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Abstract.  The present paper deals with the finite element analysis of water tanks with rigid baffle. Fluid is 
discretized by two dimensional eight-node isoparametric elements and the governing equation is simulated 
by pressure based formulation to reduce the degrees of freedom in the domain. Both free vibration and force 
vibration analysis are carried out for different sizes and positions of block at tank bottom. The fundamental 
frequency depends on block height and it reduces with the increase of block height. The variation of 
hydrodynamic pressure on tank walls not only depends of the exciting frequency but also on the size and 
position of rigid block at tank bottom. The hydrodynamic pressure has higher value when the exciting 
frequency is equal and lower than the fundamental frequency of the water in the tank. Similarly, the 
hydrodynamic pressure increases with the increase of width of the block for all exciting frequencies when 
the block is at the centre of tank. The left and right walls of tank have experienced different hydrodynamic 
pressure when the block is placed at off-centre. However, the increase in hydrodynamic pressure on nearest 
tank wall becomes insignificant after a certain value of the distance between the wall and the rigid block. 
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1. Introduction 
 

The behavior of liquids in partially or fully filled containers against dynamic loading has 

always been concern for researchers and it remains a matter of interest in various fields of applied 

mathematics and engineering. Therefore, the economic design of a tank mainly depends upon the 

precise estimation of hydrodynamic pressure acting on these tanks wall.  

Tung (1979) investigated hydrodynamic pressures and forces on submerged vertical cylindrical 

tanks under the action of harmonic ground excitations considering water to be incompressible and 

inviscid. Haroun and Tayel (1985) presented an analytical method for analyzing the axial stresses 

developed in elastic, cylindrical liquid storage anchored tank shell due to vertical excitation and 

concluded that the effects of vertical excitations were not significant compared to the effects of 

horizontal excitations because the steel cylindrical shells offer considerable resistance in the 

circumferential direction. The boundary integral method was used to calculate the hydrodynamic 

pressure distribution on a rigid submerged cylindrical storage tank subjected to horizontal or 

vertical harmonic ground excitations by Williams and Moubayed (1990). The liquid region in a 
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cylindrical tank was solved using Rayleigh- Ritz procedure in combination with Lagrange’s 

equation by Tang (1994) and shown that even though the fundamental natural frequency was quite 

sensitive to control the geometry of tanks. Pal et al. (2001) and Barrios et al. (2007) carried out a 

3D finite element analysis of cylindrical rigid base container considering velocity potential as 

nodal variable. Celebi and Akyildiz (2002) investigated nonlinear 2D liquid sloshing 

characteristics of a partially filled rectangular tank considering liquid in this tank as homogeneous, 

isotropic, viscous, Newtonian with exhibit only limited compressibility. A coupled finite and 

boundary element formulation was developed to compute the natural frequencies of liquid filled 

tank-baffle system considering baffle as annular circular ring by Biswall et al. (2004). Similarly, 

Cho and Lee (2004, 2005) proposed a velocity-potential based finite element model to simulate the 

large amplitude liquid sloshing in two dimensional baffled tanks subjected to horizontal excitation. 

Chan and Kianoush (2006) proposed a simplified method using generalized SDOF system to 

determine the dynamic response of concrete rectangular liquid storage tanks considering only 

impulsive hydrodynamic pressure. Virella et al. (2008) investigated the influence of linear and 

nonlinear wave theory on the sloshing natural periods and their modal pressure distributions on 

rectangular tanks. After comparing the results, it was found that the nonlinearity does not have 

significant effects on the natural sloshing periods. Eswaran et al. (2009) carried out a numerical 

study based on volume of fluid technique with arbitrary-lagrangian-Eulerian formulation. Similarly, 

the seismic responses of a three dimensional cylinder using the Eulerian approach were determined 

by Firouz et al. (2011), Sygulski (2011), Ebrahimian et al. (2013). Kolaei et al. (2015) used 

boundary element to analyze the sloshing in an arbitrary shape tank against horizontal and vertical 

excitations. Finite difference approximation with the moving coordinate system was used to obtain 

hydrodynamic pressure by Akyildiz and Unal (2012). Jiang et al. (2014) and Cho and Kim (2016) 

investigated the movement of fluid and the pressure exerted by the fluid on walls of elliptical tank 

with different baffle configuration experimentally.  

