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Abstract.  The present study is concerned with the thermoelastic interactions in a two dimensional homogeneous, 
transversely isotropic thermoelastic solid with new modified couple stress theory without energy dissipation and with 
two temperatures in frequency domain. The time harmonic sources and Hankel transform technique have been 
employed to find the general solution to the field equations. Concentrated normal force, normal force over the circular 
region, thermal point source and thermal source over the circular region have been taken to illustrate the application of 
the approach. The components of displacements, stress, couple stress and conductive temperature distribution are 
obtained in the transformed domain. The resulting quantities are obtained in the physical domain by using numerical 
inversion technique. Numerically simulated results are depicted graphically to show the effect of angular frequency on 
the resulted quantities. 
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1. Introduction 
 

Classical continuum theory with first gradient approach do not predict the size effects at nano 

and microscale. Therefore, a number of theories including higher gradients of deformation have 

been proposed to capture size-effects at the nano-scale. And, consideration of the second gradient of 

deformation leads naturally to the introduction of the idea of couple-stresses. Couple stress theory 

is such a higher order theory. This theory is an extension to continuum theory that includes the effects 

of couple stresses, in addition to the classical direct and shear forces per unit area. First mathematical 

model to examine the materials with couple stresses was presented by Cosserat and Cosserat (1909). 

This theory could not establish the constitutive relationships. Mindlin and Tierstein (1962) and 

Koiter (1964) developed initial version of couple stress theory, based on the Cosserat continuum 

theory (1909), involving length scale parameters to predict the size effects. It involves four material 

constants for isotropic elastic materials which are very difficult to determine experimentally (1964). 

So, Yang et al. (2002) presented modified couple stress theory (M-CST) with one length scale 

parameter, in which the couple stress tensor is symmetric.  M-CST could not describe the pure 

bending of plate properly. So, Hadjesfandiari et al. (2011) gave consistent couple stress theory (C-
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CST) with the skew-symmetric couple-stresses, that settles all the discrepancies of modified couple 

stress theory. Anisotropic materials are useful in engineering and medical. Modified couple stress 

theory was not applicable to anisotropic materials. So, Chen and Li (2014) presented the new 

modified couple stress theory (NM-CST) for anisotropic materials having three length scale 

parameters. Fakhrabadi (2017) studied the electromechanical behaviour of carbon nanotubes on the 

basis of modified couple stress theory and Homotopy perturbation method. Park and Gao (2006) 

studied the Bernoulli- Euler beam model based on a modified couple stress theory. Arani et al. (2015) 

studied the problem of vibration of bioliquid-filled microtubules embedded in cytoplasm including 

surface effects using the modified couple stress theory.  Modified couple stress model has been 

developed for the dynamic study of Bernoulli-Euler beam by Kong et al. (2008) and for the solution 

of a simple shear problem by Park and Gao(2008) after deriving the boundary conditions and the 

governing differential equation of the theory in terms of the displacement. The static bending and 

free vibration problems of a Timoshenko beam are examined using modified couple stress theory by 

Ma et al. (2008). Tsiatas (2009) studied the static bending problem of Kirchhoff plates using 

modified couple stress theory. Tsiatas and Katsikadelis (2009) investigated the Saint-Venant’s 

torsion problem of micro-bars using modified couple stress theory. Yin et al. (2010) investigated the 

vibration behaviour of Kirchhoff microplates in the context of modified couple stress theory and 

deriving the closed-form solution for natural frequency. Bending and vibration behaviours of 

Mindlin microplates were studied by Ma et al. (2011), in which the thickness stretching effect was 

also taken into account. Simsek et al. (2013) investigated the static bending of functionally graded 

microbeams based on the modified couple stress theory. Rafiq et al. (2019) studied the harmonic 

waves solution in dual phase lag magnatothermoelasticity. Kaushal et al. (2010) studied the response 

of frequency domain in generalized thermoelasticity with two temperatures. Chen et al. (2011) 

presented a new modified couple stress model for bending analysis of composite laminated beams 

with first order shear deformation. Problem of thermoelastic damping in the axisymmetric vibration 

of circular microplate resonators was examined by Fang et al. (2013) using two dimensional couple 

stress heat conduction model. Marin et al. (2017) studied the Saint-Venant’s problem in the context 

of the theory of porous dipolar bodies. An axisymmetric problem of thick circular plate in modified 

couple stress theory of thermoelastic diffusion using Laplace and Hankel transforms technique is 

investigated by Kumar and Devi (2016). Atanasov et al. (2017) examined the thermal effect on the 

free vibration and buckling of the Euler-Bernoulli double microbeam system based on the modified 

couple stress theory using Bernoulli-Fourier method. Othman et al. (2013,2015) studied the thermo-

microstretch elastic solid under the effect of gravity with energy dissipation using generalized theory 

of thermoelasticity. Sobhy and Radwan (2017) developed a nonlocal quasi-3D theory for the free 

vibration and buckling of FG nanoplates. Despite of this several researchers worked on the different 

theory of thermoelasticity as Marin (1998, 2009), Othman and Marin (2017), Arif et al. (2018), Lata 

(2018), Lata and Kaur (2019, 2019a, 2020, 2020a), El-Haina (2017), Ezzat et al. (2012, 2017), 

Kumar et al. (2016), Sharma et al. (2015), Othman and Abbas (2012), Fahsi et al. (2017), Abbas 

(2014, 2016), Karami et al. (2019, 2019a), Medani et al. (2019), Chaabane et al. (2019), Boulefrakh 

et al. (2019), Boukhlif et al. (2019), Boutaleb et al.(2019), Alimirzaei et al. (2019), Bourada et al. 

(2019), Zarga et al. (2019). 

In the present study we deal with the thermoelastic interactions in a two dimensional 

homogeneous, transversely isotropic thermoelastic solids without energy dissipation and with two 

temperatures due to time harmonic sources in the context of new modified couple stress theory.  The 

time harmonic sources and Hankel transforms have been employed to find the general solution to 

the field equations. Boundary plane is subjected to the normal and thermal sources. The components 
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of displacements, stresses and conductive temperature distribution are obtained in the transformed 

domain. Numerical computation is performed by using a numerical inversion technique and the 

resulting quantities are shown graphically to show the effect of angular frequency. 

 
 
2. Basic equations 

 

Following Chen and Li (2014), Sharma et al. (2015), the field equations for a transversely 

isotropic thermoelastic medium using new modified couple stress theory in the absence of body 

forces, body couple, mass diffusion sources and  without energy dissipation are given by  

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙 +
1

2
𝑒𝑖𝑗𝑘𝑚𝑙𝑘,𝑙 − 𝛽𝑖𝑗𝑇, (1) 

𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙,𝑗 +
1

2
𝑒𝑖𝑗𝑘𝑚𝑙𝑘,𝑙𝑗 − 𝛽𝑖𝑗𝑇,𝑗 = 𝜌𝑢̈𝑖, (2) 

𝐾𝑖𝑗𝜑,𝑖𝑗 − 𝜌𝐶𝐸𝑇̈ = 𝛽𝑖𝑗𝑇0𝜀𝑖̈𝑗, (3) 

where 

𝛽𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝛼𝑖𝑗, (4) 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), (5) 

𝑚𝑖𝑗 = 𝑙𝑖
2𝐺𝑖𝜒𝑖𝑗 + 𝑙𝑗

2𝐺𝑗𝜒𝑗𝑖 , (6) 

𝜒𝑖𝑗 = 𝜔𝑖,𝑗, (7) 

𝜔𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗, (8) 

and 𝑇 = 𝜑 − 𝑎𝑖𝑗𝜑,𝑖𝑗 ,    𝐾𝑖𝑗 = 𝐾𝑖𝛿𝑖𝑗 .  

