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Abstract.  The main goal of this study is to investigate the free vibration analysis of a large sag catenary with 
application to the jumper in hybrid riser system. The equation of motion is derived by using the variational 
method based on the virtual work principle. The finite element method is applied to evaluate the numerical 
solutions. The large sag catenary is utilized as an initial configuration for vibration analysis. The nonlinearity 
due to the large sag curvature of static configuration is taken into account in the element stiffness matrix. The 
natural frequencies of large sag catenary and their corresponding mode shapes are determined by solving the 
eigenvalue problem. The numerical examples of a large sag catenary jumpers are presented. The influences of 
bending rigidity and large sag shape on the free vibration behaviors of the catenary jumper are provided. The 
results indicate that the increase in sag reduces the jumper natural frequencies. The corresponding mode shapes 
of the jumper with large sag catenary shape are comprised of normal and tangential displacements. The large 
sag curvature including in the element stiffness matrix increases the natural frequency especially for a case of 
very large sag shape. Mostly, the mode shapes of jumper are dominated by the normal displacement, however, 
the tangential displacement significantly occurs around the lowest point of sag. The increase in degree of 
inclination of the catenary tends to increase the natural frequencies. 
 

Keywords:  catenary jumper; finite element method; free vibration analysis; large sag catenary; hybrid 

riser; natural frequency; variational method; virtual work 

 
 
1. Introduction 
 

In offshore engineering, marine riser is considered as a major structural link between the seafloor 

and the floating platform, i.e., spar platform and tension leg platform (Zou 2012, Ibrahim and Jameel 

2018), its main function is to convey oil and gas from the wellhead to the platform. It plays a 

significant role in deepwater drilling and production operations for the oil and gas industry. For 
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deep-water operation with harsh environmental condition near the ocean surface zone, the hybrid 

riser system becomes an alternative solution (Kim et al. 2018). For this riser system, the catenary-

type configuration known as steel catenary jumper (Rombado et al. 2012) or conventional flexible 

jumper (Kim and O'Reilly 2019) can be the upper part of the free-standing hybrid riser system 

(Andueza et al. 2011, Rombado et al. 2012, Cao and Chen 2017, Kim et al. 2018, Kim and O'Reilly 

2019). If this type of riser is mainly subjected to its self-weight, it can form the catenary shape with 

large sag curve (Athisakul et al. 2011, Athisakul et al. 2014, Klaycham et al. 2014). Conveniently, 

the catenary-type riser in large sag catenary configuration can get back to equilibrium by its self-

weight if top end movement is applied (Bai 2001). In case of large sag catenary, the lowest point of 

the catenary curve may be not located in the same point of the bottom end support. On the contrary 

to the free hanging riser system, the lowest point of the riser system is the touch down point and the 

sag to span length ratio ( :smaxy L  ) of the riser is limited to be less than 1:8. However, as the 

operations further move into the deeper water, research works which help understanding the 

behaviors of riser are necessary for technology development. One of the most interesting research 

topics is the free vibration analysis, especially when it has a very large sag configuration. 

Researches on marine risers have been given attention since 1960, starting with the assumption of 

small displacement analysis (Graham and Frost 1965, Fischer and Ludwig 1966, Kopecky 1971, 

Trucker and Murtha 1973, Henghold et al. 1977, Chou et al. 1978, Dareing and Huang 1979, 

Krolikowski and Grey 1980, Alfosail et al. 2017, Su et al. 2018). However, in these research studies, 

the sag to span length ratio ( :smaxy L ) of the riser is limited to be less than 1:8. Many studies have 

examined large displacement analysis, axial deformation, and internal fluid effect (Huang, and 

Chucheepsakul 1985, Athisakul et al. 2012, Gay Neto et al. 2014, Wang et al. 2015, Adamiec-

Wójcik et al. 2015).  

Nowadays, there are few research studies concerning the large sag catenary shape analysis. 

Phanyasahachart et al. (2017) studied the static equilibrium configuration of the large sag catenary 

cable by using the principle of virtual work. The finite element method was used to solve the problem 

numerically. Their results showed that the increase in sag decreases significantly the tension force. 