It is apparent from the literatures referred above that the fluid in the containers may be model 

either by finite element and boundary element. However, the finite element method based on 

Eulerian approach is advantageous. Again, the hydrodynamic pressure on tank walls is the major 

guiding factor for design of such tanks. The behavior of the fluid on tank or the hydrodynamic 

pressure acting on the tank walls may be controlled by introducing baffle or upliftment at tank 

bottom. In the present study, a pressure based finite element model is developed to obtain the free 

and force vibration responses of water in rectangular tanks with rigid block of different sizes and 

positions at bottom. 

 

 

2. Theoretical formulations 
 
The state of stress for a Newtonian fluid is defined by an isotropic tensor as  

'

ij ij ijT =-pδ +T
               

(1) 

Where, ijT is total stress, 
'

ijT is viscous stress tensor which depends only on the rate of 

deformation in such a way that the value becomes zero when the fluid is under rigid body motion 

or rest. The variable p is defined as hydrodynamic pressure whose value is independent explicitly 

on the rate of deformation and ij is kronecker delta. For isotropic linear elastic material, the most 
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general form of 
'

ijT is   

 
'

ij ij ijT =λΔδ +2μD          (2)

 
Where, μ and λ are two material constants. μ is known as first coefficient of viscosity or 

viscosity and (λ+2μ/3) is second coefficient of viscosity or bulk viscosity. ijD is the rate of 

deformation tensor and is expressed as 
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Thus, the total stress tensor becomes  

 ijijijij DpT  2           (4)

 
For compressible fluid, bulk viscosity (λ+2μ/3) is zero. Thus, Eq. (4) becomes 

ij ij ij ij

2μ
T =-pδ - Δδ +2μD

3              (5) 

If the viscosity of fluid is neglected, Eq. (5) becomes 

 ij ijT =-pδ        (6) 

Generalized Navier-Stokes equations of motion are given by 
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Where, Bi is the body force and ρ is the mass density of fluid. Substituting Eq. (6) in Eq. (7) the 

following relations are obtained. 
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If u and v are the velocity components along x and y axes respectively and fx and fy are body 

forces along x and y direction respectively and if the convective terms are neglected, the equation 

of motion may be written as    
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Neglecting the body forces, Eqs. (9) and (10) become  
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The continuity equation of fluid in two dimensions is expressed as 
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Where, c is the acoustic wave speed in fluid. Now, differentiating Eqs. (11) and (12) with 

respect to x and y respectively, the following relations are obtained. 
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Adding Eqs. (14) and (15) the following expression is finally arrived. 
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Differentiating Eq. (13) with respect to time, the following expression can be obtained. 
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Thus, from Eqs. (16) and (17), one can find the following expression 
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Simplifying the Eq. (18), the equation for compressible fluid may be obtained 

2

2

1
( , , ) ( , , )p x y t p x y t

c
        (19) 

If, the compressibility of fluid is neglected the Eq. (19) will be modified as  

2 ( , , ) 0p x y t          (20) 

The pressure distribution in the fluid domain may be obtained by solving Eq. (19) with the 

following boundary conditions. A typical geometry of tank-water system is shown in Fig. 1. 
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i) At surface I 

Considering the effect of surface wave of the fluid, the boundary condition of the free surface is 

taken as 

1 p
p +  = 0

g y




        (21) 

ii)  At surface II and surface IV 

At water-tank wall interface, the pressure should satisfy  

i t

f

p
(0, y, t) = ae

n





             (22) 

Where i tae   is the horizontal component of the ground acceleration in which,   is the 

circular frequency of vibration and 1i , n is the outwardly directed normal to the element 

surface along the interface. f  
is the mass density of the fluid. 

iii) At surface III 

This surface is considered as rigid surface and thus pressure should satisfy the following 

condition  

 ,0, 0.0
p

x t
n





              (23) 

 

2.1 Finite element formulation  
 
By using Galerkinapproach and assuming pressure to be the nodal unknown variable, the 

discretized form of Eq. (19) may be written as 
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Fig. 1 Geometry of tank-water system 
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Where, Nrj is the interpolation function for the reservoir and Ω is the region under consideration. 