Here, 𝑢 = (𝑢, 𝑣, 𝑤) is the components of displacement vector, 𝑐𝑖𝑗𝑘𝑙(𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘 = 𝑐𝑗𝑖𝑘𝑙 = 𝑐𝑗𝑖𝑙𝑘) 

are elastic parameters, 𝑎𝑖𝑗  are the two temperature parameters, 𝜎𝑖𝑗  are the components of stress 

tensor, 𝜀𝑖𝑗 are the components of strain tensor, 𝑒𝑖𝑗𝑘 is alternate tensor, 𝑚𝑖𝑗 are the components of 

couple-stress,  𝛼𝑖𝑗  are the coefficients of linear thermal expansion,𝛽𝑖𝑗  is thermal tensor,𝑇  is the 

thermodynamical temperature, 𝜑  is the conductive temperature, 𝑙𝑖(i = 1,2,3) are material length 

scale parameters, 𝜒𝑖𝑗 is curvature, 𝜔𝑖 is the rotational vector,   is the density, 𝐾𝑖𝑗 is the materialistic 

constant, 𝑐𝐸 is the specific heat at constant strain, 𝑇0 is the reference temperature assumed to be such 

that T/T0<<1,𝐺𝑖  are the elasticity constants and  𝛽1 = (𝑐11 + 𝑐12)𝛼1 + 𝑐13𝛼3  ,𝛽3 = 2𝑐13𝛼1 +
𝑐33𝛼3. 

 

 

3. Formulation and solution of the problem 
 

We consider a homogeneous transversely isotropic, thermoelastic body initially at uniform 
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temperature 𝑇0. We take a cylindrical polar co-ordinate system (𝑟, 𝜃, 𝑧) with symmetry about -axis. 

As the problem considered is plane axisymmetric, the field component 𝑣 = 0 , and 𝑢,𝑤, 𝜑  are 

independent of 𝜃.  We have used appropriate transformation following Slaughter (2002) on the set 

of Eqs. (1)-(3) to derive the equations for transversely isotropic  thermoelastic  solid  without energy 

dissipation and with two temperature and restrict our analysis to the two dimensional problem  with  

𝑢⃗ = (𝑢, 0, 𝑤), we obtain  

Equation of motion  

𝑐11(
𝜕2𝑢

𝜕𝑟2 +
𝜕𝑢

𝑟 𝜕𝑟
+

𝑢

𝑟
) + 𝑐44

𝜕2𝑢

𝜕𝑧2 + (𝑐13 + 𝑐44)
𝜕2𝑤

𝜕𝑟𝜕𝑧
−

1

4
𝑙2
2𝐺2 (

𝜕4𝑢

𝜕𝑟2𝜕𝑧2 −
𝜕4𝑤

𝜕𝑟3𝜕𝑧
+

𝜕4𝑢

𝜕𝑧4 −
𝜕4𝑤

𝜕𝑟𝜕𝑧3)  

−𝛽1
𝜕

𝜕𝑟
(1 − 𝑎1(

𝜕2

𝜕𝑟2 +
1

𝑟
) − 𝑎3

𝜕2

𝜕𝑧2)𝜑 = 𝜌𝑢̈,                     (9) 

𝑐33
𝜕2𝑤

𝜕𝑧2 + (𝑐44 + 𝑐13 ) (
𝜕2𝑢

𝜕𝑟𝜕𝑧
+

𝜕𝑢

𝑟 𝜕𝑧
) + 𝑐44 (

𝜕2𝑤

𝜕𝑟2 +
𝜕𝑤

𝑟 𝜕𝑟
)  

−
1

4
(−𝑙2

2𝐺2 (−
𝜕4𝑢

𝜕𝑟3𝜕𝑧
+

𝜕4𝑤

𝜕𝑟4 +
1

𝑟
(−

𝜕3𝑢

𝜕𝑟2𝜕𝑧
+

𝜕3𝑤

𝜕𝑟3 )) + 𝑙2
2𝐺2 (

𝜕4𝑢

𝜕𝑟3𝜕𝑧
−

𝜕4𝑤

𝜕𝑟2𝜕𝑧2 +
1

𝑟
(
𝜕3𝑢

𝜕𝑧3 −
𝜕3𝑤

𝜕𝑟2𝜕𝑧
)))  

−𝛽3
𝜕

𝜕𝑧
(1 − 𝑎1 (

𝜕2

𝜕𝑟2 +
1

𝑟
) − 𝑎3

𝜕2

𝜕𝑧2)𝜑 = 𝜌𝑤,̈                                                (10) 

Equation of heat conduction without energy dissipation  

𝐾1 (
𝜕2𝜑

𝜕𝑟2 +
𝜑

𝑟
) + 𝐾3

𝜕2𝜑

𝜕𝑧2 − 𝜌𝑐𝐸
𝜕2

𝜕𝑡2 (1 − 𝑎1 (
𝜕2

𝜕𝑟2 +
1

𝑟
) − 𝑎3

𝜕2

𝜕𝑧2)𝜑 = 𝑇0
𝜕2

𝜕𝑡2 (𝛽1
𝜕𝑢

𝜕𝑟
+ 𝛽3

𝜕𝑤

𝜕𝑧
).  (11) 

And the constitutive relationships are  

𝜎𝑧𝑧 = 𝑐13𝑒𝑟𝑟 + 𝑐13𝑒𝜃𝜃 + 𝑐33𝑒𝑧𝑧 − 𝛽3𝑇, 

𝜎𝑟𝑧 = 2𝑐44𝑒𝑟𝑧 −
1

4
((𝑙1

2𝐺1 − 𝑙2
2𝐺2) (−

𝜕3𝑢

𝜕𝑧𝜕𝑟2 +
𝜕3𝑤

𝜕𝑟3 ) + (𝑙3
2𝐺3 − 𝑙2

2𝐺2) (−
𝜕3𝑢

𝜕𝑧3 +
𝜕3𝑤

𝜕𝑟𝜕𝑧2)),  

𝜎𝜃𝜃 = 𝑐21𝑒𝑟𝑟 + 𝑐11𝑒𝜃𝜃 + 𝑐13𝑒𝑧𝑧 − 𝛽1𝑇, 
𝜎𝑟𝑟 = 𝑐11𝑒𝑟𝑟 + 𝑐12𝑒𝜃𝜃 + 𝑐13𝑒𝑧𝑧 − 𝛽1𝑇, 

𝑚𝜃𝑧 =
1

2
(𝑙2

2𝐺2 − 𝑙3
2𝐺3) (

𝜕2𝑢

𝜕𝑧2 −
𝜕2𝑤

𝜕𝑟𝜕𝑧
),                                           (12) 

where 

𝑒𝑟𝑟 =
𝜕𝑢

𝜕𝑟
  , 𝑒𝜃𝜃 =

𝑢

𝑟
, 𝑒𝑟𝑧 =

1

2
(
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
) , 𝑒𝑧𝑧 =

𝜕𝑤

𝜕𝑧
, 𝑇 = (1 − 𝑎1 (

𝜕2

𝜕𝑟2 +
1

𝑟
) − 𝑎3

𝜕2

𝜕𝑧2)𝜑.  

