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Abstract.  This article investigates the static behaviour of functionally graded (FG) plates sometimes declared as 
advanced composite plates by using a simple and accurate quasi-3D and 2D hyperbolic higher-order shear deformation 
theories. The properties of functionally graded materials (FGMs) are assumed to vary continuously through the 
thickness direction according to exponential law distribution (E-FGM). The kinematics of the present theories is 
modeled with an undetermined integral component and satisfies the free transverse shear stress conditions on the top 
and bottom surfaces of the plate; therefore, it does not require the shear correction factor. The fundamental governing 
differential equations and boundary conditions of exponentially graded plates are derived by employing the static 
version of principle of virtual work. Analytical solutions for bending of EG plates subjected to sinusoidal distributed 
load are obtained for simply supported boundary conditions using Navier’is solution procedure developed in the double 
Fourier trigonometric series. The results for the displacements and stresses of geometrically different EG plates are 
presented and compared with 3D exact solution and with other quasi-3D and 2D higher-order shear deformation 
theories to verify the accuracy of the present theory. 
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1. Introduction 
 

The composite structures possess a great number of chemical, mechanical and other types of 

properties, such as the stiffness and strength that provide the structure with the ability to maintain 

its shape and dimensions under loading or any other external action. However, these properties are 

a function not only of their basic constituents, but also the quality of the connection between fiber 

and matrix or layer and layer. Indeed, the interface, or more precisely the interfacial zone, is very 

complex and plays an essential role in the mechanical strength of composite materials, because it 

represents a zone of accumulation and stress concentration that can strongly influence the behaviour 
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of composite structures. However, in order to avoid interfacial debonding, matrix cracks and other 

damage mechanisms found at the interface of laminated composite and sandwich plates, the material  

scientists  have been  involved  in  the design  of  materials  that  perform  better  than 

conventional composites to optimize their resistance to damage, usually with much higher chemical 

and mechanical properties and excellent fiber/matrix adhesion.  

Recently, a new class of composite materials known as functionally graded materials (FGMs) 

has been proposed and has attracted a great amount of attention from researchers in many fields, 

including aerospace, nuclear reactor, biomaterial industry, environmental sensors and other 

engineering applications areas. Moreover, functionally graded material (FGM) is an advanced 

composite material that can be used in high temperature environments. This material is obtained by 

mixing two different materials, typically made of metal and ceramic, in which the volume fractions 

of the constituents change gradually and continuously from one surface to another, which is totally 

different from the conventional composite materials. In technical world the concept of FGMs was 

first proposed by a research group around 1984 in Japan during a space plane project. In this case, 

the combination of materials is initially designed as thermal barrier for aerospace structural 

applications and fusion reactors and is able to withstand a surface temperature of about 2000 K and 

a temperature gradient of approximately 1000 K as described by Mahamood and Akinlabi (2017). 

In recent years, these research activities have spread not only in Japan but also around the world, 

particularly in Germany and the United States. The development of (FGMs) and its various specific 

applications in the different fields of industry can be found in the literature by several authors 

(Koizumi 1993, 1997, Kawasaki and Watanabe 1997, Pindera et al. 1997, Muller et al. 2003, Schulz 

et al. 2003, Pompe et al. 2003, Kumar 2010, Gandra et al. 2011, Zhao et al. 2012, Ahmed 2014, Kar 

and Panda 2015, Kolahchi et al. 2015, Daouadji et al. 2016, Miyamoto 2016, Aldousari 2017, Avcar 

and Alwan 2017, Faleh et al. 2018, Akbaş 2018a, Eltaher et al. 2018, Avcar and Mohammed 2018, 

Karami et al. 2018, 2019a, b, Avcar 2019, Alimirzaei et al. 2019, Boutaleb et al. 2019, Hussain and 

Naeem 2019). 

With the increased use of these advanced composite materials, various researches of many 

authors throughout the world have been tried about the modeling and engineering applications of 

FGMs. For this purpose several plate theories have been developed to predict accurately the bending, 

buckling and vibration behaviours of FG plates. Reddy (2000) presented a theoretical formulation 

and finite element models including geometric non-linearity based on the third-order shear 

deformation theory for the static and dynamic analysis of thick FG plates subjected to mechanical 

and thermal loads. Then, Cheng and Batra (2000) used also Reddy’is third order plate theory to 

present the critical buckling load and vibration frequency results of the functionally graded 

polygonal plates resting on a Winkler-Pasternak elastic foundation and subjected to uniform in-plane 

hydrostatic loads. Javaheri and Eslami (2002) obtained the equilibrium and stability equations based 

on the classical plate theory for the buckling analysis of FG plates subjected to distributed linear and 

nonlinear thermal load. Vel and Batra (2004) presented a 3-D exact solution for the free and forced 

vibration of simply supported thick FG plates in which the material properties of the constituent are 

estimated to vary gradually in the thickness direction of the plate by employing the Mori-Tanaka or 

the self-consistent schemes. Qian et al. (2004) analyzed the static and dynamic responses of thick 

rectangular FG plates by using a compatible higher-order shear and normal deformable plate theory 

together with a meshless local Petrov-Galerkin (MLPG) method. Ferreira et al. (2005) used the 

meshless collocation method based on the multiquadric radial basis functions and a third-order shear 

deformation theory to analyze the static deformations of FG square plates. In thus analysis two 

homogenization techniques have been utilized to determine effective material properties of the 
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composite. A simply supported elastic rectangular FG plate subjected to transverse loading is 

investigated by Chi and Chung (2006). The material properties of the FGM plates are assumed to 

vary continuously in the thickness direction by three different distributions; power-law (P-FGM), 

sigmoid (S-FGM), and exponential (E-FGM) plates. Their analysis carried out, bases on the classical 

plate theory and the series solutions of the FGM plates are obtained by expanding the transverse 

load into Fourier series expansion. Analytical solution for bending response of simply supported FG 

plates subjected to a transverse uniform load is obtained by Zenkour (2006) using a generalized 

shear deformation theory and the Navier solution procedure.  

In the last few years, functionally graded material plates modeling, characterization and analysis 

are carried out by Birman and Byrd (2007). They presented the principal developments, fabrication, 

design and applications of FGMs concentrating on the recent research published since 2000. Carrera 

et al. (2008) employed the unified formulation and the principle of virtual displacements to obtain 

finite element solutions for the static analysis of FG plates subjected to transverse mechanical 

loadings. Jha et al. (2013) reviewed the various investigations carried out in the existing literature 

for the stress, free vibration and buckling analyses of FG plates reported in the recent works 

published since 1998. This review is intended to give the readers a feel for the variety of studies and 

applications related to graded composites. Daouadji and Hadji (2015) presented and analytical 

solution of nonlinear cylindrical bending for functionally graded plates. Nguyen et al. (2015) 

proposed a refined hyperbolic higher-order shear deformation theory with four unknowns for 

bending, vibration and buckling analysis of FG sandwich plates with homogeneous hardcore and 

soft core. Laoufi et al. (2016) investigated the mechanical and hygrothermal behaviour of FG plates 

using a hyperbolic shear deformation theory. Rezaiee-Pajand et al. (2018) discussed the static 

response of FG non-prismatic sandwich beams. Lal et al. (2017) studied the thermo-mechanically 

induced finite element based nonlinear static response of elastically supported functionally graded 

plate with random system properties. Therefore, the development of various models for the modeling 

and global responses of FG plates and shells under mechanical and thermal loadings based on the 

equivalent single layer theories (CPT, FSDT, TSDT and HSDTs), the exact elasticity solution and 

the unified formulation have been comprehensively reviewed in detail by Thai and Kim (2015). 

