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Abstract.  In this paper, a new refined hyperbolic shear deformation beam theory for the free vibration analysis of 
functionally graded beam is presented. The theory accounts for hyperbolic distribution of the transverse shear strains 
and satisfies the zero traction boundary conditions on the surfaces of the functionally graded beam without using shear 
correction factors. In addition, the effect of different micromechanical models on the free vibration response of these 
beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams 
whose properties vary continuously across the thickness according to a simple power law. Based on the present theory, 
the equations of motion are derived from the Hamilton’s principle. Navier type solution method was used to obtain 
frequencies, and the numerical results are compared with those available in the literature. A detailed parametric study 
is presented to show the effect of different micromechanical models on the free vibration response of a simply 
supported FG beams. 
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1. Introduction 
 

Functionally graded materials (FGMs) are new materials which are designed to achieve a 

functional performance with gradually variable properties in one or more directions (Koizumi et al. 

1992). This continuity prevents the material from having disadvantages of composites such as 

delamination due to large interlaminar stresses, initiation and propagation of cracks because of large 

plastic deformation at the interfaces and so on. Typically, FGMs are made of a mixture of ceramics 

and a combination of different metals. FGMs are regarded as one of the most promising candidates 

for future advanced composites in many engineering sectors such as the aerospace, aircraft, 

automobile, and defense industries, and most recently the electronics and biomedical sectors. 

Consequently, studies devoted to understand the static and dynamic behaviors of FGM beams, plates 

have being paid more and more attentions in recent years. Li (2008) investigated static bending and 

transverse vibration of FGM Timoshenko beams, in which by introducing a new function, the 

governing equations for bending and vibration of FGM beams were decoupled and the deflection, 

rotational angle and the resultant force and moment were expressed only in the terms of this new 
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function. Simsek (2010) investigated dynamic responses of functionally graded beams with the 

framework of Euler–Bernoulli, Timoshenko and the third-order shear deformation theories, in which 

the system of equations of motion were derived by using Lagrange’s equations based Hamilton’s 

principle. Li and Liu (2010) derived the analytical proportional relationships between the 

deflections, critical buckling loads and natural frequencies of a FGM beams and those of the 

corresponding homogenous beams based on the classical beam theory and proved that the transition 

relationships are the same for different load and boundary conditions. Akbaş et al. (2015a) studied 

the wave propagation of a functionally graded beam in thermal environments. Trinh et al. (2016) 

investigated an analytical method for the vibration and buckling of functionally graded beams under 

mechanical and thermal loads.  

Recently, Sayyad and Ghugal (2015, 2017a) presented a comprehensive literature review on 

various higher-order beam theories for the analysis of beam and plate structures. Several research 

papers have been published by researchers in last decade on bending, buckling and free vibration 

analysis of functionally graded plates and beams (Thai and Vo 2012, Sayyad and Ghugal 2017b, 

Simsek 2010, Hadji et al. 2016, Bourada et al. 2015, Akbaş 2015b, Akbaş 2017a, b, Akbaş 2018a, 

b, Akbaş 2019a, b, c, Mahmoud et al. 2019, Mahmoudi et al. 2019, Adda Bedia et al. 2019, Batou 

et al. 2019, Abualnour et al. 2019, Draiche et al. 2019, Karami et al. 2019a, Belbachir et al. 2019, 

Semmah et al. 2019, Boussoula et al. 2020). 

In order to model FGM precisely, it is essential to know the effective or bulk material properties 

as a function of individual material properties and geometry, in particular at micromechanics level.  

In recent years, different models have been proposed to estimate the effective properties of FGMs 

with respect to reinforcement volume fractions (Shen and Wang 2012). Consequently, several 

micromechanical models have been used to study and analyze the behavior of FGM structures under 

different loading conditions. We cite as an example the work of Gasik (1998) in which he proposed 

a micromechanical model to study FGMs with a random distribution of constituents. Using an 

appropriate micromechanical model. Mahmoudi et al. (2018) studied the effect of the 

micromechanical models on the free vibration of rectangular FGM plate resting on elastic 

foundation. Hadji et al. (2019) developed an analytical solution for bending and free vibration 

responses of functionally graded beams with porosities: Effect of the micromechanical models. In 

addition, in recent years, many researchers have dealt with the dynamic problem (Hussain et al. 

2019, Alimirzaei et al. 2019, Chaabane et al. 2019, Berghouti et al. 2019, Bourada et al. 2019, 

Karami et al. 2019b, Karami et al. 2019c, Meksi et al. 2019, Hellal et al. 2019, Boulefrakh et al. 