In the above equation we use contracting subscript notation (1 → 11,2 → 22,3 → 33,4 →
23,5 → 31,6 → 12) to relate 𝑐𝑖𝑗𝑘𝑙 to 𝑐𝑚𝑛. 

To facilitate the solution, the dimensionless quantities defined are defined as  

𝜃′ =
𝜃

𝐿
, 𝑟′ =

𝑟

𝐿
 , 𝑧′ =

𝑧

𝐿
, 𝑡′ =

𝑐1

𝐿
𝑡 , 𝑢′ =

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑢,  𝑤′ =

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑤,  𝑇 , =

𝑇

𝑇0
 ,  𝜎𝑧𝑟

, =
𝜎𝑧𝑟

𝛽1𝑇0
, 

 𝜎𝑟𝑟
, =

𝜎𝑟𝑟

𝛽1𝑇0
,   𝜎𝑧𝜃

, =
𝜎𝑧𝜃

𝛽1𝑇0
,   𝑚𝑧𝜃

, =
𝑚𝑧𝜃

𝐿𝛽1𝑇0
, 𝑎1

′ = 
𝑎1

𝐿
 , 𝑎3

′ = 
𝑎3

𝐿
.                           (13) 

Assuming the time harmonic behaviour as 

(𝑢, 𝑤, 𝜑)(𝑟, 𝑧, 𝑡) = (𝑢,𝑤, 𝜑)(𝑟, 𝑧)𝑒ἰ𝜔𝑡,                                           (14) 

where 𝜔 is the angular frequency, 
We define the Hankel transformation as 
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𝑓(𝜉, 𝑧, 𝜔) = ∫ 𝑓(𝑟, 𝑧, 𝜔)𝑟𝐽𝑛(𝑟𝜉)𝑑
∞

0
𝑟.                                            (15) 

Using the dimensionless quantities defined by (13) on the set of Eqs. (9)-(11) and after 

suppressing the primes and then using (14)-(15) on the resulting equations yields 

(−𝜖1 + 𝛿2𝐷
2)𝑢̃ − 𝛿1𝜉𝐷𝑤̃ +

1

4𝐿2𝑐11
𝑙2
2𝐺2((𝜉

2𝐷2 − 𝐷4)𝑢̃ − (𝜉3𝐷 + 𝜉𝐷3)𝑤̃) +

𝜉 (1 +
𝑎1

𝐿
𝜉2  −

𝑎3

𝐿
𝐷2) 𝜑̃ = 0,  

(16) 

𝛿1𝜖2𝐷𝑢̃ + (𝜖8 + 𝛿3𝐷
2)𝑤̃ +

𝜉

4𝐿2𝑐11
(−𝑙2

2𝐺2(𝜉
2𝐷𝑢̃ − 𝜉3) + 𝑙2

2𝐺2(𝐷
3𝑢̃ + 𝐷2𝜉𝑤̃)) +

𝜖9𝐷 (1 +
𝑎1

𝐿
𝜉2  −

𝑎3

𝐿
𝐷2) 𝜑̃ = 0,  

(17) 

−𝜖6𝜉𝜔
2𝑢̃ − 𝜖7𝐷𝜔2𝑤̃ + (𝜖2 + 𝜖5𝐷

2 + 𝜖4𝜔
2 (1 +

𝑎1

𝐿
𝜉2  −

𝑎3

𝐿
𝐷2)) 𝜑̃ = 0,  (18) 

where 

𝛿1 =
𝑐13+𝑐44

𝑐11
, 𝛿2 =

𝑐44

𝑐11
,     𝛿3 =

𝑐33

𝑐11
, 𝜖1 = 𝑠2 + 𝜉2,    𝜖2 =

−𝜉2+1

𝜉
 ,      𝜖4 =

𝜌𝑐𝐸𝑐1
2

𝐾1
 ,         𝜖5 = 

𝐾3

𝐾1
, 

𝜖6 =
𝑇0𝛽1

2

𝐾1𝜌
, 𝜖7 =

𝑇0𝛽1𝛽3

𝐾1𝜌
, 𝜖8 = −𝛿2𝜉

2 − 𝑠2,          𝜖9 = 
𝛽3

𝛽1
,                 𝜖10 = 𝛿2 +

𝑙2
2𝐺2

4𝐿2𝑐11
𝜉2, 

𝜖11 = −𝛿1𝜉 −
𝑙2
2𝐺2

4𝐿2𝑐11
𝜉3,          𝜖12 = 𝜖8 +

𝑙2
2𝐺2

4𝐿2𝑐11
𝜉4,     𝜖13 = 𝜖2 − 𝜖4𝑠,      𝜖14 = 𝛿3 + 𝜉2 𝑙2

2𝐺2

4𝐿2𝑐11
. 

The non-trivial solution of the system of the Eqs. (16)-(18) yields 

(𝑃𝐷8 + 𝑄𝐷6 + 𝑅𝐷4 + 𝑆𝐷2 + 𝑇) = 0,                                          (19) 

Where 

𝑃 = −𝜖26𝜉
2𝛼1

2, 
𝑄 = 𝜖10(𝜖14𝜖26 − 𝜖16𝜖22) + 𝛼1(𝜖12𝜖26 + 𝜖14𝜖25 − 𝜖16𝜖21) − 𝜉𝜖20𝛼1𝜖16 − 𝜖20𝜖14𝜖15 

+𝜉𝜖11𝛼1𝜖26 + 𝛼1𝜉(𝜖27𝜖26 + 𝜖2𝜖25𝛼1 − 𝜖22𝜖15), 
𝑅 = −𝜖1(𝜖14𝜖26 − 𝜖16𝜖22) + 𝜖10(𝜖12𝜖26 + 𝜖14𝜖25 − 𝜖16𝜖21) + 𝛼1(𝜖12 − 𝜖25) + 𝜖20𝜖27𝜖16 

+𝜉𝜖19𝛼1𝜖16 + 𝜖15𝜖19𝜖14 − 𝜖11(𝜖27𝜖26 − 𝜉𝜖25𝛼1 − 𝜖22𝜖15) + 𝛼1𝜉(𝜖27𝜖25 + 𝜖15𝜖21),  
𝑆 = −𝜖11(𝜖27𝜖25 + 𝜖15𝜖21) − 𝜖19𝜖27𝜖16 − 𝜖20𝜖15𝜖12 − 𝜖1(𝜖12𝜖26 + 𝜖14𝜖25 − 𝜖16𝜖21) 

+𝜖12𝜖10𝜖25, 
𝑇 = −𝜖1𝜖12𝜖25 + 𝜖19𝜖12. 