Thom et al. (2017) utilized an accurate computational approach based on finite element method and 

a new third-order shear deformation plate theory for static bending and buckling behaviours of 2D-

FGM plates under statically mechanical loading. The effective properties are assumed to be graded 

in two directions and are computed using the rule of mixture. It should be noted that some HSDTs 

are presented in literature for studying the mechanical behaviors of structures with and without 

experimental investigations (Mehar and Panda 2016, 2018, Bisen et al. 2018, Mehar and Panda 

2019, Singh et al. 2019, Mehar et al. 2019, Batou et al. 2019, Boulefrakh et al. 2019, Karami et al. 

2019e, Salah et al. 2019, Tounsi et al. 2020). 

Currently, many studies and numerical investigations related to quasi-3D HSDTs have been 

carried out and available in literature to study the effect of thickness stretching in plates and shells 

structures made by FGMs. For instance, Neves et al. (2013) proposed the quasi-3D higher-order 

shear deformation theory rest on a unified formulation coupled with radial basis functions for the 

static, free vibration and buckling analyses of FG isotropic plates and FG sandwich plates. A simple 

and accurate quasi-3D trigonometric plate theory (TPT) with 5-unknowns is employed by Mantari 

and Guedes Soares (2014) for the bending analysis of advanced composite single layer and sandwich 

plates subjected to bi-sinusoidal load for simply supported boundary conditions. Vo et al. (2015) 

presented a finite element model by using a quasi-3D theory to investigate the free vibration and 

buckling analyses of FG sandwich beams with FG skins-homogeneous core and homogeneous 

239



 

 

 

 

 

 

Ali Youcef et al. 

skins-FG core. From this study the thickness stretching effect on natural frequencies and critical 

buckling of sandwich beams for various power-law indexes was also analyzed. Analytical solutions 

for bending analysis of composite beams made of isotropic materials, fibrous composite materials 

and FGMs are presented by Shinde and Sayyad (2017) using a quasi-3D polynomial shear and 

normal deformation theory. In recent times, Zaoui et al. (2019) used new 2D and quasi-3D shear 

deformation theories for free vibration of FG plates on elastic foundations. Mahmoudi et al. (2019) 

employed a refined quasi-3D shear deformation theory for thermo-mechanical behavior of FG 

sandwich plates on elastic foundations. Khiloun et al. (2019) presented an analytical modeling of 

bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT. 

This paper presents a new simple quasi-3D and 2D hyperbolic higher-order shear deformation 

theories (HySDT) for static analysis of EG plates. The advantage of these theories is that the 

displacement field is modeled with only four unknowns (εz=0) or five unknowns (εz≠0), which is 

even less than the other quasi-3D and 2D shear deformation theories and do not require shear 

correction factor. The mechanical properties of the plates are assumed to vary continuously through 

the thickness direction according to exponential law distribution (E-FGM) in terms of the volume 

fractions of the constituents. The governing equations of the EG plates and its boundary conditions 

are derived by employing the principle of virtual work. Navier-type analytical procedure is obtained 

for EG plates subjected to transverse sinusoidal load for simply supported boundary conditions. The 

numerical results obtained by the proposed model for axial and transverse displacements and stresses 

of very thick, thick and moderately thick rectangular EG plates are verified by comparing them with 

that of the results of other 2D and quasi-3D shear deformation theories. 

 

 

2. Theoretical formulation 
 

2.1 Exponentially graded plates 
 

Consider a rectangular FG plates with uniform thickness h, length a and width b, made of a 

mixture of metal and ceramic materials and referred to the rectangular Cartesian coordinate system 

(x, y, z) as depicted in Fig. 1. In this analysis the Poisson ratio, v is assumed to be constant, whereas, 

the effective material properties, such as Young’is modulus E vary exponentially through the 

thickness of the plate according to the volume fractions of the constituents or so-called the 

exponential function (see Fig. 2) and as indicated in the following equation 

1
 

2( ) ( ),       V( )

z
p

h

bE z E V z z e

 
+ 

 = =  (1) 

 

 

 

Fig. 1 Geometry of an exponentially graded plate 
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Fig. 2 Exponential function V(z) along the thickness of an EG plate for various values of the parameter p 

 
 

where Eb denote the property of the bottom surface of the EG plate and p is the parameter that defines 

the material variation profile along the thickness and takes values greater than zero. 

 

2.2 Kinematic and constitutive relations 
 

The objective of this study is to modify the displacement field with six unknowns of the 

conventional refined shear deformation plate theory that has been previously proposed by Zenkour 

(2007), Mantari (2012), Akavci and Tanrikulum (2015) based on some further simplifying 

assumptions to establish a new kinematics with only five unknowns to predict the static behaviour 

of the EG plates. It is to be noted that the displacement field of the conventional refined shear 

deformation theory is given as the form
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where ),(),,(),,(),,(),,( 000 yx yx yxw yxv yxu yx   and ),( yxz  are the six unknown displacement 

functions of the mid-plane of the plate and )(zf denote a shape function determining the distribution 

of the transverse shear strains and the stresses through the thickness of the plate. 

By assuming that ( , )x x y dx =  and ( , )y x y dy =  , the new displacement field of the proposed 

quasi-3D HySDT is modeled with only five unknowns and can be defined at any material point of 

the EG plate as follows (Zaoui et al. 2018). 
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Here we can note that θ (x,y) is a mathematical term that allows us to obtain the rotations of the 
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normal to the mid-plate about the x and y axes, whereas, the coefficients k1 and k2 depends on the 

geometry of the plate under consideration. Eq. (3) of the proposed theory can be obtained in the case 

of the 2D analysis by setting g(z)=0, however, the shape of the shear function f(z) is chosen to satisfy 

the free transverse shear stress conditions on the top and bottom surfaces of the plate and is given as 

Soldatos (1992) 

( ) ( )21coshsinh)( zhzhzf −=  
(4a) 

and 

dz

zdf
zg

)(
)( =  (4b) 

The strains associated with the displacement field given by Eq. (3) are acquired within the 

framework of linear theory of elasticity (i.e., Hooke’is law). 
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The integrals used in the above relations shall be resolved by a Navier procedure and can be 

expressed as follows 
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where A′ and B′ are determined according to the type of solution employed, in this case via Navier 

procedure. Thus, the coefficients A′,B′,k1 and k2 are expressed by 
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where the parameters α and β are defined as 
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The stress-strain relationships accounting for transversal shear deformation in the EG plates 

coordinates, can be written in matrix forms as 
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in which  Tr

xzyzxyzyx  ,,,,,  and  Tr

xzyzxyzyx  ,,,,,  are the stresses and the strains vectors with 

respect to the plate coordinate system. In the case of the transverse normal strain is different to zero 