2019, Medani et al. 2019, Draoui et al. 2019, Tlidji et al. 2019, Sahla et al. 2019). In addition, in 

recent years, many researchers have dealt the effect of stretching the thickness on FGM structures 

(Addou et al. 2019, Boutaleb et al. 2019, Khiloun et al. 2019, Zarga et al. 2019, Boulefrakh et al. 

2019, Boukhlif et al. 2019, Mahmoudi et al. 2019, Zaoui et al. 2019). 

In the present study, the free vibration of simply supported FG beams was investigated by using 

a new hyperbolic shear deformation beam theory. The effect of different micromechanical models 

on the free vibration response of these beams is studied. Various micromechanical models are used 

to evaluate the mechanical characteristics of the FG beams whose properties vary continuously 

across the thickness according to a simple power law. Then, the present theory together with 

Hamilton’s principle, are employed to extract the motion equations of the functionally graded beams. 

Analytical solutions for free vibration are obtained. The effects of various variables, such as span-

to-depth ratio, gradient index, and micromechanical models on free vibration of FG beam are all 

discussed. 
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2. Effective properties of FGMs 
 

Unlike traditional microstructures, in FGMs the material properties are spatially varying, which 

is not trivial for a micromechanics model (Jaesang and Addis 2014). 

A number of micromechanics models have been proposed for the determination of effective 

properties of FGMs. In what follows, we present some micromechanical models to calculate the 

effective properties of the FG beam. 

 
2.1 Voigt model 
 

The Voigt model is relatively simple; this model is frequently used in most FGM analyses 

estimates Young’s modulus E of FGMs as (Mishnaevsky 2007) 

( )cmc VEEzE −+= 1 V)( c                           (1)  

 

2.2 Reuss model 
 

Reuss assumed the stress uniformity through the material and obtained the effective properties 

as (Mishnaevsky 2007, Zimmerman 1994) 
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=
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)(                           (2) 

 
2.3 Tamura model  
 

The Tamura model uses actually a linear rule of mixtures, introducing one empirical fitting 

parameter known as “stress-to-strain transfer” (Gasik 1995) 
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−
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Estimate for q=0 correspond to Reuss rule and with q=100 to the Voigt rule, being invariant to 

the consideration of with phase is matrix and which is particulate. The effective Young’s modulus is 

found as 
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2.4 Description by a representative volume element (LRVE) 
 

The local representative volume element (LRVE) is based on a “mesoscopic” length scale which 

is much larger than the characteristic length scale of particles (inhomogeneities) but smaller than the 

characteristic length scale of a macroscopic specimen (Ju and Chen 1994). The LRVE is developed 

based on the assumption that the microstructure of the heterogeneous material is known. The input 

for the LRVE for the deterministic micromechanical framework is usually volume average or 
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ensemble average of the descriptors of the microstructures. 

Young’s modulus is expressed as follows by the LRVE method (Akbarzadeh et al. 2015) 
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(5) 

 
2.5 Mori-Tanaka model 
 

The locally effective material properties can be provided by micromechanical models such as the 

Mori-Tanaka estimates. This method based on the assumption that a two-phase composite material 

consisting of matrix reinforced by spherical particles, randomly distributed in the plate. According 

to Mori-Tanaka homogenization scheme, the Young’s modulus is given as  
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1
 is the volume fraction of the ceramic and where p is the power law index. 

Since the effects of the variation of Poisson’s ratio (v) on the response of FGM plates are very small 

(Kitipornchai 2006), this material parameter is assumed to be constant for convenience.                                                                                   

 
 
3. Problem formulation 

 

Consider a functionally graded beam with length L and rectangular cross section b×h, with b 

being the width and h being the height as shown in Fig. 1.  

 

 

4. Kinematics and constitutive equations 
 

4.1 Basic assumptions 
 

The assumptions of the present theory are as follows: 

(i) The origin of the Cartesian coordinate system is taken at the median surface of the FG beam. 

 

 

 

Fig. 1 Geometry and coordinate of a FG beam 
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(ii) The displacements are small in comparison with the height of the beam and, therefore, strains 

involved are infinitesimal. 

(iii) The transverse displacement w includes two components of bending wb, and shear ws. These 

components are functions of coordinates x, t only. 

),(),(),,( txwtxwtzxw sb +=

                          

(7) 

(iv) The transverse normal stress σz is negligible in comparison with in-plane stresses σx. 