Their model was later extended to study the free vibration behaviors of a very large sag catenary 

cable Phanyasahachart et al. (2018). They found that the free vibration behavior of very large sag 

cable is similar to a simple hanging chain (Huang and Dareing 1969). Although the robust 

mathematical model has been proposed in their study, such a model did not capture the effect of 

bending stiffness to provide an appropriately accurate result for the riser problem. 

Therefore, this study aims to investigate the free vibration of a large sag catenary shape with 

application to catenary jumper for hybrid riser system. The static configuration calculated based on 

the catenary equation is utilized as the initial state for the vibration analysis. The variational method 

based on the work-energy principle is used to form the equation of motion. The finite element 

method along with eigenvalue problem solver is applied to obtain the numerical solutions of the 

natural frequencies and the vibration mode shapes. The effect of large sag catenary shape on the 

natural vibration behaviors of the jumper are highlighted. The bending rigidity is found to be the 

most significant parameter influencing on the free vibration characteristics of the jumper, especially 

for a large sag configuration. 

 

 

2. Variational formulation for free vibration analysis of large sag catenary 
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Two equilibrium configurations of the catenary are shown in Figs. 1(a) and 1(b), including the 

static and dynamic equilibrium configurations. At the static state, the horizontal and vertical 

coordinates at any points of the catenary are described by sx   and sy  , respectively, in which 

s Hx X   and s Hy Y   at the catenary top end. The arc-length coordinate of the catenary is 

represented by ss , where 0ss   at the bottom end and ss S  at the top end ( S  is total catenary 

length). The large sag static configuration ( sx  and sy ) is calculated based on the catenary formula 

[26] as given in Appendix A. In practical design of the riser system, the most commonly used 

configuration for jumper is a double clamped configuration, with stress joints (for steel rigid risers) 

or bend stiffeners. However, in the present study, the static solution starts from the catenary formula, 

thus the configuration of the catenary is considered as a double pinned condition for simplicity. 

As shown in Fig. 1(a), the catenary is vibrating around its static equilibrium configuration. 

Beyond the static state, the catenary moves to the dynamic equilibrium position, s dx x u   and 

s dy y v   . The variables du   and dv   are the components of dynamic displacements vector 

𝐮⃑⃑ 𝑑(𝑠), representing horizontal and vertical displacements, respectively. Based on the differential 

geometry of the catenary segment, the curvature at dynamic state can be derived as the following 

exact formula (Chucheepsakul et al. 2003). 

 x y x y       (1) 

It should be noted that ( )  is the differentiation with respect to the variable 
ss . According to 

the theory of elasticity, the dynamic axial strain using the updated Lagrangian description is defined 

by (Chucheepsakul et al. 2003)  
2 2

2

1

2 2

s d d
d s d s d

s s

s s u v
x u y v

s s


    
        

   
                   (2)  

For small amplitude oscillation, the higher order terms of dynamic axial strain can be neglected, 

this leads to the linear dynamic axial strain as follows. 

 

 

 

(a) (b) 

Fig. 1 (a) Static and dynamic configurations of a large sag catenary and (b) Free body diagram of 

the catenary segment at static equilibrium state 
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 
2

1
d s d s d

s

x u y v
s

     


                           (3) 

To obtain the governing equation for free vibration analysis, the variational method based on the 

principle of virtual displacement is applied to derive the equation of motion. The virtual strain energy 

comprises the axial stretching and bending. Firstly, the virtual strain energy caused by axial load can 

be expressed as 

  
0

S

a a d a d sU T x u T y v ds        (4) 

where a s p dT T EA    is the axial tension at dynamic state; sT  is static axial tension calculated 

from Eq. (A9); and E  is the modulus of elasticity. The virtual bending strain energy is given by 

  2 2

0

S

b d d d d sU B y u B x u B x v B y v ds                    (5) 

where pB EI  is the flexural rigidity; and pI  is the moment of inertia. The external virtual work 

is performed by the effective weight and the initial force of the catenary. The virtual work done by 

effective weight can be expressed as  

 
0

S

W d sW W v ds    (6) 