Using Green's theorem Eq. (24) may be transformed to  
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in which i varies from 1 to total number of nodes and Γ represents the boundaries of the fluid 

domain. The last term of the above equation may be written as 
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The whole system of Eq. (5) may be written in a matrix form as 

 EP GP F
          (27) 

Where, 

1
2C



 
T

r rE N N d           (28)
 



    
   

    


T T

r r r r
G N N N N d

x x y y
    (29)

 




     




T
I II III IVr

p
F N d F F F F

n
    (30)

 

Here the subscript I, II, III and IV stand for different surface conditions. For surface wave, the Eq. 

(21) may be written in finite element form as 
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In which, 
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At the Surface II and Surface IV if {a} is the vector of nodal accelerations of generalized 

coordinates, {FII}and {FIV}may be expressed as
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At Surface III 

0
III

F          (35) 

After substitution all terms the Eq. (27) becomes 

r
EP AP GP F          (36)

 
Where, 
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(38) 

For any given acceleration at the fluid-structure interface, the Eq. (26) is solved to obtain the 

hydrodynamic pressure within the fluid.  

 

2.2 Time history analysis of dynamic equilibrium equation 
 

Dynamic equilibrium equation of fluid can be expressed as 

r
EP AP GP F                            (39) 

In a linear dynamic system, these values remain constant throughout the time history analysis. 

The force vector is given by Fr. To obtain the transient response at time tN, the time axis can be 

discretized into N equal time intervals ( 



N

j
N tjt

1

).The choice of method for time-history 

analysis is strongly problem dependent. Various direct time integration methods exist for time 

history analysis that are expedient for structural dynamics and wave propagation problem. 

Amongst these, the Newmark family of methods is most popular and is given by 
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Here, ν and   are chosen to control stability and accuracy. It is evident from the literature that the 

integration scheme is unconditionally stable if 5.02    

 

 

3. Numerical results 
 

3.1 Validation of the proposed algorithm 
 

In order to validate the proposed algorithm a bench marked problem is solved and results are 
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compared with the results obtained by Virella et al. (2008). The geometric and material properties 

of the tank are considered as follows: height of water in the tank = 6.10 m, length of tank = 30.5 m, 

so that ratio of height to length (d/l) = 0.2, density of water = 983 kg/m
3
, pressure wave velocity = 

1451 m/s. Here, the interaction of fluid with in the tank and tank walls is neglected and the fluid is 

discretized by 4 ×8 (i.e., Nh= 4 and Nv = 8).The first three natural time periods of the tank fluid are 

listed and compared with those values obtained by Virella et al. (2008) in Table 1. The tabulated 

results show the accuracy of the present method. 

 

3.2 Selection of suitable mesh size 
 

To obtain a suitable mesh size, tank with following properties is considered. Water depth (d) = 

1.6 m, length of tank (L) =0.8 m acoustic speed (C) = 1440 m/sec, mass density of water (ρ) = 

1000 kg/m
3
. The study is carried out for an exciting frequencies of TC/d =4000 with amplitude of 

1.0 g. The maximum pressure coefficient (Cp = p /ρ*Amp*d) for different mesh size are 

summarized in Table 2. From this table, it is observed that the maximum hydrodynamic pressure is 

converged when the horizontal division (Nh) is equal or higher than 4 and the ratio of vertical 

division to horizontal division (Nv/Nh) is equal to 1.0. However, for further numerical study, Nh is 

consider as 4 and the higher value (Fig. 1). The values of Nh and Nv are mention in respective 

examples. 

