𝑏 >  0.
                  (9) 

The value of 𝛼 = 0.01 and 𝛽 =  0 have been proven to give the best results by validation 

from wave flumes studies on wave propagation and wave loading exerted onto structures (Altomare 

et al. 2015). The terms 𝒓𝑎𝑏 = 𝒓𝑎 − 𝒓𝑏 and 𝒗𝑎𝑏 = 𝒗𝑎 − 𝒗𝑏 correspond to the relative position and 

velocity respectively between particles with indices ′𝑎′ and ′𝑏′. The term 𝑐𝑎̅𝑏 = 0.5(𝑐𝑎 + 𝑐𝑏) is 
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the mean speed of sound, ℎ = 0.5(ℎ𝑎 + ℎ𝑏) is the mean smoothing length, 𝜌̅𝑎𝑏 = 0.5(𝜌𝑎 + 𝜌𝑏) 
is the mean density and 𝜇𝑎𝑏 = ℎ𝒗𝑎𝑏 . 𝒓𝑎𝑏/(𝒓𝑎𝑏

2 + 𝜂2) is calculated with 𝜂2 = 0.01ℎ2. 

The rate of change of particle position 𝒓𝑎 for a particle with index ′𝑎′ is 

𝑑𝒓𝑎

𝑑𝑡
= 𝒗𝑎 .                               (10) 

The kernel function is a function of the ratio 𝑞 = 𝑟/ℎ, where 𝑟 = |𝒓𝑎𝑏| is the distance between 

particle ′𝑎′ and particle′𝑏′, while ℎ is the smoothing length, specifying the controlled area around 

particle ′𝑎′ in which the number of neighboring particles are calculated. In this study, Quintic 

kernel function is chosen 

𝑊(𝑟, ℎ) =  𝛼𝐷 (1 − 
𝑞

2
)
4
(2𝑞 + 1); 0 ≤ 𝑞 ≤ 2               (11) 

with 𝛼𝐷 equals to 7/4𝜋ℎ2 in two-dimensional simulations. 

For compressible fluid, the speed of sound is much greater than the bulk velocity of the sound in 

the flow. To model the incompressible flow in SPH, the equation of state is modified to give a 

smaller speed of sound which is typically a factor of 10 greater than the speed of the bulk motion. 

The accurate equation of state (Batchelor 2000) was modified to give a smaller speed of sound used 

in the pressure equation 

𝑝𝑎 = 𝐵 ((
𝜌𝑎

𝜌0
)
𝛾
− 1)                         (12) 

in which 𝛾 =  7 in case of water; 𝑝𝑎 is the pressure of particle ′𝑎′; 𝜌0 is the reference density, 

which is approximately 1000 𝑘𝑔/𝑚3; 𝜌𝑎 is the particle density from the continuity equation; 𝐵 =
 𝑐0

2𝜌0/𝛾 is the maximum limit of the density with 𝑐0 as the speed of sound at the reference density. 

The choice of 𝑐0 ensures the weakly-compressible regime in which the density fluctuation is within 

1%. The density variation in fluid flow is approximately 𝑀2 , where 𝑀  is the Mach number 

(Monaghan (1994)). If Δ𝜌 ≈ 0.01 𝜌0, 𝑀 = 𝑚𝑎𝑥𝑡(||𝑢⃗ ||)/ 𝑐0 <  0.1,where 𝑚𝑎𝑥𝑡(||𝑢⃗ ||) is the 

maximum intensity of the velocity expected in the flow time evolution. Hence, the first constraint 

for the speed of sound is 𝑐0 ≥ 10𝑚𝑎𝑥𝑡(||𝑢⃗ ||). For gravity wave simulation, the wave celerity might 

be larger than the fluid flow velocity, thus other constraint of the speed of sound results from the 

wave celerity, 𝑐𝑤
2 = 𝑔𝑡𝑎𝑛ℎ(𝑘𝐻)/𝑘  where 𝑑  is the still water depth, 𝑘  is the wave number. 