With application to jumper,  p p e e i iW A A A g      is the effective weight; p , e  and 

i  are densities of the jumper material, sea water, and internal transported fluid, respectively; 
eA , 

and 
iA  are the cross-sectional areas based on the pipe outer diameter and the pipe internal diameter, 

respectively, while p e iA A A   is the cross-sectional area of the pipe. The virtual work caused by 

an initial force can be expressed as 

 𝛿𝑊𝐼 = −∫ {(𝑚𝑝 + 𝑚𝑖 + 𝐶𝑎
∗)(𝑢̈𝑑𝛿𝑢𝑑 + 𝑣̈𝑑𝛿𝑣𝑑)}𝑑𝑠𝑠

𝑆

0
 (7)   

in which 𝑢̈𝑑 and 𝑣̈𝑑 are the horizontal and vertical accelerations of the catenary; p p pm A  is 

mass per length of the catenary; i i im A  is mass per length of transported fluid; 
a e e aC A C   is 

the hydrodynamic added mass per unit catenary length; and aC   is the added mass coefficient. 

Finally, the total virtual work equation is generally written in the form 

   a b W IU U W W                               (8) 

By substituting the Eqs. (4)-(7) into Eq. (8) with some manipulations, the total virtual work 

functional of the catenary is  

           2 2

0

S

d a d d a d sB y u T B x u B x v T B y v ds                       
      

       −∫ {−[(𝑚𝑝 + 𝑚𝑖 + 𝐶𝑎
∗)𝑢̈𝑑]𝛿𝑢𝑑 − [(𝑚𝑝 + 𝑚𝑖 + 𝐶𝑎

∗)𝑣̈𝑑 + 𝑊]𝛿𝑣𝑑}𝑑𝑠
𝑆

0
 (9) 

Eq. (9) is a nonlinear equation, which is difficult to be solved by an analytical method. Therefore, 
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the numerical method based on the finite element technique is utilized for solving the free vibration 

analysis of a large sag configuration of the catenary including nonlinear term of the static curvature. 

This study focuses on the free vibration of the large sag catenary shape. Consequently, only virtual 

work done by effective weight is included in the formulation. However, the present model 

formulation can be further extended to accommodate the currents loads as proposed by Athisakul et 

al. (2011), Klaycham et al. (2018). 

 

 

3. Numerical approach 
 

To find the solution of Eq. (9), the finite element procedure is utilized to obtain the numerical 

results, as more detailed procedures are given in the following subsection. 

 

3.1 Finite element method  

 

The finite element method is applied to evaluate the numerical solutions of the vibration analysis. 

In the present finite element model, the catenary is discretized into a finite number of the elements 

along the arc-length coordinate. To this end, the length of each discretized element of the catenary 

is 

e

S
s

n
  (10) 

where S   is total arc-length of the catenary, while n   is the number of the finite element. The 

dynamic displacement of the catenary can be calculated approximately by (Monprapussorn et al. 

2007) 

       
T

d d d nu v u N d  (11) 

in which  N  is the shape function matrix containing the set of fifth-degree polynomial function 

5iN  (Athisakul et al. 2011). 

   53 5651 52 54 55

51 52 53 54 55 56

0 0 0 0 0 0

0 00 0 0 0

N NN N N N

N N N N N N

 
  
 

N  (12) 

and  nd  is the nodal degree of freedom vector representing nodal dynamic displacements and 

their derivatives. 