The roots of the Eq. (24) are ±𝜆𝑖(𝑖 = 1, 2, 3, 4), using the radiation condition that  𝑢̂, 𝑤̂, 𝜑 ̂ → 0 

as 𝑧 → ∞, the solution of Eq. (19) may be written as 

(𝑢̃, 𝑤̃, 𝜑̃) = ∑ (1, 𝑅𝑖, 𝑆𝑖)𝐴𝑖𝑒
−𝜆𝑖𝑧4

𝑖=1 ,  (20) 

Where 

𝑅𝑖 =
−𝜖1𝜖25+𝜖15𝜖19+(−𝜖1𝜖26+𝜖10𝜖25+𝜖15𝜖20)𝜆𝑖

2+(𝜖10𝜖26+𝛼1𝜖13)𝜆𝑖
4+𝛼1𝜖26𝜆𝑖

6

𝜖1𝜖25+(𝜖12𝜖26+𝜖14𝜖25+𝜖16𝜖21)𝜆𝑖
2+(𝜖14𝜖26−𝜖16𝜖22)𝜆𝑖

4 ,  (21) 

𝑆𝑖 =
−𝜖1𝜖12+(−𝜖1𝜖14+𝛼1𝜖12−𝜖27𝜖11)𝜆𝑖

2+(𝜖10𝜖14+𝛼1(𝜖12+𝜉𝜖27+𝜉𝜖11))𝜆𝑖
4−𝛼1(−𝜖14+𝜉2𝛼1)𝜆𝑖

6

𝜖1𝜖25+(𝜖12𝜖26+𝜖14𝜖25+𝜖16𝜖21)𝜆𝑖
2+(𝜖14𝜖26−𝜖16𝜖22)𝜆𝑖

4 ,  (22) 

and 
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𝜖15 = −𝜖6𝜔
2𝜉, 𝜖16 = −𝜔2𝜖7,   𝜖17 =  1 +

𝑎1

𝐿
𝜉2 , 𝜖18 =

𝑎3

𝐿
, 𝜖19 = −𝜉𝜖17, 𝜖20 = 𝜉𝜖18,   𝜖21 =

𝜖9𝜖17, 𝜖22 = 𝜖9𝜖18,    𝜖23 = −𝜔2𝜖4𝜖17,    𝜖24 = −𝜔2𝜖4𝜖18, 𝜖25 = −𝜖2 + 𝜖23, 𝜖26 = −𝜖5 −

𝜖24, 𝜖27 = 𝜖2𝛿1 + 𝛼1𝜉
3,   𝛼1  =  −

𝑙2
2𝐺2

4𝐿2𝑐11
. 

 
 

4. Boundary conditions 
 

For Mechanical forces/ Thermal sources acting on the surface  
The boundary conditions are  

𝜎𝑧𝑧(𝑟, 𝑧, 𝑡) = −𝑃1(𝑟, 𝑡),                                                          (23) 

𝜎𝑧𝑟(𝑟, 𝑧, 𝑡) = 0,                                                                (24) 

𝜕𝜑

𝜕𝑟
(𝑟, 𝑧, 𝑡) = 𝑃2(𝑟, 𝑡)𝑒

ἰ𝜔𝑡 ,                                                        (25) 

𝑚𝜃𝑧 = 0.                                                                    (26) 

Here 𝑃2(𝑟, 𝑡)  =0 corresponds to plane boundary subjected to normal force and 𝑃1(𝑟, 𝑡)  =0 

corresponds to plane boundary subjected to thermal point source.  

 

4.1 Applications 
 
Case I: Concentrated normal force/Thermal point source-When plane boundary is subjected 

to concentrated normal force/ thermal point force, then 𝑃1(𝑟, 𝑡),𝑃2(𝑟, 𝑡)  take the form 

(𝑃1(𝑟, 𝑡), 𝑃2(𝑟, 𝑡)) = (
𝑃1𝛿(𝑟)𝑒ἰ𝜔𝑡

2𝜋𝑟
  ,

𝑃2𝛿(𝑟)𝑒ἰ𝜔𝑡

2𝜋𝑟
).                                           (27) 

𝑃1 is the magnitude of the force applied , 𝑃2 is the magnitude of the constant temperature applied 

on the boundary and 𝛿(𝑟) is the Dirac delta function. Applying Hankel transforms defined by (15) 

on Eq. (27), we get 

(𝑃1̃(𝜉, 𝜔), 𝑃2̃(𝜉, 𝜔)) = (
𝑃1

2𝜋
𝑒ἰ𝜔𝑡   ,

𝑃2

2𝜋
𝑒ἰ𝜔𝑡).                                            (28) 

The expressions for the components of displacements, stress, couple stress and conductive 

temperature are given by the Eqs. (29)-(34). 

𝑢̃ = −
𝑃1𝑒

ἰ𝜔𝑡

2𝜋∆
∑ 𝐵1𝑖𝑒

𝜆𝑖𝑧4
𝑖=1 +

𝑃2𝑒
ἰ𝜔𝑡

2𝜋∆
∑ 𝐵3𝑖𝑒

𝜆𝑖𝑧,4
𝑖=1   (29) 

𝑤̃ = −
𝑃1𝑒

ἰ𝜔𝑡

2𝜋∆
∑ 𝑅𝑖𝐵1𝑖𝑒

𝜆𝑖𝑧4
𝑖=1 +

𝑃2𝑒
ἰ𝜔𝑡

2𝜋∆
∑ 𝑅𝑖𝐵3𝑖𝑒

𝜆𝑖𝑧,4
𝑖=1   (30) 

𝜑̃ = −
𝑃1𝑒

ἰ𝜔𝑡

2𝜋∆
∑ 𝑆𝑖𝐵1𝑖𝑒

𝜆𝑖𝑧4
𝑖=1 +

𝑃2𝑒
ἰ𝜔𝑡

2𝜋∆
∑ 𝑆𝑖𝐵3𝑖𝑒

𝜆𝑖𝑧,4
𝑖=1   (31) 