(v) The axial displacement u in x-direction, consists of extension, bending, and shear 

components. 

 
sb uuuu ++= 0

                                

(8) 

(vi) The bending component ub is assumed to be similar to the displacements given by the 

classical beam theory. Therefore, the expression for ub can be given as 

x

w
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b
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−=

                                

(9)  

(vii) The shear component us gives rise, in conjunction with ws, to the hyperbolic variation of 

shear strain γxz and hence to shear stress τxz through the thickness of the beam in such a way that 

shear stress τxz is zero at the top and bottom faces of the beam. Consequently, the expression for 

us can be given as 
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4.2 Kinematics and constitutive equations 
 

Based on the assumptions made in the preceding section, the displacement field can be obtained 

using Eqs. (7)-(11) as 
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The strains associated with the displacements in Eq. (12) are 
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where 
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The state of stress in the beam is given by the generalized Hooke’s law as follows 

x11x  )z(Q =  and xz55xz  )z(Q =                    (15a) 

where 
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5. Equations of motion 

 

Hamilton’s principle is used herein to derive the equations of motion. The principle can be stated 

in analytical form as (Thai and Vo 2012) 
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where t is the time; t1 and t2 are the initial and end time, respectively; δU is the virtual variation of 

the strain energy; and δT is the virtual variation of the kinetic energy. The variation of the strain 

energy of the beam can be stated as 
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where Nx, Mb, Ms and Qxz are the stress resultants defined as 
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The variation of the kinetic energy can be expressed as 
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(19) 

where dot-superscript convention indicates the differentiation with respect to the time variable t; 

ρ(z) is the mass density; and (I0, I1, J1, I2, J2, K2) are the mass inertias defined as 
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Substituting the expressions for δU, and δT from Eqs. (17), and (19) into Eq. (16) and integrating 

by parts versus both space and time variables, and collecting the coefficients of δu0, δwb, and δws, 

the following equations of motion of the functionally graded beam are obtained 
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Eq. (21) can be expressed in terms of displacements (u0, wb, ws) by using Eqs. (12), (13), (15) 

and (18) as follows 
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where A11, D11, etc., are the beam stiffness, defined by 
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6. Analytical solution 

 

The equations of motion admit the Navier solutions for simply supported beams. The variables 

u0, wb, ws can be written by assuming the following variations 
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where Um, Wbm, and Wsm are arbitrary parameters to be determined, ω is the eigenfrequency 

associated with m th eigenmode, and Lm / = .  

Substituting the expansions of u0, wb, ws from Eqs. (24) into the equations of motion Eq. (22), 

the analytical solutions can be obtained from the following equations 
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Fig. 2 Effective Young’s modulus as function of volume fraction of ceramic for several 

micromechanical models 

 
 
7. Results and discussion 
 

In the present section, the effect of micromechanical models on the free vibration analysis of FG 

beams using a refined hyperbolic shear deformation beam theory is presented for investigation. In 

order to verify the accuracy of the present analysis, the results of this study were verified by 

comparing them with the various existing beam theories. The material properties used in the present 

study are: 

Ceramic (Alumina, Al2O3): Ec=380 GPa; v=0.3; ρc=3960 kg/m3. 

Metal (Aluminium, Al): Em=70 GPa; v=0.3; ρm=2702 kg/m3. 

For simplicity, the following non-dimensional parameter is used in the numerical examples 

m

m

Eh

L 


2 
=  

 

7.1 Comparison between different micromechanical models 
 

A comparison between the Young’s modulus values calculated from the various micromechanical 

models is shown in Fig. 2. The estimated results are depicted as a function of volume fraction of 

inclusions (ceramic). The first observation emerging from this figure is that the models of Voigt and 

Reuss give the values max and min of the Young’s modulus respectively. 

The second observation is that the models of Tamura and Reuss give practically the same result 

in term of Young’s modulus and this whatever the value of the volume fraction. These Young 

modulus values are slightly lower than those calculated by the Mori-Tanaka model. 