    1 1 1 1 1 1 2 2 2 2 2 2

T

n d d d d d d d d d d d du u u v v v u u u v v v       d  (13) 

 

3.2 Equation of motion  

 

Based on the virtual work principle, the dynamic equilibrium equation of the catenary is derived 

by applying the stationary condition to Eq. (9). In addition, according to the finite element procedure, 

substituting Eq. (11) into Eq. (9) leads to the element equation of motion in a matrix form as 
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 [𝐦(𝑒)]{𝐝̈𝑛} + [𝐤(𝑒)]{𝐝𝑛} = {𝟎} (14) 

in which 
 e 

 
m  is the element mass matrix as given by 

 
      

0

1 0

0 1

es
Te

p i a sm m C ds
              
m N N  (15) 

( )[ ]e
k  is the element stiffness matrix including of 

 
       

1 2 1

e e e e

b b t
         
       
k k k k  (16)   

where ( )

1[ ]e

bk   and ( )

2[ ]e

bk   are the bending stiffness matrices. The matrix ( )

1[ ]e

tk   is the stiffness 

matrix resisting axial deformation.  

 
     

2

1 2

0

es
Te s s s

b s

s s s

y x y
B ds

x y x

   
          

k N N  (17) 

 

      
2 2

2 2 2

0

2

2

es
Te s s s s

b s s

s s s s

x y y x
B ds

y x x y


                     
k N N  (18) 

         
2

1 2

0

0

0

es
T Te s s s s

t p s

s s s s

T x x y
EA ds

T x y y

                        
k N N N N        (19) 

where sT  is the static axial tension, which can be obtained from Eq. (A9). The variables sx  and 

sy  in Eqs. (17)-(19) can be derived from the exact catenary formula by differentiating Eqs. (A6) 

and (A7) with respect to ss . 

 

1
2 2

1sinh 1s
s

H

W s
x K

T



  
     

   

 (20) 

 

1

2
1 2

1 1sinh sinh sinh sinh 1s s
s

H H

W s W s
y K K

T T




      

         
      

 (21) 

In the same manner, differentiation of Eq. (A8) with respect to ss  leads to the exact expression 

for large curvature of the catenary, /s s sd ds  , as 

 

1
2 2

1

1 1

2

1

1

cosh sinh sinh sinh 1

1 sinh sinh sinh

s s

H H

s

H
s

H

W s W s
K K

T TW

T W s
K

T









       
        
        

 
    

    
    

 (22) 
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The element equation of motion from Eq. (14) is assembled to obtain the equation of motion of 

the global system. 

 [𝐌]{𝐃̈𝑛} + [𝐊]{𝐃𝑛} = {𝟎} (23) 

where    
1

n

n n

i

D d   and {𝐃̈𝑛} = ∑ {𝐝̈𝑛}
𝑛
𝑖=1   are the global nodal displacement and nodal 

acceleration vectors, respectively;    

1

n
e

i

 
 M m  is the total mass matrix; and    

1

n
e

i

 
 K k  

is the total stiffness matrix. For free vibration, the general solution is a harmonic function, therefore 

Eq. (23) leads to the eigenvalue problem in the form as  

        2 K M D 0  (24) 

in which    and  D   are the natural frequencies and vibration mode shapes of the catenary 

obtained by solving the eigenvalue problem, Eq. (24). In this study, for more convenience, the 

computer program is developed by using the Fortran-90 language to implement the finite element 

algorithm and the eigenvalue problem solver. 

 

 

4. Numerical results and application to catenary jumper 
 

In this section, the numerical examples with the application to large sag catenary jumper are 

presented. The effect of bending rigidity and large sag configuration on the natural frequencies and 

the vibration mode shapes are investigated. 

 

4.1 Numerical validations 
 

As the mathematical model and computer code are developed for implementing the finite element 

algorithm, its numerical accuracy needs to be checked. The first validation example investigates the 

natural frequencies of inclined taut cables, which are compared with the results presented by 

Henghold et al. (1977). To perform the present finite element simulation of the cable problem, the 

bending stiffness is neglected. The cable stiffness to weight ratio ( /EA WS ) is specified to be 5000 

with two different inclined angles of 30 and 60 degrees. The other input parameters of cable are 

shown in Table 1, while the comparison of dimensionless natural frequencies of cable ( ˆ /S g  ) 

are demonstrated in Table 2. It is revealed that, in the case of inclined cable, the present natural 

frequencies are acceptable with those results present by Henghold et al. (1977). However, their 

maximum differences are 3% and 5% for the inclined angle of 30 and 60 degrees, respectively. These 

differences may be caused by unequal number of the discretized element. 