When 𝑘𝑑 →  0, the wave celerity becomes 𝑐𝑤
2 = √𝑔𝑑 . Choosing 𝑐0 = 10√𝑔𝑑  leads to the 

condition of the speed of sound 𝑐0 ≥ 10max(√𝑔𝑑,𝑚𝑎𝑥𝑡(||𝑢⃗ ||)) (Antuono et al. 2011, Marrone 

2012). To provide uniform particle distribution and a regular pressure field, 𝛿-Plus-SPH scheme is 

derived (Sun et al. 2019) using quasi-Lagrangian approach. In this study, this approach is not applied 

since the main purpose is the variation of the pressure in the flow field rather than the stability of 

the particle pressure. 

 

2.2.1 Time stepping algorithm 
Symplectic time integration algorithm is applied in this work. The corrected velocity is calculated 

from the position and the density at the middle of the time step as follows 

𝒓𝑎
𝑛+

1
2=𝒓𝑎

𝑛+ 
Δ𝑡

2

𝑑𝒓𝑎
𝑛

𝑑𝑡
,

𝜌𝑎
𝑛+

1
2=𝜌𝑎

𝑛+ 
Δ𝑡

2

𝑑𝜌𝑎
𝑛

𝑑𝑡
,
                            (13) 
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where the pressure 𝑝𝑎
𝑛+

1

2 is calculated using the equation of state in Eq. (12). The superscript 𝑛 

denotes the time step index and the time step is ∆𝑡. Then, the field properties are calculated at the 

next time step according to 

𝒗𝑎
𝑛+1=𝒗𝑎

𝑛+ Δ𝑡
𝑑𝒗𝑎

𝑛+
1
2

𝑑𝑡
,

𝒓𝑎
𝑛+1=𝒓𝑎

𝑛+ 
Δ𝑡

2
(
𝑑𝒓𝑎
𝑛

𝑑𝑡
+
𝑑𝒓𝑎

𝑛+
1
2

𝑑𝑡
),

                          (14) 

and the updated value of density 𝑑𝜌𝑎
𝑛+1/𝑑𝑡 is calculated by the value of 𝒗𝑎

𝑛+1 and 𝒓𝑎
𝑛+1. 

 

2.2.2 Boundary condition 
We use Dynamic Boundary Condition (DBC) which is available in DualSPHysics code (Crespo 

et al. (2015)). The boundary particles satisfy the fundamental equations; however, they are forced 

to remain at the fixed positions. Thus, the boundary particles can automatically generate a repulsive 

force on their neighboring fluid particles resulting from the change of their density when the fluid 

particles approach them. 

 

2.2.3 Wave generation and wave absorption 
We implement the second order Stokes wave model based on (Madsen 1971) which is an inbuilt 

function in DualSPHysics code. The wave is generated by a numerical piston type wave-maker 

whose displacement is equal to 

𝑒(𝑡) =  
𝑆0

2
sin(𝜔𝑡 +  𝛿) + [(

𝐻2

32 𝑑
) (

3 cosh (𝑘𝑑)

𝑠𝑖𝑛ℎ3(𝑘𝑑)
) −

2

𝑚1
] sin (2𝜔𝑡 + 2𝛿)        (15) 

in which 

𝑚1 =
2 𝑠𝑖𝑛ℎ2(𝑘𝑑)

sinh(𝑘𝑑) cosh(𝑘𝑑)+𝑘𝑑
.                    (16) 

The piston stroke is 𝑆0 =  𝐻/𝑚1  and 𝛿  is an unknown phase angle. This equation is 

applicable for the waves that comply with the condition given by 𝐻𝐿3 /𝑑3 < 8𝜋2/3 in which 𝐻 

is the wave height, 𝑑 is the still water depth, 𝑘 = 2𝜋/𝐿 is the wave number and 𝜔 is the angular 

frequency. 

In order to avoid the wave reflection and to prolong the simulation, the right boundary of the 

domain has a passive beach absorption. The dissipating beach is straightforward and easy to apply 

and Altomare et al. (2017) shows that the beach has good dissipation result compared with the 

passive wave absorption. In this work, we use a dissipating beach because of its simplicity. 