𝜎𝑧𝑧̃ = −
𝑃1𝑒

ἰ𝜔𝑡

2𝜋∆
∑ (

𝛽1𝑇0

𝜌𝑐1
2 (𝐶13𝜖2 − 𝐶33𝜆𝑖𝑅𝑖) − 𝛽3𝑇0𝑆𝑖)𝐵1𝑖𝑒

𝜆𝑖𝑧4
𝑖=1   

+
𝑃2𝑒

ἰ𝜔𝑡

2𝜋∆
∑ (

𝛽1𝑇0

𝜌𝑐1
2 (𝐶13𝜖2 − 𝐶33𝜆𝑖𝑅𝑖) − 𝛽3𝑇0𝑆𝑖)𝐵3𝑖𝑒

𝜆𝑖𝑧,4
𝑖=1   

(32) 
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𝜎𝑧𝑟̃ = −
𝑃1𝑒

ἰ𝜔𝑡

2𝜋∆
∑ (

𝛽1𝑇0

𝜌𝑐1
2 𝐶44(−𝜆𝑖 − 𝜉𝑅𝑖) − 𝛽1𝑇0 (𝛼1(−𝜉2𝜆𝑖 − 𝜉3𝑅𝑖) + 𝛼2(−𝜆𝑖

3 +4
𝑖=1

𝜉𝜆𝑖
2𝑅𝑖)))𝐵1𝑖𝑒

𝜆𝑖𝑧 +
𝑃2𝑒

ἰ𝜔𝑡

2𝜋∆
∑ (

𝛽1𝑇0

𝜌𝑐1
2 𝐶44(−𝜆𝑖 − 𝜉𝑅𝑖) − 𝛽1𝑇0 (𝛼1(−𝜉2𝜆𝑖 − 𝜉3𝑅𝑖) +4

𝑖=1

𝛼2(−𝜆𝑖
3 + 𝜉𝜆𝑖

2𝑅𝑖)))𝐵3𝑖𝑒
𝜆𝑖𝑧  

(33) 

𝑚𝜃𝑧̃ = −
𝑃1𝑒

ἰ𝜔𝑡

2∆𝜌𝑐1
2𝐿2(2𝜋)

∑ 𝛽1𝑇0(𝑙1
2𝐺1 − 𝑙2

2𝐺2)
4
𝑖=1 (𝜆𝑖

3 + 𝜉𝜆𝑖
2𝑅𝑖)𝐵1𝑖𝑒

𝜆𝑖𝑧  

+
𝑃2𝑒

ἰ𝜔𝑡

2∆𝜌𝑐1
2𝐿2(2𝜋)

∑ 𝛽1𝑇0(𝑙1
2𝐺1 − 𝑙2

2𝐺2) 
4
𝑖=1 (𝜆𝑖

3 + 𝜉𝜆𝑖
2𝑅𝑖)𝐵3𝑖𝑒

𝜆𝑖𝑧  

(34) 

 

Case II: Normal force over the circular region/ Thermal source over the circular region  
Let a uniform pressure of total magnitude / constant temperature applied over a uniform 

circular region of radius a is obtained by setting  

(𝑃1(𝑟, 𝑡), 𝑃2(𝑟, 𝑡)) = (
𝑃1

𝜋𝑎2 𝐻(𝑎 − 𝑟)𝑒ἰ𝜔𝑡  ,
𝑃2

𝜋𝑎2 𝐻(𝑎 − 𝑟)𝑒ἰ𝜔𝑡).                        (35) 

where 𝐻(𝑎 − 𝑟)is the Heaviside unit step function. 

Making use of dimensionless quantities defined by (13)&suppressing the primes, and then 

applying Harmonic behaviour and Hankel transforms defined by (14)-(15) on the resulting equation, 

we obtain 

(𝑃1̃(𝜉, 𝜔), 𝑃2̃(𝜉, 𝜔)) = (
𝑃1

𝜋𝑎𝜉
𝐽1(𝑎𝜉)𝑒ἰ𝜔𝑡  ,

𝑃2

𝜋𝑎𝜉
𝐽2(𝑎𝜉)𝑒ἰ𝜔𝑡).                            (36) 

The expressions for the components of displacements, stress, couple stress and conductive 

temperature are obtained by replacing 
𝑃1

2𝜋
 with 

𝑃1𝐽1(𝑎𝜉)

𝜋𝑎𝜉
  and by replacing 

𝑃2

2𝜋
  with  

𝑃2𝐽1(𝑎𝜉)

𝜋𝑎𝜉
 in Eqs. 

(30)-(34) and are given by (37)-(42). 

 
For circular region  

𝑢̃ = −
𝑃1𝑒

ἰ𝜔𝑡

∆
∑

𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵1𝑖𝑒

𝜆𝑖𝑧4
𝑖=1 +

𝑃2𝑒
ἰ𝜔𝑡

∆
∑

𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵3𝑖𝑒

𝜆𝑖𝑧,4
𝑖=1   (37) 

𝑤̃ = −
𝑃1𝑒

ἰ𝜔𝑡

∆
∑ 𝑅𝑖

𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵1𝑖𝑒

𝜆𝑖𝑧4
𝑖=1 +

𝑃2𝑒
ἰ𝜔𝑡

∆
∑ 𝑅𝑖

𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵3𝑖𝑒

𝜆𝑖𝑧4
𝑖=1   (38) 

𝜑̃ = −
𝑃1𝑒

ἰ𝜔𝑡

∆
∑ 𝑅𝑖

𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵1𝑖𝑒

𝜆𝑖𝑧4
𝑖=1 +

𝑃2𝑒
ἰ𝜔𝑡

∆
∑ 𝑅𝑖

𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵3𝑖𝑒

𝜆𝑖𝑧4
𝑖=1   (39) 

𝜎𝑧𝑧̃ = −
𝑃1𝑒

ἰ𝜔𝑡

∆
∑ (

𝛽1𝑇0

𝜌𝑐1
2 (𝐶13𝜖2 − 𝐶33𝜆𝑖𝑅𝑖) − 𝛽3𝑇0𝑆𝑖)∑

𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵1𝑖𝑒

𝜆𝑖𝑧4
𝑖=1

4
𝑖=1 +

𝑃2𝑒
ἰ𝜔𝑡

∆
∑ (

𝛽1𝑇0

𝜌𝑐1
2 (𝐶13𝜖2 − 𝐶33𝜆𝑖𝑅𝑖) − 𝛽3𝑇0𝑆𝑖)∑

𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵3𝑖𝑒

𝜆𝑖𝑧4
𝑖=1 ,4

𝑖=1   
(40) 

𝜎𝑧𝑟̃ = −
𝑃1𝑒

ἰ𝜔𝑡

∆
∑ (

𝛽1𝑇0

𝜌𝑐1
2 𝐶44(−𝜆𝑖 − 𝜉𝑅𝑖) − 𝛽1𝑇0 (𝛼1(−𝜉2𝜆𝑖 − 𝜉3𝑅𝑖) + 𝛼2(−𝜆𝑖

3 +4
𝑖=1

(41) 
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𝜉𝜆𝑖
2𝑅𝑖)))

𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵1𝑖𝑒

𝜆𝑖𝑧 +
𝑃2𝑒

ἰ𝜔𝑡

∆
∑ (

𝛽1𝑇0

𝜌𝑐1
2 𝐶44(−𝜆𝑖 − 𝜉𝑅𝑖) − 𝛽1𝑇0 (𝛼1(−𝜉2𝜆𝑖 − 𝜉3𝑅𝑖) +4

𝑖=1

𝛼2(−𝜆𝑖
3 + 𝜉𝜆𝑖

2𝑅𝑖)))
𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵3𝑖𝑒

𝜆𝑖𝑧,  

𝑚𝜃𝑧̃ = −
𝑃1𝑒

ἰ𝜔𝑡

2∆𝜌𝑐1
2𝐿2

∑ 𝛽1𝑇0(𝑙1
2𝐺1 − 𝑙2

2𝐺2)
4
𝑖=1 (𝜆𝑖

3 + 𝜉𝜆𝑖
2𝑅𝑖)

𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵1𝑖𝑒

𝜆𝑖𝑧 +

𝑃2𝑒
ἰ𝜔𝑡

2∆𝜌𝑐1
2𝐿2

∑ 𝛽1𝑇0(𝑙1
2𝐺1 − 𝑙2

2𝐺2)
4
𝑖=1 (𝜆𝑖

3 + 𝜉𝜆𝑖
2𝑅𝑖)

𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵3𝑖𝑒

𝜆𝑖𝑧.  
(42) 

where 

𝐴1𝑖 =
𝛽1𝑇0

𝜌𝑐1
2 (𝐶13𝜖2 − 𝐶33𝜆𝑖𝑅𝑖) − 𝛽3𝑇0𝑆𝑖,   

𝐴2𝑖 =
𝛽1𝑇0

𝜌𝑐1
2 𝐶44(−𝜆𝑖 − 𝜉𝑅𝑖) − 𝛽1𝑇0 (𝛼1(−𝜉2𝜆𝑖 − 𝜉3𝑅𝑖) + 𝛼2(−𝜆𝑖

3 + 𝜉𝜆𝑖
2𝑅𝑖)),   

𝐴3𝑖 = −𝜆𝑖𝑆𝑖,   

𝐴4𝑖 =
𝛽1𝑇0

2𝜌𝑐1
2𝐿2

(𝑙1
2𝐺1 − 𝑙2

2𝐺2)(𝜆𝑖
2 − 𝜉𝜆𝑖𝑅𝑖),        𝑖 = 1,2,3,4  .   

∆= ∆1 − ∆2 + ∆3 − ∆4, 
∆1= 𝐴11𝐴22(𝐴33𝐴44 − 𝐴43𝐴34) − 𝐴11𝐴23(𝐴32𝐴44 − 𝐴42𝐴34) + 𝐴11𝐴24(𝐴32𝐴43 − 𝐴42𝐴33), 
∆2= 𝐴12𝐴21(𝐴33𝐴44 − 𝐴43𝐴34) − 𝐴12𝐴23(𝐴31𝐴44 − 𝐴41𝐴34) + 𝐴24𝐴12(𝐴31𝐴43 − 𝐴41𝐴33), 
∆3= 𝐴13𝐴21(𝐴32𝐴44 − 𝐴42𝐴34) − 𝐴22𝐴13(𝐴31𝐴44 − 𝐴41𝐴34) + 𝐴13𝐴24(𝐴31𝐴42 − 𝐴41𝐴32), 
∆4= 𝐴14𝐴21(𝐴32𝐴43 − 𝐴42𝐴33) − 𝐴22𝐴14(𝐴31𝐴43 − 𝐴41𝐴33) + 𝐴14𝐴23(𝐴31𝐴42 − 𝐴41𝐴32), 

𝐵11 = ∆1/𝐴11, 
𝐵12 = −∆2/𝐴12, 
𝐵13 = ∆3/𝐴13, 

𝐵14 = −∆4/𝐴14, 

𝐴𝑖 =
1

∆
(𝑃1̃(𝜉, 𝜔)𝐵1𝑖 + 𝑃2̃(𝜉, 𝜔)𝐵3𝑖), 

𝐵31 = 𝐴12(𝐴23𝐴44 − 𝐴43𝐴24) − 𝐴13(𝐴22𝐴44 − 𝐴42𝐴24) + 𝐴14(𝐴22𝐴43 − 𝐴42𝐴23), 
𝐵32 = −𝐴11(𝐴23𝐴44 − 𝐴43𝐴24) + 𝐴13(𝐴21𝐴44 − 𝐴41𝐴24) − 𝐴14(𝐴21𝐴43 − 𝐴41𝐴23), 
𝐵33 = 𝐴11(𝐴22𝐴44 − 𝐴42𝐴24) − 𝐴12(𝐴21𝐴44 − 𝐴41𝐴24) + 𝐴14(𝐴21𝐴42 − 𝐴41𝐴22), 

𝐵34 = −𝐴11(𝐴22𝐴43 − 𝐴42𝐴23) + 𝐴12(𝐴21𝐴43 − 𝐴41𝐴23) − 𝐴13(𝐴21𝐴42 − 𝐴41𝐴22). 
 

 

6. Inversion of the transformations 
 

To obtain the solution of the problem in physical domain, we must invert the transforms in Eqs. 

(31)-(36) and (37)-(42). Here the displacement components, normal and tangential stresses 

,conductive temperature and  couple stress are functions of 𝑧, the parameter of Hankel transform is 𝜉 

and hence are of the form 𝑓 (𝜉 , 𝑧). To obtain the function 𝑓(𝑟, 𝑧) in the physical domain, we first 

invert the Hankel transform using 

𝑓(𝑟, 𝑧) = ∫ 𝜉𝑓(𝜉 , 𝑧)𝐽𝑛(𝜉𝑟)
∞

0
𝑑𝜉.  (43) 

The last step is to calculate the integral in Eq. (43). The method for evaluating this integral is 

described in Press et al. (1986). It involves the use of Romberg’s integration with adaptive step size. 

This also uses the results from successive refinements of the extended trapezoidal rule followed by  
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Fig. 1 variation of displacement u with the distance 

 𝑟 (concentrated normal force) 

Fig. 2 variation of displacement w with the distance 

 𝑟 (concentrated normal force) 

 

 

extrapolation of the results to the limit when the step size tends to zero. 

 
 

7. Results and disscussions 
 

For numerical computations, we take the copper material which is transversely isotropic 

𝑐11 = 18.78 × 1010 𝐾𝑔𝑚−1𝑠−2,     𝑐12 = 8.76 × 1010 𝐾𝑔𝑚−1𝑠−2,     𝑐13

= 8.0 × 1010 𝐾𝑔𝑚−1𝑠−2, 
𝑐33 = 17.2 × 1010 𝐾𝑔𝑚−1𝑠−2, 𝑐44 = 5.06 × 1010𝐾𝑔𝑚−1𝑠−2,      𝐶𝐸 

= 0.6331 × 103𝐽𝐾𝑔−1𝐾−1, 
𝛼1 = 2.98 × 10−5𝐾−1,      𝛼3 = 2.4 × 10−5𝐾−1,           𝑇0 = 293𝐾, 𝜌 = 8.954 × 103𝐾𝑔𝑚−3, 

𝐾1 = 0.433 × 103𝑊𝑚−1𝐾−1,       𝐾3 = 0.450 × 103𝑊𝑚−1𝐾−1,          𝐺1 = 0.1,             𝐺2 = 0.2, 
  𝐺3 = 0.3,                𝐿 = 1,                      𝑙1 = 𝑙2 = 𝑙3 = .243𝑛𝑚,                 𝑎1 = .01,             𝑎3 = .02. 