In addition to inclined taut cable, the natural frequencies of the large sag horizontal cable suspended 

in the air are also investigated, which are compared with those results presented by Phanyasahachart 

et al. (2018). In this validation example, the properties of the cable are shown in Table 3. Two 

different values of horizontal top tensions are examined such as 10 N and 1500 N. The comparisons 

between natural frequencies for the first four vibration modes are shown in Table 4. From the 

comparisons, good agreement can be found with results presented by Phanyasahachart et al. (2018).  
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Maximum differences of 6.5% and 0.5% can be found for HT  = 10 N and 1500 N. 

 

 

Table 1 Parameters of the inclined cables 

Input variables 
Inclined angle (degrees) 

30 60 

 Horizontal top tension, 
HT  (kN) 6320 3840 

 Total arc-length, S  (m) 1038 1798 

 Diameter, D  (m) 0.3842 0.3842 

 Cable weight in air, W  (kN/m) 9.48 9.48 

 Modulus of elasticity, E  (kN/m2) 4.25 x 108 7.353 x 108 

 

Table 2 Comparisons of dimensionless natural frequencies for the first two vibration modes of inclined taut 

cables 

Mode 

Dimensionless Frequencies, ˆ /S g   

Inclined 30 degrees Inclined 60 degrees 

This study Henghold et al. (1977) This study Henghold et al. (1977) 

1 5.14 5.17 3.84 3.65 

2 7.90 8.17 6.32 6.30 

 
Table 3 Parameters of the cables 

Input variables Values 

 Horizontal top tension, HT  (N) 10, 1500 

 Total arc-length, S  (m) 869.42 

 Diameter, D  (m) 0.023 

 Cable weight in air, W  (N/m) 9.48 

 Modulus of elasticity, E  (kN/m2) 1.794 x 109 

 
Table 4 Comparison of the natural frequencies for the first four vibration modes of the large sag horizontal 

cables  

Mode 

Natural frequencies (rad/s) 

HT  = 10 N HT  = 1500 N 

This study 
Phanyasahachart 

et al. (2018) 
This study 

Phanyasahachart 

et al. (2018) 

1 0.1852 0.1814 0.2683 0.2678 

2 0.2728 0.2809 0.4796 0.4790 

3 0.4508 0.4247 0.6791 0.6785 

4 0.5594 0.5739 0.8692 0.8683 
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Table 5 Parameters of the jumper and environmental conditions 

Parameters Values 

 Total arc-length, S  (m) 1000 

 Number of discretization, n  40 

 Outer diameter, eD  (m) 0.26 

 Inner diameter, iD  (m) 0.20 

 Modulus of elasticity, E  (N/m2) 2.07 x 1011 

 Densities of pipe,
p , sea water, e , and internal fluid, i  (kg/m3) 7850, 1025, 998 

 Added mass coefficient, aC  1.0 

 
 
4.2 Effect of bending stiffness on free vibration of jumper with large sag configuration  
 

This subsection presents the effect of bending stiffness on the free vibration characteristics of a 

jumper. The properties of the horizontal jumper and ocean conditions are given in Table 5. The total 

length of the jumper is 1000 m. Fig. 2 show the relation between the first fundamental frequency 

and horizontal top tension ( HT ), for the including (IBS) and excluding bending stiffness (EBS) of 

the jumper in the numerical computation cases. From Fig. 2(a), for a small value of HT , the catenary 

has a large sag curve. If the value of HT   is increased, the catenary has a rather taut static 

configuration, and increased its natural frequency as well. 