(εz≠0) the three-dimensional elastic constants Qij are defined in terms of engineering constants as 

follows 
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Contrarily, in the case of the two-dimensional analysis, the thickness stretching effect is omitted 

(εz=0), so that the material constants Qij given in Eq. (11) are reduced as 
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2.3 Governing equations 
 

The governing differential equations and boundary conditions of the proposed theory are derived 

using static version of principle of virtual work for the inhomogeneous plate, where the symbol δ 

denotes the variational operator. This principle can be stated in the following analytical form (Meksi 

et al. 2019, Draiche et al. 2019) 
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where q is the transverse distributed load applied on the upper surface of the plate. By substituting 

the expressions for virtual strains given in Eq. (5) into Eq. (13), the principle of virtual work can be 

rewritten as 

0 0 0 0 1

1 1 2 2

2 0 0

0

b

x x y y z z xy xy x x

b b s s

y y xy xy x x y y

A s s s

xy xy yz yz xz xz

N N N N M

M M M M dA

M S S q w

    

   

   

 + + + +
 
+ + + + = 
 
+ + + −  

  (14) 

where N, M 
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s and S 

s are the stress resultants defined by the following integrations over the 

thickness of the plate. 
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Substituting Eq. (5) into stress-strain relations given in Eq. (10) and subsequent results into Eq. 

(15), the stress resultants of the proposed theory can be obtained in terms of strains according to the 

following constitutive equations 
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where Aij, Bij, Dij,… etc. are the plate stiffness coefficients given by 
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Bending behaviour of FGM plates via a simple quasi-3D and 2D shear deformation theories 

By substituting strains and stresses expressions from Eqs. (6) and (10) into Eq. (14) and 

integrating by parts and setting the coefficients of δu0, δv0, δw0, δθ and δφz equal to zero, the 

governing differential equations in terms of stress resultants are obtained as follows 
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Using Eqs. (6) and (16), the governing differential equations Eq. (18) based on the present quasi-

3D HySDT can be rewritten in terms of displacement variables ),,,,( 000 z wvu  as 
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2.4 Analytical solution procedure for EG Plates 
 

In this study, the analytical solutions of Eq. (19) for simply supported EG plates under transverse 

mechanical load can be obtained, by considering the Navier’is solution procedure, the following 

expressions of displacement variables are represented in the double trigonometric series, which 

satisfy governing differential equations and boundary conditions exactly (Balubaid et al. 2019, 

Abualnour et al. 2019, Adda Bedia et al. 2019, Karami et al. 2019c). 
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where Umn, Vmn, Wmn, Θmn and Φmn are unknown coefficients, so the parameters α and β are already 

defined in Eq. (9). The transverse load q(x,y) acting on the top surface of the plate is also expanded 

in double-Fourier sine series as 
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where the coefficient Qmn=q0 for sinusoidal distributed load m=2, n=1. Whereas, q0 is the maximum 

intensity of distributed load at the centre of plate. Substitution of this solution of Eq. (20) into the 

governing equations Eq. (19), the analytical solutions of EG plates can be obtained from the 

following matrix form 
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Bending behaviour of FGM plates via a simple quasi-3D and 2D shear deformation theories 

Table 1 Non-dimensional transverse displacement w (a/2, b/2, 0) for various EG plates, a/h=2 