 

3.3 Analysis of tank with rigid block at bottom 
 

In this section, the responses of tank with different size of the rigid block at tank bottom are 

studied. The material properties for water with in the tank are follows: acoustic speed in water (C) 

= 1440 m/sec, mass density of water (ρ) = 1000 kg/m
3
. In the present study, tank walls and the 

tank bottom are considered as rigid. The water is discretized by 10 × 10 (i.e., Nh = 10 and Nv = 10) 

as obtained in the section 3.2. Similarly, for time history analysis the time step is considered as 

T/32. 

 

3.3.1 Effect of the size of the rigid block on the frequency of tank 
Here, the height and length of tank are considered as 13m and 30 m respectively. The sloshing 

frequencies of the tank are determined for different height of the block. Fig. 2(a) shows the 

variation of first three sloshing frequencies of the tank with different block heights. In this case the 

block is in the center on the tank and the width of the block is considered as 10 m. From the figure 

it is clear that all three sloshing frequencies decrease with the increase of the height of the block.  

 
Table 1 First three natural time period of the tank fluid 

Mode number 
Natural time period in sec 

Present Study Virella et al. (2008) 

1 8.46 8.38 

2 3. 94 3.70 

3 2.89 2.78 
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Table 2 Convergence of hydrodynamic pressure coefficients (Cp) for different mesh size 

Mesh Size          

(Nh×Nv) 
(1 ×2 ) (2×1 ) (2 ×2 ) (3 ×1) (3 ×2 ) (3 ×3 ) (4 ×2 ) (4 ×3 ) (4 ×4 ) (4 ×6 ) 

Nv/Nh 2 0.5 1 0.33 0.67 1 0.5 0.75 1 1.5 

Pressure 

coefficient 

(P/(aρd)) 

1.8654 1.6293 1.9792 1.9108 1.9861 2.0568 2.0761 2.1274 2.2792 2.2792 

 

 

The variations of these frequencies are quite different. The first and third frequencies shows almost 

similar trend and the reduction is more compare to the second frequency. However, the second 

frequency experiences lower reduction with the increase of the block highly. The different mode 

shapes for water in the tank with rigid block at tank bottom are shown in Fig. 2(b). 

 

 

  

 

Fig. 2a Variation of sloshing frequency for various block height 
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(a) First mode shape (b) Second mode shape (c) Third Mode shape 

Fig. 2b Different modes of water in tank 

 

 

3.3.2 Comparison of responses for compressible and incompressible   
In this section, the water is considered as compressible as well as incompressible. Geometry of 

tank is as considered in section 3.3.1.For compressible fluid, the material properties as mentioned 

in section 3.2 are considered. This study is carried out for tank with block at the bottom at the 

centre. Here, the sinusoidal acceleration of three different frequencies such as TC/d=36720, 3672 

and 367.2 and an amplitude of 1.0 m/sec
2
 are considered as eternal excitation. Figs. 3-5 show the 

comparison of pressure for compressible and incompressible fluid at point-A (Fig. 1) due to 

different exciting frequencies. From these figures it is clear that the pressure at point A does not 

change with the consideration of compressibility of water. Hence the rest of the study is carried out 

without considering the compressibility effect of the water.  

 

3.3.3 Analysis of rectangular tank with rigid block at centre. 
In this section, the effect of rigid block at the bottom of the tank is studied. Here, the rigid 

block is considered at the centre of the tank. The studied is carried out for different width and 

height of the block. The geometry and material property of the tank are as follows (Fig. 1): Length 

(L) = 30 m, depth of water (d) = 13 m. Density of fluid is considered as 1000 Kg/m
3
. The 

responses of tanks are calculated against sinusoidal acceleration of three different frequencies. 