 

 

3. Numerical simulation 
 
3.1 Computational domain 
 

Fig. 2 shows dimensions of the wave flume. A wave paddle on the left-hand side creates a 

nonlinear wave, its height (ℎ𝑤) is 2 m. The flatbed length is 𝐿1 =  11 m. The beach on the  
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Fig. 2 Sketch of numerical wave flume 

 

right-hand side is 𝐿2 =  17 m long and the total length of the wave flume is 𝐿3 =  28 m. The 

beach on the right-hand side acts as a passive wave absorption. Its slope is 1:10. The water depth 𝑑 

is 1.4 m, comparing with the wave height (𝐻 =  0.2 m) and the wave period (𝑇 =  1.31 s), the 

wave falls into the deep-water wave category. This assumption fits the conclusion of Constantin 

(2011) in which the Stokes wave is suitable for modelling deep water small amplitudes waves. A 

viscous damping zone (Zhang et al. 2017) is not considered in the present case since it was not 

implemented at the numerical model at this stage. Moreover, the main purpose of this study focuses 

on the flow properties; hence the choice of absorbing beach is for simplicity. 

The resolution of the model (i.e., the inter-particle distance) decides the total simulation time and 

it affects the wave height interpolation in following part of the research. In case of wave generation 

simulation, Altomare et al. (2017) studied five different resolutions and the authors have suggested 

that the ratio of the wave height to the distance between particles (𝑑𝑝) should be higher than 10. It 

is not necessary that a finer resolution will substantially improve the model accuracy. In the next 

section, simulation results with three different inter-particle distance 𝑑𝑝 = 0.005 m, 𝑑𝑝 = 0.01 

m, and 𝑑𝑝 =  0.02 m are examined. Based on these studies, we choose the initial distance among 

particles and the CFL coefficient for this research. 

The simulation has been performed using DualSPHysics code on GPU-CPU, NVIDIA GPU card 

Quadro M4000. The computational capacity is 5.2, 13 cores, 8GB memory. 

 

 

4. Results and discussions 
 
To study the flow properties, it is first necessary to examine whether the waves can be 

successfully generated and to determine the positions of the wave crest and the wave trough in the 

numerical wave tank. 

 

4.1 Wave generation 

 

Fig. 3 shows the wave generated at 𝑡 =  16.78 s. The phenomenon of wave height decaying 

along the length of the flume is discussed in (Lind et al. 2012, Altomare et al. 2017, Omidvar et al. 

2015, Chang et al. 2017). The instability of the pressure field, the boundary condition and the kernel 

function properties considered are the main reasons for this wave height decay. Despite this 

discrepancy, we use such a wave in this paper over the region where the wave height is almost 

constant. We aim to study the flow properties under surface waves; thus, we investigate these 

properties under the wave crest and the wave trough within one wavelength. There are three crests 

and three troughs on the region with flatbed which are presented in Table 1. The flow properties will 

be discussed further in the following sections. 
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Fig. 3 The surface elevation for regular wave at 𝑡 =  16.78 s 

 

 
Table 1 Wave crest and wave trough positions 

Crest x-position (m) Trough x-direction (m) 

C1 2.56 T1 3.84 

C2 5.18 T2 6.64 

C3 7.98 T3 9.30 

 

 

4.2 Convergence study 
 
The purpose of this section is to examine the effect of distance between particles on flow 

properties including velocity and pressure field. The simulations are set up with different initial 

distances among the particles and a constant CFL number to examine the effect of the initial 

distances. Three different resolutions 𝑑𝑝 =  0.005 m, 𝑑𝑝 =  0.01 m, and 𝑑𝑝 =  0.02 m 

are considered. The first simulation (with 𝑑𝑝 =  0.005 m) takes 25 hours to complete while the 

second and the third one with 𝑑𝑝 =  0.01 m and 𝑑𝑝 =  0.02 m takes 3.9 hours and 36 minutes, 

respectively. 

The horizontal and vertical velocity profiles under the three crests are shown in Fig. 4 to Fig. 6. 

In Fig. 4, the horizontal velocity under the wave crest C1 for the three wave simulations are quite 

similar, however, the profiles of vertical velocity under the crest exhibit some differences from each 

other. At locations near the free surface, the horizontal velocity decreases from 0.4 m/s at C1 to 0.3 

m/s at C3. Horizontal velocity also reduces as we move away from the wave paddle. However, this 

is possibly related to similar reason accounting for the spurious decrease in wave height as discussed 

in Section 4.1. Regarding the vertical component of the velocity under the three crests, which 

fluctuate around 0 m/s over the depth of the water, no significant differences have been observed. 