b/a Theory εz 
p 

0.1 0.3 0.5 0.7 1.0 1.5 

6 

3-D (Zenkour 2007) 0 1.63774 1.48846 1.35184 1.22688 1.05929 0.82606 

Present 0 1.63665 1.47963 1.33654 1.20627 1.03268 0.79388 

Present =0 1.73471 1.56890 1.41828 1.28151 1.09968 0.84997 

Mantari and Soares(2013) 0 1.63654 1.47953 1.33644 1.20618 1.03325 0.79387 

Mantari and Soares(2012) =0 1.73465 1.56884 1.41822 1.28145 1.10032 0.84996 

TPT(Zenkour2007) 0 1.62939 1.47309 1.33066 1.20101 1.02823 0.79056 

HPT (Zenkour 2007) =0 1.54777 1.39964 1.26493 1.14249 0.97956 0.75560 

5 

3-D (Zenkour 2007) 0 1.60646 1.46007 1.32607 1.20349 1.03907 0.81024 

Present 0 1.60543 1.45141 1.31104 1.18325 1.01295 0.77868 

Present =0 1.70252 1.53978 1.39193 1.25767 1.07918 0.83402 

Mantari and Soares (2013) 0 1.60532 1.45130 1.31094 1.18315 1.01352 0.77867 

Mantari and Soares (2012) =0 1.70246 1.53972 1.39188 1.25762 1.07981 0.83401 

TPT (Zenkour 2007) 0 1.59825 1.44493 1.30522 1.17804 1.00856 0.77540 

HPT (Zenkour 2007) =0 1.51991 1.37444 1.24214 1.12188 0.96184 0.74184 

4 

3-D (Zenkour 2007) 0 1.55146 1.41013 1.28074 1.16235 1.00352 0.78241 

Present 0 1.55053 1.40177 1.26619 1.14276 0.97827 0.75196 

Present =0 1.64590 1.48855 1.34558 1.21574 1.04310 0.80597 

Mantari and Soares (2013) 0 1.55042 1.40166 1.26610 1.14267 0.97884 0.75195 

Mantari and Soares (2012) =0 1.64584 1.48849 1.34553 1.21569 1.04374 0.80596 

TPT (Zenkour 2007) 0 1.54348 1.39541 1.26048 1.13764 0.97395 0.74874 

HPT (Zenkour 2007) =0 1.47089 1.33009 1.20201 1.08559 0.93065 0.71762 

3 

3-D (Zenkour 2007) 0 1.44295 1.31160 1.19129 1.08117 0.93337 0.72750 

Present 0 1.44221 1.30383 1.17771 1.06288 0.90984 0.69926 

Present =0 1.53411 1.38740 1.25407 1.13296 0.97190 0.75061 

Mantari and Soares (2013) 0 1.44210 1.30373 1.17761 1.06279 0.91041 0.69925 

Mantari and Soares (2012) =0 1.53405 1.38735 1.25402 1.13291 0.97254 0.7506 

TPT (Zenkour 2007) 0 1.43542 1.29771 1.17221 1.05795 0.90567 0.69615 

HPT (Zenkour 2007) =0 1.37394 1.24238 1.12269 1.01386 0.86898 0.66977 

2 

3-D (Zenkour 2007) 0 1.19445 1.08593 0.98640 0.89520 0.77266 0.60174 

Present 0 1.19419 1.07959 0.97513 0.87999 0.75318 0.57864 

Present =0 1.27766 1.15539 1.04419 0.94312 0.80864 0.62378 

Mantari and Soares (2013) 0 1.19408 1.07949 0.97503 0.87990 0.75377 0.57862 

Mantari and Soares (2012) =0 1.27760 1.15533 1.04413 0.94307 0.80929 0.62377 

TPT (Zenkour 2007) 0 1.18798 1.07399 0.97009 0.87548 0.74936 0.57578 

HPT (Zenkour 2007) =0 1.15080 1.04052 0.94012 0.84878 0.72712 0.55975 

1 

3-D (Zenkour 2007) 0 0.57693 0.52473 0.47664 0.43240 0.37269 0.28904 

Present 0 0.57800 0.52251 0.47189 0.42577 0.36423 0.27942 

Present =0 0.63631 0.57523 0.51953 0.46879 0.40113 0.30792 

Mantari and Soares (2013) 0 0.57789 0.52240 0.47179 0.42567 0.36485 0.27939 

Mantari and Soares (2012) =0 0.63625 0.57517 0.51948 0.46874 0.40178 0.30791 

TPT (Zenkour 2007) 0 0.57308 0.51806 0.46788 0.42216 0.36117 0.27712 

HPT (Zenkour 2007) =0 0.58586 0.52955 0.47814 0.43127 0.36871 0.28246 
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where the elements of stiffness matrix [K] are obtained as follows 
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(23) 

 

 
4. Numerical results and discussions 
 

In this section, the functionally graded material plates made of aluminum as metal (bottom 

surface) graded exponentially trough the thickness of a rectangular plate are provided and used to 

investigate the static behaviour of simply supported EG plates at all edges and subjected to 

sinusoidal distributed load, by using the simple and accurate hyperbolic quasi-3D and 2D higher-

order shear deformation theories. The non-dimensional displacements and stresses are presented and 

compared with the corresponding results of various 2D and quasi-3D shear deformation theories 

available in literature and the exact elasticity solution given by Zenkour (2007) wherever applicable. 

The material properties used for calculating the numerical results are 

3.0,70 == bb     GPa E   (24) 

For the simplicity, the following non-dimensional terms given here are employed to normalize 
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Bending behaviour of FGM plates via a simple quasi-3D and 2D shear deformation theories 

Table 2 Non-dimensional transverse displacement w (a/2, b/2, 0) for various EG plates, a/h=4 

b/a Theory εz 
p 

0.1 0.3 0.5 0.7 1.0 1.5 

6 

3-D (Zenkour 2007) 0 1.17140 1.06218 0.96331 0.87378 0.75501 0.59193 

Present 0 1.17033 1.05825 0.95628 0.86359 0.74033 0.57129 

Present =0 1.19202 1.07886 0.97668 0.88437 0.76229 0.59545 

Mantari and Soares (2013) 0 1.17033 1.05825 0.95628 0.86359 0.74032 0.57128 

Mantari and Soares (2012) =0 1.19202 1.07885 0.97667 0.88437 0.76228 0.59545 

TPT (Zenkour 2007) 0 1.16681 1.05509 0.95345 0.86107 0.73821 0.56969 

HPT (Zenkour 2007) =0 1.00649 0.91087 0.82448 0.74640 0.64306 0.50178 

5 

3-D (Zenkour 2007) 0 1.14589 1.03906 0.94236 0.85478 0.73859 0.57904 

Present 0 1.14484 1.03520 0.93545 0.84478 0.72419 0.55883 

Present =0 1.16628 1.05556 0.95558 0.86526 0.74579 0.58253 

Mantari and Soares (2013) 0 1.14484 1.03520 0.93545 0.84478 0.72419 0.55882 

Mantari and Soares (2012) =0 1.16628 1.05555 0.95557 0.86525 0.74578 0.58253 

TPT (Zenkour 2007) 0 1.14140 1.03210 0.93268 0.84231 0.72212 0.55726 

HPT (Zenkour 2007) =0 0.98508 0.89150 0.80694 0.73050 0.62935 0.49105 

4 

3-D (Zenkour 2007) 0 1.10115 0.99852 0.90560 0.82145 0.70979 0.55643 

Present 0 1.10013 0.99477 0.89891 0.81178 0.69589 0.53697 

Present =0 1.12114 1.01469 0.91857 0.83173 0.71686 0.55987 

Mantari and Soares (2013) 0 1.10013 0.99477 0.89891 0.81178 0.69589 0.53696 

Mantari and Soares (2012) =0 1.12113 1.01469 0.91856 0.83172 0.71685 0.55987 

TPT (Zenkour 2007) 0 1.09682 0.99180 0.89625 0.80941 0.69390 0.53546 

HPT (Zenkour 2007) =0 0.94753 0.85750 0.77615 0.70262 0.60529 0.47222 

3 

3-D (Zenkour 2007) 0 1.01338 0.91899 0.83350 0.75606 0.65329 0.51209 

Present 0 1.01243 0.91546 0.82724 0.74704 0.64037 0.49409 

Present =0 1.03255 0.93450 0.84595 0.76593 0.66008 0.51541 

Mantari and Soares (2013) 0 1.01243 0.91546 0.82724 0.74704 0.64037 0.49408 

Mantari and Soares (2012) =0 1.03254 0.93450 0.84594 0.76593 0.66008 0.51541 

TPT (Zenkour 2007) 0 1.00938 0.91272 0.82479 0.74486 0.63854 0.49270 

HPT (Zenkour 2007) =0 0.87379 0.79076 0.71571 0.64787 0.55806 0.43525 

2 

3-D (Zenkour 2007) 0 0.81529 0.73946 0.67075 0.60846 0.52574 0.41200 

Present 0 0.81448 0.73647 0.66547 0.60094 0.51509 0.39732 

Present =0 0.83246 0.75338 0.68193 0.61735 0.53188 0.41504 

Mantari and Soares (2013) 0 0.81448 0.73647 0.66547 0.60093 0.51508 0.39732 

Mantari and Soares (2012) =0 0.83246 0.75338 0.68192 0.61734 0.53188 0.41503 

TPT (Zenkour 2007) 0 0.81202 0.73425 0.66350 0.59917 0.51361 0.39620 

HPT (Zenkour 2007) =0 0.70700 0.63979 0.57901 0.52405 0.45126 0.35169 

1 

3-D (Zenkour 2007) 0 0.34900 0.31677 0.28747 0.26083 0.22534 0.18054 

Present 0 0.34860 0.31519 0.28477 0.25711 0.22028 0.16973 

Present =0 0.36017 0.32589 0.29485 0.26676 0.22953 0.17854 

Mantari and Soares (2013) 0 0.34860 0.31519 0.28477 0.25710 0.22028 0.16972 

Mantari and Soares (2012) =0 0.36017 0.32589 0.29485 0.26676 0.22952 0.17854 

TPT (Zenkour 2007) 0 0.34749 0.31419 0.28388 0.25631 0.21961 0.16922 

HPT (Zenkour 2007) =0 0.31111 0.28146 0.25461 0.23027 0.19800 0.15377 
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The transverse displacements, normal stresses, and shears stresses through the thickness of EG 

plates defined by Eq. (25) in non-dimensional form are presented in Tables 1 to 8 for different values 

of side-to-thickness ratio (a/h=2, 4, 10), aspect ratio (b/a=1, 2, 3, 4, 5, 6) and material parameter 

values p. The graphical results obtained by using the present hyperbolic plate theory with five 

unknowns, which include the stretching effect (εz≠0) and the previous studies such as Guedes Soares 

(2013) and Zenkour (2007) based on a quasi-3D trigonometric plate theory (TPT) with six unknowns 

are also plotted in Figs. 3 to 9. 