 

 

 

Fig. 3 Pressure at point A of tank with rigid block at the centre for TC/d=36720 
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Fig. 4 Pressure at point A of tank with rigid block at the centre for TC/d=3672 

 

 

Fig. 5 Pressure at point A of tank with rigid block at the centre for TC/d=367.2 

 

 

Figs .6-8 show comparison of hydrodynamic pressure at point A (Fig. 1) for block width of 6 m 

and different heights. It is clear from the figure that the hydrodynamic pressure increases with the 

increase of the block height when exciting frequency is equal or less than the fundamental 

frequency of tank. However, this increase in hydrodynamic pressure is more when the exciting 

frequency is equal to the fundamental frequency of the tank. Meanwhile, the tank wall experiences 

comparatively less hydrodynamic pressure for other to frequency and it gets reduced with the 

height of the block. Again, the study is carried out for block width of 18 m. For block with of 18m, 

the change in hydrodynamic pressure with the increase of height of the block is not significant 

when the exciting frequency is less than fundamental frequency of the tank (Fig. 9). However, this 

change remains significant for the case when exciting frequency equal and greater than the 

fundamental frequency of the tank (Figs.10 and 11).  
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Fig. 6 Pressure at point A of tank with rigid block of width 6m for TC/d=36720 

 

 

 

Fig. 7 Pressure at point A of tank with rigid block of width 6m for TC/d=3672 

 

 

 

Fig. 8 Pressure at point A of tank with rigid block of width 6m for TC/d=367.2 
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Fig. 9 Pressure at point A of tank with rigid block of width 18m for TC/d =36720 

 

 

Fig. 10 Pressure at point A of tank with rigid block of width 18m for TC/d=3672 

 

 

Fig. 11 Pressure at point A of tank with rigid block of width 18m for TC/d=367.2 
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Fig. 12 Pressure at point A of tank with rigid block of height 4.35m for TC/d=36720 

 

 

Fig. 13 Pressure at point A of tank with rigid block of height 4.35m for TC/d =3672 

 

 

Fig. 14 Pressure at point A of tank with rigid block of height 4.35m for TC/d=367.2 
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The study is further extended for block with constant height and different width (Figs. 12-14). 

The maximum hydrodynamic pressure occurs when the width of the block is 12 m and the exciting 

frequency is less than the fundamental frequency of the tank (Fig. 12) and the variation of 

hydrodynamic pressure with the width of the block does not follow a regular pattern. Similar trend 

is observed when the fundamental frequency is greater than the fundamental frequency of the tank 

(Fig. 13). However, the hydrodynamic pressure at point A (Fig. 1) increases continuously with the 

increase of width of the block in case of frequency equal to the fundamental frequency of the water 

tank (Fig. 14). 

 

3.3.4 Analysis of rectangular tank with rigid block at off-centre  
Here an attempt has been taken to study the influence of the position of the rigid block at tank 

bottom. The geometry and material properties are as considered in section 3.3.3. As the response 

of the tank depends on the exciting frequency, the study is extended for sinusoidal excitation of 

three different frequencies, i.e., lower, greater and equal to the fundamental frequency of tank. For 

all the cases amplitude of the excitation is considered to be gravitational acceleration. From Fig. 

15, it is clear that the hydrodynamic pressure at point A is almost independent to the position of the 

block when the exciting frequency is less than the fundamental frequency of the tank. However, 

the hydrodynamic pressure increases as the rigid block moves towards the left wall for the case 

when exciting frequency is equal and greater than the fundamental frequency of the tank (Figs. 

16-17) and the maximum pressure is obtained for b/l=0.2. 

It is further examined the variation of hydrodynamic pressure at point A (Fig. 1) with b/l ratio 

for different block heights. Here the heights of the block are considered as 6.51 m. Fig. 15-17 

shows the variation of hydrodynamic pressure at point A (Fig. 1) against the sinusoidal 

acceleration of three different frequencies, i.e., TC/d=367.2, 3672 and 36720. Variation of 

hydrodynamic pressure with different b/l rations depends on the exciting frequencies. 

Hydrodynamic pressure at point A increase with the increase of b/l ratio for exciting frequency less 

than the fundamental frequency of reservoir. 