Next, we study the variation of horizontal and vertical velocity components along the bottom 

boundary from the point under the first wave crest to the first wave trough. The horizontal and 

vertical velocities are plotted in Fig. 7. There are different trends observed in both cases. The vertical 

velocity varies slightly around 0 m/s, as shown in Fig. 7a. With 𝑑𝑝 =  0.005 m simulation shows 

a large fluctuation at positions close to the point under the wave trough. Fig. 7b reveals a significant 

fluctuation in horizontal velocity field. The fluctuations are due to numerical effects near the 

boundary as discussed previously. Even though there are fluctuations in the horizontal velocity field 

observed in Fig. 7b for the simulation with 𝑑𝑝 =  0.005 m, a decreasing trend in the amplitude 
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of the horizontal velocity is seen. The other two simulations (with 𝑑𝑝 =  0.01 m and 𝑑𝑝 =
 0.02 m) are unable to capture this trend. The horizontal velocity at the flatbed has been proved to 

be monotonically decreasing from the point under a wave crest to the point under a wave trough 

Constantin (2013), however Fig. 7(b) is unable to represent the analytical conclusion clearly. These 

results further support the idea of unstable velocity field near the boundaries for SPH. 

Fig. 8 shows the variation of total pressure under the first wave, along the crestline and the trough 

line. Simulations with 𝑑𝑝 =  0.005 m and 𝑑𝑝 =  0.01 m describe a similar pressure profile. 

It is observed from Fig. 8 that for the simulation with 𝑑𝑝 =  0.02 m, the pressure rises sharply 

near the flatbed. The sharp increase in pressure seen in Fig. 8 might be due to the boundary effects 

in SPH simulation.  

 

 
(a)  (b)  

Fig. 4 Velocity with three different initial distance among particles 𝑑𝑝 =  0.005 m, 𝑑𝑝 =  0.01 m, 

and 𝑑𝑝 =  0.02 m under C1 

 

 

 
(a)  (b)  

Fig. 5 Velocity with three different initial distance among particles 𝑑𝑝 =  0.005 m, 𝑑𝑝 =  0.01 m, 

and 𝑑𝑝 =  0.02 m under C2 
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(a)  (b)  

Fig. 6 Velocity with three different initial distance among particles 𝑑𝑝 =  0.005 m, 𝑑𝑝 =  0.01 m, 

and 𝑑𝑝 =  0.02 m under C3 

 

 

 
(a)  (b)  

Fig. 7 Velocity variation in horizontal direction at seabed elevation with three different initial distance 

among particles 𝑑𝑝 =  0.005 m, 𝑑𝑝 =  0.01 m, and 𝑑𝑝 =  0.02 m 

 

 

Taken together, these results suggest that the initial conditions for this study are sufficient. The 

next section, therefore, moves on to discuss the variation of flow properties under the generated 

surface waves in terms of velocity and pressure field over one wavelength and compare with the 

existing exact results. 

In this study, the wave height is 0.2 m and the chosen distance between particles is 0.005 m, thus 

the ratio (𝐻/𝑑𝑝) is 40.  The CFL number of 0.1 has been chosen for stability reason. Moreover, 

the ratio of the still water level to the distance between particles (𝑑/𝑑𝑝) is 280 ensuring no 

inaccuracies in the initial setup. 
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(a)  (b)  

Fig. 8 Pressure with three different initial distance among particles 𝑑𝑝 =  0.005 m, 𝑑𝑝 =  0.01 m, 

and 𝑑𝑝 =  0.02 m 

 

 

4.3 Variation of horizontal velocity 
 

Fig. 9(a) shows the horizontal velocity under the wave crests while Fig. 9(b) describes those 

under the wave trough. The velocity distributions agree with previous studies of (Lind et al. 2012); 

the maximum values of horizontal velocity are located at the free surface and the minimum ones are 

at the bottom. The horizontal velocity along the depth in Fig. 9(a) follows Eq. (5) in which the 

horizontal velocity decrease with the depth. On the other hand, the horizontal velocity under the 

wave trough is negative and decreases from the flatbed to the surface. 