Tables 1-3 present the transverse maximum displacements of geometrically different EG plates. 

The obtained results are compared with 3-D elasticity solution, 2D higher-order plate theory (HPT) 

and quasi-3D trigonometric plate theory (TPT) reported by Zenkour (2007) and 2D and quasi-3D 

trigonometric plate theories, which includes tangential function developed by Mantari and Guedes  

 

 
Table 3 Non-dimensional transverse displacement w (a/2, b/2, 0) for various EG plates, a/h = 10 

b/a Theory εz 
p 

0.1 0.3 0.5 0.7 1.0 1.5 2.0 2.5 3.0 

6 

Present 0 1.0354 0.9363 0.8462 0.7644 0.6558 0.5069 0.3913 0.3018 0.2324 

Present =0 1.0388 0.9405 0.8520 0.7723 0.6670 0.5236 0.4115 0.3235 0.2539 

Mantari and Soares 

(2013) 
0 1.0354 0.9363 0.8462 0.7644 0.6558 0.5069 0.3913 0.3018 0.2324 

Mantari and Soares 

(2012) 
=0 1.0388 0.9405 0.8520 0.7723 0.6670 0.5236 0.4115 0.3235 0.2539 

TPT (Mantari and 

Soares 2013) 
0 1.0321 0.9333 0.8436 0.7621 0.6538 0.5054 0.3901 0.3006 0.2314 

5 

Present 0 1.0115 0.9147 0.8267 0.7468 0.6406 0.4952 0.3823 0.2948 0.2271 

Present =0 1.0149 0.9189 0.8324 0.7545 0.6516 0.5115 0.4020 0.3160 0.2480 

Mantari and Soares 

(2013) 
0 1.0115 0.9147 0.8267 0.7468 0.6406 0.4952 0.3823 0.2948 0.2271 

Mantari and Soares 

(2012) 
=0 1.0149 0.9189 0.8324 0.7545 0.6516 0.5115 0.4020 0.3160 0.2480 

TPT (Mantari and 

Soares 2013) 
0 1.0083 0.9118 0.8241 0.7445 0.6387 0.4938 0.3810 0.2937 0.2261 

4 

Present 0 0.9696 0.8768 0.7925 0.7159 0.6141 0.4747 0.3664 0.2826 0.2177 

Present =0 0.9730 0.8809 0.7980 0.7233 0.6247 0.4903 0.3854 0.3029 0.2377 

Mantari and Soares 

(2013) 
0 0.9696 0.8768 0.7925 0.7159 0.6141 0.4747 0.3664 0.2826 0.2177 

Mantari and Soares 

(2012) 
=0 0.9730 0.8809 0.7980 0.7233 0.6247 0.4903 0.3854 0.3029 0.2377 

TPT (Mantari and 

Soares 2013) 
0 0.9665 0.8741 0.7900 0.7137 0.6123 0.4733 0.3653 0.2815 0.2167 

3 

Present 0 0.8877 0.8027 0.7255 0.6554 0.5622 0.4346 0.3355 0.2587 0.1992 

Present =0 0.8909 0.8066 0.7307 0.6622 0.5720 0.4489 0.3528 0.2773 0.2176 

Mantari and Soares 

(2013) 
0 0.8877 0.8027 0.7255 0.6554 0.5622 0.4346 0.3355 0.2587 0.1992 

Mantari and Soares 

(2012) 
=0 0.8909 0.8066 0.7307 0.6622 0.5720 0.4489 0.3528 0.2773 0.2176 

TPT (Mantari and 

Soares 2013) 
0 0.8849 0.8002 0.7233 0.6534 0.5605 0.4333 0.3344 0.2577 0.1983 
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Table 3 Continued 

b/a Theory εz 
p 

0.1 0.3 0.5 0.7 1.0 1.5 2.0 2.5 3.0 

2 

Present 0 0.7037 0.6364 0.5752 0.5196 0.4457 0.3445 0.2659 0.2050 0.1579 

Present =0 0.7066 0.6397 0.5795 0.5252 0.4536 0.3560 0.2797 0.2198 0.1724 

Mantari and Soares 

(2013) 
0 0.7037 0.6364 0.5752 0.5196 0.4457 0.3445 0.2659 0.2050 0.1579 

Mantari and Soares 

(2012) 
=0 0.7066 0.6397 0.5795 0.5252 0.4536 0.3560 0.2797 0.2198 0.1724 

TPT (Mantari and 

Soares 2013) 
0 0.7015 0.6344 0.5734 0.5180 0.4444 0.3435 0.2651 0.2043 0.1572 

1 

Present 0 0.2799 0.2531 0.2287 0.2066 0.1772 0.1370 0.1057 0.0814 0.0627 

Present =0 0.2816 0.2550 0.2309 0.2093 0.1807 0.1417 0.1112 0.0873 0.0684 

Mantari and Soares 

(2013) 
0 0.2799 0.2531 0.2287 0.2066 0.1772 0.1370 0.1057 0.0814 0.0627 

Mantari and Soares 

(2012) 
=0 0.2816 0.2550 0.2309 0.2093 0.1807 0.1417 0.1112 0.0873 0.0684 

TPT (Mantari and 

Soares 2013) 
0 0.2790 0.2523 0.2280 0.2060 0.1767 0.1366 0.1053 0.0811 0.0624 

 

  
Fig. 3 Distribution of non-dimensional axial 

displacement )(u , through the thickness of a thick EG 

plate (a/h=4, p=0.5) 

Fig. 4 Distribution of non-dimensional axial 

displacement )(v  , through the thickness of a thick 

EG plate (a/h=4, p=0.5) 

 

 

Soares (2012, 2013). It can be observed that the numerical results obtained by using the present 2D 

hyperbolic shear deformation plate theory (HySDT) are in excellent agreement with the 2D HSDT 

results of Mantari and Guedes Soares (2012). In addition, the present quasi-3D HySDT and quasi-3D 

HSDT of Mantari and Guedes Soares (2013) are in good agreement with each other for all aspect 

ratio and material parameter values ranging from very thick to moderately thick EG plates.  