 

7.2 Comparison studies 
 
Firstly, the example is performed in Table 1 for FG beams with power law index n=0,0.5,1,2,5  
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Table 1 Variation of fundamental frequency 𝜔̅ with the power-law index n for FG beam 

L/h Theory 
n 

0 0.5 1 2 5 10 

5 

 
Ould Larbi et al. (2013) 5.1529 4.4108 3.9905 3.6263 3.4001 3.2812 

TBT (Simsek 2010) 5.1527 4.4111 3.9904 3.6264 3.4012 3.2816 

Present 

Voigt 5.1529 4.4108 3.9905 3.6263 3.4001 3.2812 

Reuss 5.1529 3.6232 3.3819 3.2381 3.1072 2.9952 

LRVE 5.1529 3.9094 3.5730 3.3732 3.2309 3.1071 

Tamura 
(q=0) 5.1529 3.6232 3.3819 3.2381 3.1072 2.9952 

(q=100) 5.1529 3.9142 3.5887 3.3794 3.2278 3.1069 

Mori-Tanaka 5.1529 3.7112 3.4441 3.2825 3.1460 3.0301 

20 

 
Ould Larbi et al. (2013) 5.4603 4.6511 4.2051 3.8361 3.6484 3.5389 

TBT (Simsek 2010) 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390 

Present 

Voigt 5.4603 4.6511 4.2051 3.8361 3.6484 3.5389 

Reuss 5.4603 3.8364 3.5956 3.4626 3.3350 3.2063 

LRVE 5.4603 4.1256 3.7815 3.5970 3.4765 3.3374 

Tamura 
(q=0) 5.4603 3.8364 3.5956 3.4626 3.3350 3.2063 

(q=100) 5.4603 4.1318 3.7998 3.6013 3.4696 3.3364 

Mori-Tanaka 5.4603 3.9258 3.6568 3.5070 3.3789 3.2468 

 

 

and 10 two span-to-depth ratio L/h. Effective Young’s modulus is calculated using the 

aforementioned five micromechanical models. The obtained results are compared with with those 

given by Simsek (2010) and the theory of Ould Larbi et al. (2013). 

From this table two observations can be made. First, the results obtained from the present 

hyperbolic shear theory for the Voigt model are very close to those of Oul Larbi et al. (2013) and 

Simsek (2010). Secondly, the results from the present theory and calculated with the four other 

models, namely LRVE, Tamura, Mori-Tanaka and Reuss, are slightly different. This can be 

explained by the way who the Young's modulus is calculated. 

The first three nondimensional frequencies 𝜔̅ of FG beams with the various micromechanical 

models are presented in the Table 2. The comparison is made between the results of the present 

theory and those of Ould Larbi et al. (2013) and the classical beam theory. Here again we note the 

same observation that the results are very close for the model of Voigt and a slight difference is 

noticed compared to the others. Also, the results of the frequency are increasing with increasing 

mode number. 

 

7.3 Parametric studies 
 
In the present paragraph some results and considerations about the effect of the micromechanical 

models on the free vibration problem of functionally beams are presented. The analysis has been 

carried out by means of numerical procedures illustrated above. 

In Fig. 3, the variations of the non-dimensional fundamental natural frequency 𝜔̅ versus the 

power law index n for the value of span-to-depth ratio L/h=5 are given for different micromechanical 

models. It is seen from the figure that the increase of the power law index n produces a decrease 
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Table 2 First three nondimensional frequencies 𝜔̅ of FG beams 