 

 

 
(a) Horizontal velocity under crest (b) Horizontal velocity under trough 

Fig. 9 Comparison of horizontal velocity profile as a function of the normalized water depth ℎ/𝑑 
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Fig. 10 Comparison of the velocity profile at the bottom from the wave crest to the wave trough 

 

 

 
(a) Vertical velocity under crest (b) Vertical velocity under trough 

Fig. 11 Comparison of vertical velocity profile as a function of the normalized water depth ℎ/𝑑. 

 

 

The variation of the horizontal velocity in the propagating direction of the wave is shown in Fig. 

10. The crest line is at 0 and the trough line is at 𝐿/2, where 𝐿 is the length of the wave.  It is 

clearly seen from Fig. 10 that the velocity changes sign at a unique point (Constantin 2006), thus the 

velocity from 𝐿/4 to 𝐿/2 is smaller than 0. Then, a decreasing trend from the point under the crest 

to the point under the trough is seen which has been predicted from theoretical results (Eq. (5)). In 

addition, a considerable variation of the velocity is observed in the vicinity of the point directly 

under the trough. One possible cause of this is the effect of boundary condition which is mentioned 

in (Chang et al. 2017, Omidvar et al. 2012). 

 

4.4 Variation of vertical velocity  
 
The vertical velocity profiles are plotted in Figs. 11(a) and 11(b). Fig. 11(a) shows the variation 

of the velocity under the wave crest. The vertical component fluctuates more near the free surface. 
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The fluctuation is stronger at the crest line (Fig. 11(a)) than at the trough line (Fig. 11(b)). Moreover, 

the velocity under the third crest is more stable than the first two crest, hence the variation of the 

vertical velocity might depend on the distance from the wave paddle. This phenomenon is not so 

clearly seen for the case under the wave trough. The vertical velocities under the wave trough have 

the same pattern and they fluctuate more in the vicinity of the free surface than in deeper regions. 

Along the propagating direction of the wave, the vertical velocity on the flatbed is more stable 

than the horizontal components, as shown in Fig. 12. Fig. 12 shows the variation of the vertical 

velocity along 𝑥-direction in the range of −0.02 m/s to 0.02 m/s. Fluctuations are greater for the 

point on the bed near the wave trough than near the wave crest. This may result from the compression 

of the particles under the wave trough leading to an unstable pressure region, hence unstable pressure 

field affects the velocity of the particles. Note that for the simulation considered the vertical velocity 

on the flatbed should be identically zero (as expected from the exact results). 

 

4.5 Variation of pressure  
 
The pressure distribution under three crests and troughs are shown in Figs. 13 and 14, 

respectively. The pressure strictly decreases from the bottom depth to the free surface. It is difficult 

to conclude that the maximum pressure is at the point directly under the wave crest (as expected 

from the exact results in Section 2.1) based on Fig. 13 only, however the pressure shows a downward 

trend along the flatbed (though numerical fluctuations are unavoidable) from the wave crest to the 

wave trough in Fig. 14. Hence, the points of maximum pressure are located at the bottom depth and 

under the crests. These findings confirm the qualitative success of the numerical simulation 

comparing with the exact results from the nonlinear water wave model governed by the full 

nonlinear Euler equations.  

A good agreement was globally observed between numerical results and analytical results in Eqs. 

(5) and (6). The velocity profile distributions along the depth of the water obtained with the 

numerical model were globally similar to the analytical inequalities. The similar trends were 

observed throughout the pressure field. 

 

 

 

Fig. 12 Comparison of the velocity profile at the bottom from the wave crest to the wave trough 
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(a) (b) 

Fig. 13 Comparison of pressure profile as a function of the normalized water depth ℎ/𝑑. 

 

 

 

Fig. 14 Comparison of the pressure profile at the bottom from the wave crest to the wave trough 

 

 

5. Conclusions 
 

An SPH model is used to simulate the regular wave train in a numerical wave flume. To 

achieve this verification, the velocity profiles under wave crests and wave troughs are examined.  

Similarly, the pressure along straight lines under wave crests and wave troughs are studied. The 

numerical simulation results match the trend closely with the exact qualitative results available 

from the nonlinear water wave theory confirming the success of the simulation carried out.  

Some fluctuations in velocity and pressure profiles near the boundary close to the bed and at 

the surface have been observed which will require some attention and improvement in the 

numerical model. 
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