Moreover, it can be seen that the results are much closer to the exact elasticity solutions in the 

case where the stretching effect is considered. However, 2D theories which do not include the 

thickness stretching effect overestimate the results for the different models proposed due to neglect 

of transverse normal deformation. It should be noted that the results for the non-dimensional  
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Fig. 5 Distribution of non-dimensional transverse 

displacement )(w , through the thickness of a thick EG 

plate (a/h=4, p=0.5) 

Fig. 6 Distribution of non-dimensional axial stress 

)( xx , through the thickness of a thick EG plate 

(a/h=4, p=0.5) 

 

  
Fig. 7 Distribution of non-dimensional inplane shear 

stress )( xy  , through the thickness of a thick EG 

plate (a/h=4, p=0.5) 

Fig. 8 Distribution of non-dimensional transverse 

shear stress )( xz , through the thickness of a thick 

EG plate (a/h=4, p=0.5) 

 

 

transverse displacements increase with the decrease of the parameter p and the increase of the aspect 

ratio a/b, it is clearly that this is due to the reduction in the stiffness of the plate.   

Figs. 3-9 illustrate the axial and transverse displacements wvu ,, and stresses ),,,( yzxzxyx   

distributions through the thickness of thick EG plates for the thickness ratio (a/h=4) and the material 

parameter (p=0.5) calculated using constitutive relations as well as by the governing equations of the 

present quasi-3D HySDT and quasi-3D TPT with six unknowns developed by Zenkour (2007) and 

with the quasi-3D HSDT generated by Mantari and Guedes Soares (2013) based on another form of 

the displacement field in which the tangential trigonometric function is included. Examination of 

these figures reveals that the present theory produces good results compared with each other.  
The comparison of the non-dimensional axial normal stress for simply supported rectangular EG 

plates under sinusoidal distributed load is reported in Tables 4-6 for three values of the thickness  
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Fig. 9 Distribution of non-dimensional transverse shear stress )( yz  , through the 

thickness of a thick EG plate (a/h=4, p=0.5) 

 
Table 4 Non-dimensional axial stress yy  (a/2, b/2, h/2) for various EG plates, a/h=2 

b/a Theory εz 
p 

0.1 0.3 0.5 0.7 1.0 1.5 

6 

3-D (Zenkour 2007) 0 0.29429 0.31008 0.32699 0.34508 0.37456 0.43051 

Present 0 0.27593 0.29507 0.31551 0.33736 0.37301 0.44107 

Present =0 0.21862 0.23437 0.25111 0.26898 0.29763 0.35164 

Mantari and Soares (2013) 0 0.27628 0.29544 0.31592 0.33780 0.37374 0.44163 

Mantari and Soares (2012) =0 0.21871 0.23447 0.25122 0.26900 0.29804 0.34981 

TPT (Zenkour 2007) 0 0.29119 0.31184 0.33385 0.35731 0.39547 0.46786 

HPT (Zenkour 2007) =0 0.31192 0.33462 0.35873 0.38433 0.42573 0.50345 

5 

3-D (Zenkour 2007) 0 0.29674 0.31277 0.32993 0.34829 0.37821 0.43500 

Present 0 0.27859 0.29796 0.31865 0.34076 0.37683 0.44559 

Present =0 0.22175 0.23774 0.25472 0.27276 0.30194 0.35675 

Mantari and Soares (2013) 0 0.27892 0.29833 0.31905 0.34119 0.37755 0.44614 

Mantari and Soares (2012) =0 0.22185 0.23784 0.25484 0.27288 0.30236 0.35485 

TPT (Zenkour 2007) 0 0.29353 0.31439 0.33662 0.36032 0.39884 0.47187 

HPT (Zenkour 2007) =0 0.31327 0.33607 0.36030 0.38604 0.42764 0.50573 

4 

3-D (Zenkour 2007) 0 0.30084 0.31727 0.33486 0.35368 0.38435 0.44257 

Present 0 0.28303 0.30281 0.32393 0.34648 0.38323 0.45320 

Present =0 0.22705 0.24344 0.26084 0.27933 0.30923 0.36539 

Mantari and Soares (2013) 0 0.28335 0.30317 0.32431 0.34690 0.38394 0.45373 

Mantari and Soares (2012) =0 0.22715 0.24354 0.26096 0.27945 0.30968 0.36337 

TPT (Zenkour 2007) 0 0.29743 0.31864 0.34124 0.36533 0.40446 0.47857 

HPT (Zenkour 2007) =0 0.31543 0.33842 0.36285 0.38878 0.43072 0.50943 

3 

3-D (Zenkour 2007) 0 0.30808 0.32525 0.34362 0.36329 0.39534 0.45619 

Present 0 0.29092 0.31144 0.33333 0.35668 0.39468 0.46682 

Present =0 0.23665 0.25376 0.27194 0.29124 0.32246 0.38111 

Mantari and Soares (2013) 0 0.29122 0.31177 0.33369 0.35707 0.39537 0.46732 

Mantari and Soares (2012) =0 0.23675 0.25387 0.27206 0.29138 0.32297 0.37881 

TPT (Zenkour 2007) 0 0.30421 0.32606 0.34933 0.37410 0.41432 0.49035 

HPT (Zenkour 2007) =0 0.31890 0.34220 0.36695 0.39323 0.43572 0.51545 
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Table 4 Continued 

b/a Theory εz 
p 

0.1 0.3 0.5 0.7 1.0 1.5 

2 

3-D (Zenkour 2007) 0 0.31998 0.33849 0.35833 0.37956 0.41417 0.47989 

Present 0 0.30398 0.32586 0.34916 0.37395 0.41418 0.49012 

Present =0 0.25373 0.27218 0.29178 0.31259 0.34625 0.40943 

Mantari and Soares (2013) 0 0.30422 0.32613 0.34945 0.37427 0.41483 0.49052 

Mantari and Soares (2012) =0 0.25385 0.27231 0.29193 0.31276 0.34690 0.40636 

TPT (Zenkour 2007) 0 0.31463 0.33758 0.36200 0.38796 0.43003 0.50925 

HPT (Zenkour 2007) =0 0.32223 0.34592 0.37109 0.39782 0.44102 0.52203 

1 

3-D (Zenkour 2007) 0 0.31032 0.32923 0.34953 0.37127 0.40675 0.47405 

Present 0 0.29237 0.31460 0.33817 0.36316 0.40339 0.47835 

Present =0 0.25198 0.27081 0.29081 0.31204 0.34634 0.41056 

Mantari and Soares (2013) 0 0.29244 0.31468 0.33826 0.36325 0.40405 0.47848 

Mantari and Soares (2012) =0 0.25215 0.27100 0.29102 0.31227 0.34773 0.40347 

TPT (Zenkour 2007) 0 0.29554 0.31811 0.34208 0.36750 0.40851 0.48508 

HPT (Zenkour 2007) =0 0.28882 0.31072 0.33398 0.35866 0.39852 0.47305 

 
Table 5 Non-dimensional axial stress yy  (a/2, b/2, h/2) for various EG plates, a/h=4 