 

 

 

  
(a) Natural frequency versus horizontal top tension (b) Natural frequency versus horizontal top tension 

(Explanation from Fig. 2(a)) 

Fig. 2 Effect of bending rigidity on the natural frequency of a jumper: abbreviations “IBS” and “EBS” 

represent the including and excluding bending stiffness, respectively 
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Fig. 3 Percent difference of the natural frequency of a jumper obtained by including and excluding bending 

stiffness (“IBS” and “EBS”) 

 

  
(a) Normalized normal displacements (b) Normalized tangential displacement 

Fig. 4 First fundamental mode shapes of a catenary, for horizontal top tension of 
HT  = 3000 N, in 

comparing between including bending stiffness (IBS) and excluding bending stiffness (EBS) 

 

 

For a small value of HT  (large sag configuration), the bending stiffness contributes more to the 

dynamic characteristics as seen from the explanation in Fig. 2(b)). This result is also shown in Fig. 

3, where the percent difference in natural frequency obtained by including and excluding bending 

stiffness in the computation is illustrated. Fig. 3 reveals that, for a taut and straight jumper (large 

value of HT ), the free vibration behavior of a catenary is dominated by axial tension and the bending 

stiffness has an insignificant influence on free vibration behavior. 
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Fig. 5 Static configurations of horizontal jumpers for different horizontal top tensions 

 

 

Considering the effect of bending stiffness on fundamental mode shape (see Fig. 4) for HT = 

3000 N, the modal displacement in normal ( dnu ) and tangential ( dtu ) directions are shown in Figs. 

4(a) and 4(b), respectively, which can be calculated as follows 

 sin cosdn d s d su u v    (25) 

 cos sindt d s d su u v      (26) 

where s  is the angle measured from horizontal direction to the tangential direction of jumper as 

calculated from Eq. (A8). The result shows that the bending stiffness is insignificant on fundamental 

tangential displacement mode since the mode shape of IBS looks identical to that of EBS, as seen 

in Fig. 4(b). However, the bending stiffness has significantly more influence on fundamental normal 

displacement mode. 

 

4.3 Free vibration of horizontal jumper 
 

The propose of this subsection is to present the effect of horizontal top tension ( HT ) on the free 

vibration behavior of the horizontal jumper. The parameters of the jumper and environmental 

condition used in this study are given in Table 5. As the horizontal jumper is investigated in this 

subsection, therefore the supports of the jumper are placed at the same level ( HY = 0). The total arc-

length of 1000 m is specified, while three different values of the horizontal top tension such as HT

=34900 N, 137600 N, and 808000 N are investigated. It should be noted that, in case of HT ==34900 

N, although this value of horizontal tension at top end ( HT  ) is small, the top tension along the 

tangential direction is large enough to carry its self-weight. 

The static configurations of a large sag catenary jumper for different horizontal top tensions are 

shown in Fig. 5. As three different horizontal top tension of 34900 N, 137600 N, and 808000 N are 

specified, the corresponding horizontal offset calculated from Eq. (A7) are found to be 180.0 m, 

450.0 m, and 900.0 m, respectively. This means that the effect of horizontal top tension is to move 

horizontally the right end of jumper away from the other end, and to decrease the sag to span length  
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(a) 

HT = 34900 N (b) 
HT = 137600 N 

 
(c) 

HT = 808000 N 

Fig. 6 Static and modal dynamic configurations of horizontal jumper 
 

 

ratio. This result is also graphically confirmed by Fig. 5. The numerical value of the sag to span 

length ratios for their corresponding horizontal tensions are given in Table 6. It also shows the natural 

frequencies for the first four vibration modes of the jumper. It is shown that the increase in horizontal 

top tensions also increases the natural frequency of the jumper. This result is due to the horizontal 

top tension directly increasing the jumper stiffness (see Eqs. (A9) and (19)), which increases natural 

frequencies as well. If the horizontal top tension is large enough, the sag to span length ratio 

( :smaxy L  ) is very small; therefore the natural frequency of the horizontal jumper is mainly 

dominated by axial stiffness, and could approach the solution of a classical vibrating string problem.  