 

 

 

Fig. 15 Pressure at point A of tank with rigid block of height 4.35m for TC/d =36720 

 

 

 

71



 

 

 

 

 

 

Ranjan Adhikary and Kalyan Kumar Mandal 

 

Fig. 16 Pressure at point A of tank with rigid block of height 4.35m for TC/d =3672 

 

 

 

Fig. 17 Pressure at point A of tank with rigid block of height 4.35m for TC/d =367.2 

 

 

However, this increase in pressure is very less almost negligible after a certain b/l ratio, here it is 

0.6 (Figs. 18). For exciting frequency equal to the fundamental frequency of reservoir, 

hydrodynamic pressure exerted on left wall increases as the b/l ration increases for all widths of 

the rigid block and the increase in hydrodynamic pressure at point A becomes more prominent for 

comparatively higher block width (Fig. 19) . On the other hand the hydrodynamic pressure on the 

left tank wall decreases continuously with the increases of b/l ratio (Fig. 20). In this case, the 

maximum and minimum hydrodynamic pressure occurs at b/l ratio equal to 0.2 and 0.8 

respectively.  

The hydrodynamic pressure along the length of the tank walls i.e., left and right walls for 

different block widths and exciting frequencies are plotted in Figs. 21 and 22. From these figures, 

it is clear that the hydrodynamic pressure on left wall decreases with b/l ratio whereas the pressure 

on right wall go on increasing with the values of b/l ratio. These change in hydrodynamic pressure 

on left and right walls increases with the increase of the width of the rigid block. The distribution 

of hydrodynamic pressure along the walls of tank changes continuously with the change of the 

exciting frequencies. The pressure on both the walls increases with the increase of block height for 

a particular b/l ratio. 
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Fig. 18 Pressure at point A of tank with rigid block of height 6.51m for TC/d =36720 

 

 

 

Fig. 19 Pressure at point A of tank with rigid block of height 6.51m for TC/d =3672 

 

 

 

Fig. 20 Pressure at point A of tank with rigid block of height 6.51m for TC/d =367.2 
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(a) Left wall (b) Right wall 

For TC/d= 36720 

  
(c) Left wall (d) Right wall 

For TC/d= 3672 

  
(e) Left wall (f) Right wall 

For TC/d= 367.2 

Fig. 21 Variation of hydrodynamic pressure along the tank walls for block height 4.35m 
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(a) Left wall (b) Right wall 

For TC/d= 36720 

  
(c) Left wall (d) Right wall 

For TC/d= 3672 

  
(e) Left wall (f) Right wall 

For TC/d= 367.2 

Fig. 22 Variation of hydrodynamic pressure along the tank walls for block height 6.51 m 
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4. Conclusions 
 

The characteristics of hydrodynamic pressures on the wall of a rectangular water tank with 

rigid block of different sizes are studied. The water in the tank is considered to be linearly 

compressible as well as incompressible. A pressure based finite element method is used to simulate 

the dynamic behavior of water in tanks. The fundamental frequency of the tank water decreases 

with the increase of the block height. However, the variations are different for different 

fundamental frequencies. The first and third frequencies shows almost similar trend and the 

reduction is more compare to the second frequency. However, the second frequency has lower 

reduction with the increase of size of blocks. The hydrodynamic pressure on tank wall depends on 

the exciting frequencies. The hydrodynamic pressure has comparatively higher value when the 

exciting frequency is equal and lower than the first fundamental frequency of the water in the tank. 

The hydrodynamic pressure increases with the increases of width of the block for all exciting 

frequencies when the block is at the centre of tank. The similar trend of hydrodynamic pressure is 

observed for different height of block at exciting frequency equal and less than the fundamental 

frequency of the reservoir and this is due to the reduction of fundamental frequency with the 

height of the block. However, the trend becomes reverse for frequency greater than the 

fundamental frequency of reservoir. The left and right walls of tank experienced different 

hydrodynamic pressure when the block is placed at off-centre and its magnitude also depends on 

the exciting frequency and the position of the block. The pressure on the wall will be more when 

the block is closer to that wall. However, the increase in the pressure becomes insignificant after a 

certain value of the distance between the wall and the rigid block.  
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