b/a Theory εz 
p 

0.1 0.3 0.5 0.7 1.0 1.5 

6 

3-D (Zenkour 2007) 0 0.21814 0.23211 0.24699 0.26284 0.28857 0.33725 

Present 0 0.21210 0.22487 0.23869 0.25370 0.27875 0.32847 

Present =0 0.20096 0.21492 0.22975 0.24552 0.27104 0.31915 

Mantari and Soares (2013) 0 0.21265 0.22547 0.23934 0.2544 0.27953 0.32937 

Mantari and Soares (2012) =0 0.20097 0.21493 0.22976 0.24553 0.27105 0.31917 

TPT (Zenkour 2007) 0 0.23686 0.25204 0.26830 0.28574 0.31441 0.36990 

HPT (Zenkour 2007) =0 0.28170 0.30133 0.32219 0.34435 0.38024 0.44786 

5 

3-D (Zenkour 2007) 0 0.22060 0.23476 0.24984 0.26591 0.29199 0.34133 

Present 0 0.21470 0.22771 0.24177 0.25702 0.28246 0.33284 

Present =0 0.20365 0.21780 0.23284 0.24881 0.27468 0.32345 

Mantari and Soares (2013) 0 0.21524 0.2283 0.24241 0.25772 0.28323 0.33373 

Mantari and Soares (2012) =0 0.20366 0.21781 0.23285 0.24883 0.27470 0.32346 

TPT (Zenkour 2007) 0 0.23912 0.25450 0.27097 0.28863 0.31764 0.37371 

HPT (Zenkour 2007) =0 0.28261 0.30231 0.32323 0.34547 0.38148 0.44934 

4 

3-D (Zenkour 2007) 0 0.22470 0.23918 0.25460 0.27103 0.29770 0.34816 

Present 0 0.21904 0.23244 0.24691 0.26259 0.28868 0.34018 

Present =0 0.20817 0.22263 0.23801 0.25434 0.28079 0.33065 

Mantari and Soares (2013) 0 0.21957 0.23302 0.24754 0.26327 0.28943 0.34105 

Mantari and Soares (2012) =0 0.20818 0.22264 0.23802 0.25435 0.28081 0.33066 

TPT (Zenkour 2007) 0 0.24286 0.25858 0.27539 0.29342 0.32299 0.38004 

HPT (Zenkour 2007) =0 0.28399 0.30379 0.32483 0.34719 0.38338 0.45159 
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Table 5 Continued 

b/a Theory εz 
p 

0.1 0.3 0.5 0.7 1.0 1.5 

3 

3-D (Zenkour 2007) 0 0.23188 0.24692 0.26295 0.28002 0.30775 0.36021 

Present 0 0.22671 0.24082 0.25604 0.27247 0.29973 0.35322 

Present =0 0.21618 0.23121 0.24718 0.26416 0.29164 0.34345 

Mantari and Soares (2013) 0 0.22721 0.24137 0.25663 0.27312 0.30044 0.35404 

Mantari and Soares (2012) =0 0.21619 0.23122 0.24720 0.26417 0.29166 0.34346 

TPT (Zenkour 2007) 0 0.24931 0.26563 0.28307 0.30174 0.33230 0.39106 

HPT (Zenkour 2007) =0 0.28588 0.30583 0.32702 0.34954 0.38601 0.45471 

2 

3-D (Zenkour 2007) 0 0.24314 0.25913 0.27618 0.29434 0.32385 0.37968 

Present 0 0.23910 0.25449 0.27102 0.28879 0.31807 0.37489 

Present =0 0.22942 0.24540 0.26238 0.28043 0.30965 0.36471 

Mantari and Soares (2013) 0 0.23953 0.25497 0.27154 0.28936 0.3187 0.37562 

Mantari and Soares (2012) =0 0.22943 0.24542 0.26240 0.28045 0.30967 0.36473 

TPT (Zenkour 2007) 0 0.25878 0.27609 0.29456 0.31428 0.34644 0.40788 

HPT (Zenkour 2007) =0 0.28539 0.30534 0.32655 0.34908 0.38556 0.45428 

1 

3-D (Zenkour 2007) 0 0.22472 0.23995 0.25621 0.27356 0.30177 0.35885 

Present 0 0.22346 0.23879 0.25514 0.27258 0.30101 0.35513 

Present =0 0.21634 0.23155 0.24772 0.26490 0.29270 0.34505 

Mantari and Soares (2013) 0 0.22372 0.23907 0.25544 0.27291 0.30137 0.35555 

Mantari and Soares (2012) =0 0.21636 0.23157 0.24774 0.26492 0.29273 0.34508 

TPT (Zenkour 2007) 0 0.23457 0.25098 0.26842 0.28698 0.31706 0.37386 

HPT (Zenkour 2007) =0 0.24080 0.25783 0.27593 0.29515 0.32627 0.38482 

 
Table 6 Non-dimensional axial stress yy  (a/2, b/2, h/2) for various EG plates, a/h=10 

b/a Theory εz 
p 

0.1 0.3 0.5 0.7 1.0 1.5 2.0 2.5 3.0 

6 

Present 0 0.1948 0.2058 0.2178 0.2310 0.2531 0.2978 0.3541 0.4243 0.5102 

Present =0 0.1960 0.2094 0.2237 0.2389 0.2635 0.3100 0.3642 0.4275 0.5011 

Mantari and Soares 

(2013) 
0 0.1954 0.2065 0.2185 0.2317 0.2540 0.2988 0.3552 0.4255 0.5115 

Mantari and Soares 

(2012) 
=0 0.1960 0.2094 0.2237 0.2389 0.2635 0.3100 0.3642 0.4275 0.5011 

TPT (Mantari and 

Soares 2013) 
0 0.2223 0.2360 0.2507 0.2665 0.2926 0.3435 0.4054 0.4805 0.5708 

5 

Present 0 0.1974 0.2086 0.2209 0.2343 0.2568 0.3021 0.3591 0.4300 0.5166 

Present =0 0.1985 0.2122 0.2267 0.2421 0.2670 0.3140 0.3690 0.4331 0.5077 

Mantari and Soares 

(2013) 
0 0.1980 0.2093 0.2216 0.2350 0.2577 0.3031 0.3602 0.4312 0.5179 

Mantari and Soares 

(2012) 
=0 0.1985 0.2122 0.2267 0.2421 0.2670 0.3140 0.3690 0.4331 0.5077 

TPT (Mantari and 

Soares 2013) 
0 0.2245 0.2385 0.2534 0.2694 0.2958 0.3473 0.4098 0.4855 0.5764 
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Table 6 Continued 