The values of displacements 𝑢  and 𝑤 , normal force stress 𝜎𝑧𝑧 , tangential stress 𝜎𝑧𝑟  and 

conductive temperature  for a transversely isotropic thermoelastic solid with two temperature  are 

determined with the help of software GNU Octave 5.1.0and presented graphically with the help of 

OriginPro 2018 to show the impact of harmonic behaviour varying the angular frequency for the 

four different values  𝑖) 𝜔 = .2  𝑖𝑖) 𝜔 = .45 𝑖𝑖𝑖) 𝜔 = .6.  (iv) 𝜔 = .85.  Analysis has been done by 

varying the  distance 𝑟 from 0 to 2.5. 

i) The solid line in black with centre symbol  squarecorresponds to  𝜔 = .2. 
ii) The solid line in red with centre symbol circle corresponds to 𝜔 = .45. 
iii)The solid  line in blue with centre symbol trianglecorresponds to 𝜔 = .6. 
iv) The solid  line in green with centre symbol inverted triangle corresponds to 𝜔 = .85. 

 
7.1 Normal force on the boundary of the half-space  
 
Case 1: Concentrated normal force 
Figs. 1-6 depicts the characteristics of concentrated normal force. In Fig. 1 curves depicting the 

variation of displacement 𝑢,  corresponding to the frequencies  𝜔 = .2, 𝜔 = .45  and 𝜔 = .6   
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Fig. 3 variation of conductive temperature 𝜑  with 

the distance  𝑟 (concentrated normal force) 

Fig. 4 variation of tangential stress  σzr  with the 

distance  𝑟 (concentrated normal force) 
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Fig. 5 variation of normal stress  σzz  with the 

distance  𝑟 (concentrated normal force) 

Fig. 6 variation of couple stress  𝑚𝑧𝜃  with the 

distance  𝑟 (concentrated normal force) 

 

 

monotonically and rapidly decrease in the range 0 ≤ 𝑟 ≤ 1.5monotonically and increase in the rest 

of the range slightly. 𝜔 = .85 leads to the asymmetry in the variation of the characteristic curves. 

Here we observe that increase in frequency increases the magnitude of variations. Characteristic 

curve for 𝜔 = .85  monotonically increase in 0 ≤ 𝑟 ≤ 1  and 2 ≤ 𝑟 ≤ 2.5  and monotonically 

decreases in the rest of the range. In Fig. 2 curves depicting the variation of displacement 𝑤 do not 

follow a symmetric pattern. Displacement 𝑤  corresponding to the frequencies 𝜔 = .2 and 𝜔 = .6  
decreases in the 0 ≤ 𝑟 ≤ 1.5 and increases in the remaining range of distance 𝑟 with the difference 

in magnitude of the each curve. Value of the displacement 𝑤  for the frequency 𝜔 = .45 increases 

in the first half of the distance axes and decreases in the remaining range. Characteristic curve for 

𝜔 = .85 monotonically decrease in 0 ≤ 𝑟 ≤ 1 and 2 ≤ 𝑟 ≤ 2.5 and monotonically increases in the 

rest of the range. Amplitude is largest in case of 𝜔 = .85 . In Fig. 3 curves for the variation of 

Conductive temperature 𝜑 corresponding to the frequency 𝜔 = .2 increase from .004 to .018 with 

the increase of 𝑟, and corresponding to the frequencies 𝜔 = .45 and 𝜔 = .6  decreases in 0 ≤ 𝑟 ≤
1 and 2 ≤ 𝑟 ≤ 2.5 and increases in the rest of the range. Value of 𝜑 corresponding to the 𝜔 = .85  
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Fig. 7 Variation of displacement 𝑢 with the distance 

 𝑟 (normal force over the circular region) 

Fig. 8 Variation of displacement𝑤with the distance 

𝑟 (normal force over the circular region) 
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Fig. 9 Variation of conductive temperature 𝜑  with 

the distance 𝑟 (normal force over the circular region) 

Fig. 10 Variation of normal stress  𝜎𝑧𝑧  with the 

distance  𝑟 (normal force over the circular region) 

 

 

shows oscillatory behavior with the distance 𝑟. In Fig. 4 variation of the normal stress 𝜎𝑧𝑧 is similar 

to the displacement 𝑤,  except for the 𝜔 = .45 . Curve corresponding to the 𝜔 = .45  decreases in 

0 ≤ 𝑟 ≤ 0.5 and 1.5 ≤ 𝑟 ≤ 2.5 and increases only in the range 0.5 ≤ 𝑟 ≤ 1.5. In Fig. 5 tangential 

stress  𝜎𝑧𝑟 decreases for  0 ≤ 𝑟 ≤ 1.5 and increases for the rest corresponding to the  𝜔 = .45  and 

the 𝜔 = .6 . 𝜎𝑧𝑟  decreases monotonically with the increases in 𝑟.  Corresponding to the 𝜔 = .85,  
value of 𝜎𝑧𝑟  monotonically increases for 0 ≤ 𝑟 ≤ 1.5  and decreases in the rest. In Fig. 6 couple 

stress   𝑚𝑧𝜃 corresponding to the frequencies  𝜔 = .45 and 𝜔 = .6  decreases smoothly for 0 ≤ 𝑟 ≤
1 and 2 ≤ 𝑟 ≤ 2.5 and increase in the rest. 𝑚𝑧𝜃 for  𝜔 = .2  follow oscillatory trend, with the small 

amplitude of the variation. Corresponding to the 𝜔 = .85   couple stress decreases in the 0 ≤ 𝑟 ≤ 1 

and maintains constant value in the remaining range.    

 

Case 2: Normal force over the circular region 
Figs. 7-12 showthe characteristics of concentrated normal force. In Figs. 7-10 characteristic 

curves for the variation of displacements, conductive temperature𝜑 and normal stress 𝜎𝑧𝑧 resp. are  
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Fig. 11 Variation of tangential stress  𝜎𝑧𝑟 with the 

distance 𝑟 (normal force over the circular region) 

Fig. 12 Variation of couple stress  𝑚𝑧𝜃  with the 

distance  𝑟 (normal force over the circular region) 
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Fig. 13 variation of displacement  𝑢   with the 

distance  𝑟 (thermal point source) 

Fig. 14 variation of displacement 𝑤  with the 

distance  𝑟 (thermal point source) 

 

 

similar to the corresponding  characterstics curve of the normal force over the circular region, expect 

for the amplitude of the curve. In Fig. 11 tangential stress 𝜎𝑧𝑟  corresponding to the 𝜔 = .2  and 𝜔 =
.45 follow descending oscillatory behavior with the distance 𝑟. Corresponding to the frequency 𝜔 =
.6, decreases for the range  0 ≤ 𝑟 ≤ 1 , almost constant magnitude for the 1 ≤ 𝑟 ≤ 2 and increases 

in the rest. Value of 𝜎𝑧𝑟 decreases in the range 0 ≤ 𝑟 ≤ 2.2 and increases in very small range of the 

distance axes. At the origin, as the angular frequency increases value of the tangential stress reduces. 