The static and the modal dynamic configurations (first four modes) are presented in Fig. 6. It 

should be noted that the modal dynamic configurations are calculated by adding the scaled 

normalized modal dynamic displacement (mode shape) into the static coordinate. As can be seen 

from Figs. 6(a)-(c), the modal dynamic configurations of jumper with large sag shape are 

asymmetric for odd modes (1st and 3rd modes), and symmetric for even modes (2nd and 4th modes). 

Fig. 7 shows the relation between the natural frequencies for the first four vibration modes and the 

horizontal top tension. The modal displacement in normal ( dnu  ) and tangential ( dtu  ) directions, 

which can be calculated from Eqs. (25) and (26), are also attached in Figs. 7(a) and 7(b), respectively.  
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Table 6 Natural frequencies of horizontal jumper for different horizontal top tensions 

Mode 
Natural Frequencies (rad/s) 

HT  = 34900 N 
HT = 137600 N 

HT = 808000 N 

Sag : Span 1 : 0.379 1 : 1.11 1 : 4.72 

1 0.1336 0.1574 0.3301 

2 0.2230 0.2828 0.5241 

3 0.3392 0.4120 0.7279 

4 0.4517 0.5364 0.9141 

 

  
(a) Modal normal displacements (b) Modal tangential displacements 

Fig. 7 Relations between the natural frequency for the first four vibration modes and the horizontal top 

tension of horizontal jumper 

 

 

The results also confirm that the increase in horizontal top tension increases the natural frequency 

of the horizontal jumper. In addition, the numerical results show that the mode shapes are always 

dominated by normal displacement. However, the lowest point of sag in odd modes are noticeably 

influenced by tangential displacement, whereas the lowest point of sag in even modes are influenced 

by normal displacement. 

 

4.4 Free vibration of inclined jumper  
 

The free vibration response of the inclined jumper is presented in this subsection. The parameters 

of the jumper and environmental conditions given in Table 5 are used. Two different values of the 

vertical distance, 500 m and 866 m, are considered. For each vertical distance, three values of 

horizontal top tensions such as 3500 N, 137600 N, and 808000 N are applied at the top of the jumper.   
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Table 7 Natural frequencies of inclined jumper 

Mode 

Natural Frequencies (rad/s) 

HT = 3500 N HT = 137600 N HT = 808000 N 

HY =500 m HY =866 m HY =500 m HY =866 m HY =500 m HY =866 m 

Sag : Span 1 : 0.79 1 : 1.16 1 : 1.58 1 : 2.54 1 : 5.50 1 : 9.28 

1 0.1265 0.1275 0.1604 0.1892 0.3572 0.4835 

2 0.2308 0.2521 0.2990 0.3508 0.5581 0.7149 

3 0.3361 0.3667 0.4320 0.5083 0.7780 1.0060 

4 0.4529 0.4946 0.5646 0.6622 0.9747 1.2370 

 

  
(a) Vertical distance of 500 m (b) Vertical distance of 866 m 

Fig. 8 Static configurations of inclined jumpers for different horizontal top tensions 

 

The static configurations of the inclined jumper, for vertical distances of 500 and 866 m, are 

illustrated in Figs. 8(a) and 8(b), respectively. This figure shows that the inclined jumper has a large 

sag to span length ratio ( :smaxy L ) when the horizontal top tension and the vertical distance are small. 

The natural frequencies for the first four vibration modes of the inclined jumper and the values of 

sag to span length ratios are shown in Table 7. This table shows that both increases in the horizontal 

top tension and the vertical distance decrease sag to span length ratio, and cause to increase the 

natural frequencies of the jumper. These results are found to be in agreement with the results for the 

horizontal jumper shown in the previous subsection. 