L/h Mode Theory 
n 

0 0.5 1 2 5 10 

5 

1 

CBT 5.3953 4.5931 4.1484 3.7793 3.5949 3.4921 

Ould Larbi et al. (2013) 5.1529 4.4108 3.9905 3.6263 3.4001 3.2812 

Present 

Voigt 5.1529 4.4108 3.9905 3.6263 3.4001 3.2812 

Reuss 5.1529 3.6232 3.3819 3.2381 3.1072 2.9952 

LRVE 5.1529 3.9094 3.5730 3.3732 3.2309 3.1071 

Tamura (q=0) 5.1529 3.6232 3.3819 3.2381 3.1072 2.9952 

Mori-Tanaka 5.1529 3.7112 3.4441 3.2825 3.1460 3.0301 

2 

CBT 20.6187 17.5415 15.7982 14.3260 13.5876 13.2376 

Ould Larbi et al. (2013) 17.8844 15.4613 14.0121 12.6404 11.5349 11.0216 

Present 

Voigt 17.8844 15.4613 14.0121 12.6404 11.5349 11.0216 

Reuss 17.8844 12.6006 11.6697 11.0507 10.5280 10.1981 

LRVE 17.8844 13.6078 12.4405 11.5753 10.9000 10.5134 

Tamura (q=0) 17.8844 12.6006 11.6697 11.0507 10.5280 10.1981 

Mori-Tanaka 17.8844 12.9315 11.9149 11.2218 10.6478 10.2978 

3 

CBT 43.3483 36.8308 33.0278 29.7458 28.0850 27.4752 

Ould Larbi et al. (2013) 34.2248 29.8496 27.1085 24.3196 21.6987 20.5555 

Present 

Voigt 34.2248 29.8496 27.1085 24.3196 21.6987 20.5555 

Reuss 34.2248 24.1793 22.2481 20.8737 19.7644 19.2174 

LRVE 34.2248 26.4043 23.9089 21.9742 20.3977 19.7143 

Tamura (q=0) 34.2248 24.1799 22.2481 20.8738 19.7644 19.2174 

Mori-Tanaka 34.2248 24.8534 22.7662 21.2297 19.9731 19.3769 

20 

1 

CBT 5.4777 4.6641 4.2163 3.8472 3.6628 3.5547 

Ould Larbi et al. (2013) 5.4603 4.6511 4.2051 3.8361 3.6484 3.5389 

Present 

Voigt 5.4603 4.6511 4.2051 3.8361 3.6484 3.5389 

Reuss 5.4603 3.8364 3.5956 3.4626 3.3350 3.2063 

LRVE 5.4603 4.1256 3.7815 3.5970 3.4765 3.3374 

Tamura (q=0) 5.4603 3.8364 3.5956 3.4626 3.3350 3.2063 

Mori-Tanaka 5.4603 3.9258 3.6568 3.5070 3.3789 3.2468 

2 

CBT 21.8438 18.5987 16.8100 15.3334 14.5959 14.1676 

Ould Larbi et al. (2013) 21.5734 18.3964 16.6345 15.1617 14.3732 13.9257 

Present 

Voigt 21.5734 18.3964 16.6345 15.1617 14.3732 13.9257 

Reuss 21.5734 15.1598 14.1951 13.6523 13.1379 12.6386 

LRVE 21.5734 16.3091 14.9444 14.1911 13.6874 13.1452 

Tamura (q=0) 21.5734 15.1598 14.1950 13.6523 13.1379 12.6386 

Mori-Tanaka 21.5734 15.5166 14.4411 13.8300 13.3088 12.7955 

3 

CBT 48.8999 41.6328 37.6173 34.2954 32.6357 31.6883 

Ould Larbi et al. (2013) 47.5940 40.6534 36.7686 33.4681 31.5719 30.5342 

Present 

Voigt 47.5940 40.6534 36.7686 33.4681 31.5719 30.5342 

Reuss 47.5940 33.4531 31.2802 30.0242 28.8557 27.7846 

LRVE 47.5940 36.0462 32.9829 31.2389 30.0368 28.8644 

Tamura (q=0) 47.5940 33.4531 31.2802 30.0242 28.8557 27.7846 

Mori-Tanaka 47.5940 34.2519 31.8369 30.4244 29.2246 28.1199 
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Fig. 3 Variation of the nondimensional fundamental frequency 𝜔̅ of FG beam with power law 

index n for different micromechanical models (L/h=5) 

 

 

Fig. 4 Variation of first three frequency parameter 𝜔̅ with n (L/h=5) - Voigt model 

 

 

in the values of the frequencies and this whatever the model used. The full ceramic beams (n=0) 

lead to a highest frequency for all models. However, the lowest frequency values are obtained for 

full metal beams (n→∞). In addition, the Voigt model has the highest frequencies values compared 

to other models. While that of Reuss has the lowest values. The Tamura and Reuss models have the 

practically same results. 

The effects of parameter n and shear deformation are shown in Fig. 4 for the first three 

frequencies using the Voigt model. The difference between CBT and the present theory is increasing 

with increasing mode number and all frequencies are decreasing with increasing n. 

 
 
8. Conclusions 
 

In this paper, we have developed a new refined hyperbolic shear deformation beam theory for 
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the solutions of free vibration of FG beam. The theory accounts for hyperbolic distribution of the 

transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the 

functionally graded beam without using shear correction factors. Different micromechanical models 

were used to determine the effective properties of the FG beams. The Navier method is used for the 

analytical solutions of the FG beam with simply supported boundary conditions. The results obtained 

using this new theory, are in a good agreement with reference solutions available in literature. 

From these results and comparisons between different micromechanical models, it has been 

found significant differences between some models. This proves the need for a proper 

micromechanical modeling of FGMs to accurately estimate the frequenies. 
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