In Fig. 12, curves showing the variation of couple stress 𝑚𝑧𝜃  follow oscillatory behaviour with 

intermediate amplitude. Curve corresponding to 𝜔 = .25  is descending oscillatory. 
 

7.2 Thermal source on the boundary of half-space 
 

Case-I: Thermal point source 
The Figs. 13-18 correspond to the characteristics of thermal point source. In Fig. 13 curves for 

the variation of displacement 𝑢  corresponding to 𝜔 = .2  and 𝜔.= .6  monotonically decrease for 

0 ≤ 𝑟 ≤ 1.5 and increase in the remaining range.  curves corresponding to   𝜔 = .85 monotonically  
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Fig. 15 Variation of conductive temperature  𝜑  with 

the distance  𝑟 (thermal point source) 

Fig. 16 Variation of tangential stress  𝜎𝑧𝑟  with the 

distance  𝑟 (thermal point source) 
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Fig. 17. Variation of normal stress  σzz  with the 

distance  𝑟 (thermal point source) 

Fig. 18 Variation of couple stress  𝑚𝑧𝜃  with the 

distance  𝑟 (thermal point source) 

 

 

increase for the 0 ≤ 𝑟 ≤ 1.5  and 2 ≤ 𝑟 ≤ 2.5 , and decrease in the rest of the range. Value of 

displacement 𝑢  corresponding to 𝜔 = .45   is almost constant for 0 ≤ 𝑟 ≤ 0.5 , monotonically 

increase in the range 0.5 ≤ 𝑟 ≤ 1.5 and decreases in the remaining range. Amplitude of the variation 

is large in the range 1 ≤ 𝑟 ≤ 2  for 𝜔 = .45.  In Fig. 14, displacement 𝑤 corresponding to the 

frequencies 𝜔 = .2 , 𝜔 = .45 and 𝜔 = .85  monotonically decrease in the range 0 ≤ 𝑟 ≤ 1  and 

increase in 1 ≤ 𝑟 ≤ 1.7  and again decrease in the remaining range, but with difference in the 

amplitude of the variation corresponding to each frequency.  Curve corresponding to the frequency 

𝜔 = .6  shows inverse behaviour to the remaining cases. In Fig. 15, conductive 

temperature 𝜑 decrease for 0 ≤ 𝑟 ≤ 1  and increase for the 1 ≤ 𝑟 ≤ 1.5  and decrease in the 

remaining range corresponding to  all the frequencies 𝜔 = .2, 𝜔 = .45,𝜔 = .6 and 𝜔 = .85. In Fig. 

16, normal stress 𝜎𝑧𝑧  decreases for 0 ≤ 𝑟 ≤ 1  and increases for the 1 ≤ 𝑟 ≤ 1.5  and again 

decreases in the remaining range corresponding to 𝜔 = .2 , 𝜔 = .45 and 𝜔 = .85.  Curve 

corresponding to the  𝜔 = .6 shows inverse behaviour to  all the remaining three cases. In Fig. 17, 

tangential stress 𝜎𝑧𝑟decreases for 0 ≤ 𝑟 ≤ 1 and increases for the 1 ≤ 𝑟 ≤ 1.5 and again decreases  
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Fig. 19 Variation of displacement 𝑢  with the 

distance  𝑟 (thermal source over the circular region) 

Fig. 20 Variation of displacement 𝑤  with the 

distance  𝑟 (thermal source over the circular region) 
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Fig. 21 Variation of conductive temperature 𝜑 with the 

distance 𝑟 (thermal source over the circular region) 

Fig. 22 variation of tangential stress  𝜎𝑧𝑟 with the 

distance 𝑟 (thermal source over the circular region) 

 

 

in the remaining range corresponding to 𝜔 = .2, 𝜔 = .45and 𝜔 = .6. Curve corresponding to the  

 𝜔 = .85 shows inverse increasing and decreasing behaviour to all the remaining three cases. In Fig. 

18 the couple stress 𝑚𝑧𝜃 corresponding to all the four frequencies decreases monotonically for 0 ≤
𝑟 ≤ 1 and increases for the 1 ≤ 𝑟 ≤ 1.8 and again, decreases in the remaining range. 

 
Case-II: Thermal source over the circular region 
Figs. 19-24 depict the characteristics of the thermal source over the circular region. In Fig. 19 

displacement 𝑢 show oscillatory behaviour corresponding to the frequencies 𝜔 = .2, 𝜔 = .45  and 

𝜔 = .85.  Amplitude of the variation is small in the three cases. Curve corresponding to 𝜔 = .6 

shows constant variation for 0 ≤ 𝑟 ≤ 1  and decreases for the 1 ≤ 𝑟 ≤ 1.7  and increases in the 

remaining range. In Fig. 20 displacement 𝑤corresponding to 𝜔 = .2 and 𝜔 = .6 decreases for 0 ≤
𝑟 ≤ 1.5 and increases in the rest. Amplitude of the variation is very small in the latter case. Curve 

corresponding to 𝜔 = .45  shows inverse behaviour to 𝜔 = .2 . Variation of the displacement 𝑤  
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Fig. 23 Variation of normal stress  σzz  with the 

distance  𝑟 (thermal source over the circular region) 

Fig. 24 Variation of couple stress  𝑚𝑧𝜃  with the 

distance  𝑟 (thermal source over the circular region) 

 

 

corresponding to 𝜔 = .85  monotonically decreases in the range 0 ≤ 𝑟 ≤ 1  and 2 ≤ 𝑟 ≤ 2.5  and 

increases in the remaining range. In Fig. 30, Characteristic curves for the variation of conductive 

temperature 𝜑, normal stress 𝜎𝑧𝑧, tangential stress 𝜎𝑧𝑟 and the couple stress 𝑚𝑧𝜃 are similar to the 

corresponding characterstics curves of the thermal point source, expect for the amplitude and 

magnitude of the variation. 

 
 
7. Conclusions 
 

This investigation dealt with the study of transversely isotropic thermoelastic medium in the 

context of new modified couple stress theory with two temperature. The mathematical expressions 

for displacements, conductive temperature, stress and couple stress have been derived in frequency 

domain. From the above discussion it is clear that the effect of frequency plays an important role in 

the study of the deformation of the transversely isotropic thermoelastic body in the context of new 

modified couple stress theory. As r varies from the loading surface/boundary surface, the 

components of displacements, normal stress, tangential stress, couple stress and conductive 

temperature for normal forces and thermal sources follow different types of pattern. It is observed 

that the variation of resulting quantities obtained after the numerical computation is oscillatory 

almost in all the cases with difference in magnitude/value. Appreciable effect of frequency is 

observed on the resulted quantities. The results of this problem are very useful for the people who 

are working in the various fields of geophysics, electronics and seismology. 
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