To demonstrate the modal dynamic configuration of the inclined jumper, only the 500 m vertical 

distance case is presented, as shown in Fig. 9. As for the results, the modal dynamic configurations 

for the inclined jumper seem to be a fraction of those for the horizontal jumper. Fig. 10 shows the 

relations between the natural frequency (first four vibration modes) and the horizontal top tension 

of inclined jumper for the vertical distance of 500 m. The dynamic displacement (mode shape) in 

normal and tangential directions are also attached in Figs. 10(a) and 10(b), respectively. From this 

figure, the similar results with the case of horizontal jumper can be found, where the horizontal top 

tension increases the natural frequency of the jumper. 
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(a) 
HT = 3500 N (b) 

HT = 137600 N 

 
(c) HT = 808000 N 

Fig. 9 Static and modal dynamic configurations of the inclined jumper for the vertical distance of 500 m 

 

  
(a) Modal normal displacements (b) Modal tangential displacements 

Fig. 10 Relations between the natural frequency for the first four vibration modes and the horizontal top 

tension of inclined jumper for the vertical distance of 500 m 
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5. Conclusions 
 

The free vibration analysis of a large sag catenary shape with application to catenary jumper in 

hybrid riser system is presented in this paper. The equation of motion is derived by using the 

variational method based on the virtual work principle. The bending stiffness of the large sag configuration 

is also included in the element stiffness matrix. The finite element method with the incorporated 

eigenvalue problem solver is used to find the natural frequencies and the vibration mode shapes. 

Good agreement can be found from the numerical comparisons of a large sag cable problem with 

the literature. Two particular jumper configurations are parametrically investigated, including 

horizontal and inclined jumpers, which can contribute as a benchmark solution. The numerical 

results reveal that the corresponding mode shapes of the jumper with large sag static configuration 

are comprised of normal and tangential displacements. In general, the normal displacement 

dominates the mode shape of a large sag catenary jumper. However, at the lowest point of sag, the 

tangential displacement is significant. The increase in inclination increases the natural frequency of 

the inclined large sag catenary. The increase in sag reduces the natural frequencies of large sag 

catenary. The bending stiffness increases the natural frequency, especially for very large sag shape case. 
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Appendix A : Large sag catenary configuration 
 

From the catenary equation, the general solution of the vertical coordinate ( sy ) of catenary can 

be written in terms of horizontal coordinate ( sx ) as follows (Dean 1962). 

 1 2coshH
s s

H

T W
y x K K

W T

 
   

 
  (A1) 

where HT   is the horizontal top tension; W   is the effective weight of catenary. To obtain two 

constant parameters of integration, 1K   and 2K  , two boundary conditions of the catenary are 

necessary, i.e., at the bottom end 0, 0s sx y   and at the top end ,s H s Hx X y Y  . By imposing 

the boundary conditions to Eq. (A1), one obtains the constant parameters 1K  and 2K . 
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     

 (A2) 

 2 1coshHT
K K

W
   (A3) 

The arc-length coordinate of catenary can be expressed in terms of sx  as 

 1 1sinh sinhsH
s

H

W xT
s K K

W T

   
    

   
 (A4) 

while the angle at any points of catenary measured from the horizontal direction is expressed as 

 1

1tan sinh s
s

H

W x
K

T
 

   
   

   
 (A5)     

In this study, the arc-length coordinate ( ss ) is utilized as an independent variable. Therefore, 

from Eqs. (A1)-(A4), the vertical and horizontal coordinates of catenary can be rewritten with some 

manipulations as 

 1

1 2cosh sinh sinhsH
s

H

W sT
y K K

W T


    

     
    

 (A6) 

 1

1 1sinh sinhsH
s

H

W sT
x K K

W T


  

    
  

 (A7) 

From Eqs. (A5) and (A7), the angle along the length of catenary measured along the arc-length 

of the catenary is written as 
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 1 1

1tan sinh sinh sinhs
s

H

W s
K

T
  

    
    

    

 (A8) 

It is well known that, in case of catenary, the horizontal tension component is constant along the 

length; therefore the axial tension force at any points of the catenary (see Fig. 1(b)) is simply 

calculated by  

 secs H sT T    (A9) 

To find the catenary solution, the total catenary length ( S  ), the water depth ( HY  ), and the 

horizontal top tension ( HT ) are specified, while the horizontal offset ( HX )is solved numerically by 

applying the Newton iterative scheme to Eq. (A4). Then, the unknown parameters 1K  and 2K  

can be calculated, and the catenary configuration is later obtained. 
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