b/a Theory εz 
p 

0.1 0.3 0.5 0.7 1.0 1.5 2.0 2.5 3.0 

4 

Present 0 0.2017 0.2134 0.2260 0.2398 0.2630 0.3094 0.3676 0.4395 0.5273 

Present =0 0.2028 0.2168 0.2316 0.2473 0.2728 0.3208 0.3770 0.4424 0.5187 

Mantari and Soares 

(2013) 
0 0.2023 0.2140 0.2267 0.2406 0.2638 0.3104 0.3686 0.4407 0.5285 

Mantari and Soares 

(2012) 
=0 0.2028 0.2168 0.2316 0.2473 0.2728 0.3208 0.3770 0.4424 0.5187 

TPT(Mantari and 

Soares 2013) 
0 0.2283 0.2425 0.2578 0.2742 0.3012 0.3535 0.4170 0.4937 0.5857 

3 

Present 0 0.2094 0.2218 0.2352 0.2497 0.2740 0.3224 0.3825 0.4563 0.5460 

Present =0 0.2104 0.2248 0.2402 0.2565 0.2829 0.3328 0.3910 0.4590 0.5380 

Mantari and Soares 

(2013) 
0 0.2099 0.2224 0.2358 0.2504 0.2748 0.3233 0.3835 0.4575 0.5472 

Mantari and Soares 

(2012) 
=0 0.2104 0.2248 0.2402 0.2565 0.2829 0.3328 0.3910 0.4589 0.5380 

TPT (Mantari and 

Soares 2013) 
0 0.2347 0.2495 0.2654 0.2825 0.3104 0.3645 0.4296 0.5080 0.6016 

2 

Present 0 0.2218 0.2354 0.2501 0.2660 0.2923 0.3439 0.4070 0.4836 0.5757 

Present =0 0.2225 0.2378 0.2541 0.2713 0.2993 0.3521 0.4137 0.4855 0.5692 

Mantari and Soares 

(2013) 
0 0.2223 0.2360 0.2507 0.2666 0.2930 0.3447 0.4079 0.4846 0.5768 

Mantari and Soares 

(2012) 
=0 0.2225 0.2378 0.2541 0.2713 0.2993 0.3521 0.4137 0.4855 0.5692 

TPT (Mantari and 

Soares 2013) 
0 0.2441 0.2599 0.2768 0.2949 0.3244 0.3810 0.4486 0.5291 0.6246 

1 

Present 0 0.2060 0.2195 0.2340 0.2495 0.2749 0.3235 0.3813 0.4499 0.5309 

Present =0 0.2062 0.2204 0.2355 0.2515 0.2774 0.3264 0.3835 0.4502 0.5277 

Mantari and Soares 

(2013) 
0 0.2063 0.2199 0.2344 0.2499 0.2753 0.3240 0.3819 0.4506 0.5317 

Mantari and Soares 

(2012) 
=0 0.2062 0.2204 0.2355 0.2515 0.2774 0.3264 0.3835 0.4502 0.5278 

TPT (Mantari and 

Soares 2013) 
0 0.2196 0.2345 0.2503 0.2671 0.2944 0.3460 0.4065 0.4775 0.5603 

 

 

ratio (a/h=2, 4, 10) and for various values of both aspect ratio a/b and material parameter p. 

Tables 7-8 also show the comparison of axial normal stress x and transverse shear stress xz , 

respectively for simply supported, moderately thick rectangular EG plates (a/h = 10). It is evident 

from the results that the present computations are in an excellent agreement with the 2D and quasi-

3D solutions provided by Mantari and Guedes Soares (2012, 2013). However, it can be noticed that 

the decrease of the parameter values p and the increase of the thickness ratio a/h have a significant 

effect on the reduction of the axial normal stress y  for all the cases presented.  

On the other hand, according to the analytical solutions given in Tables 7-8, it can be seen again 

that the axial normal stress x  increase with both the increase of the parameter p and the increase 

of aspect ratio b/a. Whereas, the transverse shear stress xz  decrease with the increase of the  
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Table 7 Non-dimensional axial stress 
xx  (a/2, b/2, h/2) for various EG plates, a/h=10 

b/a Theory εz 
p 

0.1 0.3 0.5 0.7 1.0 1.5 2.0 2.5 3.0 

6 

Present  0 0.6008 0.6419 0.6856 0.7321 0.8075 0.9500 1.1166 1.3113 1.5382 

Present = 0 0.6029 0.6443 0.6882 0.7350 0.8107 0.9536 1.1204 1.3150 1.5416 

Mantari and 

Soares (2013) 
 0 0.6014 0.6426 0.6864 0.7329 0.8084 0.9510 1.1177 1.3124 1.5394 

Mantari and 

Soares (2012) 
= 0 0.6029 0.6443 0.6882 0.7350 0.8107 0.9536 1.1204 1.3150 1.5415 

TPT (Mantari and 

Soares 2013) 
 0 0.6271 0.6707 0.7170 0.7661 0.8452 0.9935 1.1651 1.3637 1.5935 

5 

Present  0 0.5889 0.6292 0.6720 0.7176 0.7915 0.9311 1.0944 1.2854 1.5080 

Present = 0 0.5910 0.6315 0.6746 0.7205 0.7947 0.9347 1.0982 1.2890 1.5112 

Mantari and 

Soares (2013) 
 0 0.5895 0.6299 0.6727 0.7184 0.7923 0.9321 1.0955 1.2865 1.5091 

Mantari and 

Soares (2012) 
= 0 0.5910 0.6315 0.6746 0.7205 0.7947 0.9347 1.0982 1.2890 1.5111 

TPT (Mantari and 

Soares 2013) 
 0 0.6149 0.6577 0.7031 0.7512 0.8287 0.9741 1.1424 1.3372 1.5626 

4 

Present  0 0.5680 0.6069 0.6481 0.6920 0.7632 0.8979 1.0555 1.2398 1.4548 

Present = 0 0.5700 0.6092 0.6508 0.6950 0.7666 0.9016 1.0594 1.2434 1.4577 

Mantari and 

Soares (2013) 
 0 0.5686 0.6075 0.6488 0.6928 0.7641 0.8989 1.0566 1.2410 1.4560 

Mantari and 

Soares (2012) 
= 0 0.5700 0.6092 0.6508 0.6950 0.7666 0.9016 1.0594 1.2434 1.4576 

TPT (Mantari and 

Soares 2013) 
 0 0.5935 0.6348 0.6785 0.7249 0.7998 0.9401 1.1025 1.2907 1.5084 

3 

Present  0 0.5270 0.5629 0.6011 0.6418 0.7077 0.8326 0.9790 1.1503 1.3502 

Present = 0 0.5288 0.5651 0.6037 0.6447 0.7112 0.8365 0.9828 1.1536 1.3524 

Mantari and 

Soares (2013) 
 0 0.5275 0.5635 0.6018 0.6425 0.7085 0.8335 0.9800 1.1514 1.3514 

Mantari and 

Soares (2012) 
= 0 0.5288 0.5651 0.6037 0.6447 0.7112 0.8365 0.9828 1.1536 1.3523 

TPT (Mantari and 

Soares 2013) 
 0 0.5514 0.5896 0.6302 0.6733 0.7427 0.8730 1.0240 1.1990 1.4017 

 

 

parameter p and the decrease of aspect ratio b/a (see Table 8). It may be noted here that the aim of 

this research is to verify the accuracy of the present high-order model in predicting the bending 

response of rectangular FG plates for two different cases, in which the stretching effect is considered 

or neglected. 

 

 

5. Conclusions 
 

The present work focused on a new kinematics which is modeled with an undetermined integral 
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Table 7 Continued 

b/a Theory εz 
p 

0.1 0.3 0.5 0.7 1.0 1.5 2.0 2.5 3.0 

2 

Present  0 0.4335 0.4628 0.4941 0.5274 0.5815 0.6841 0.8047 0.9463 1.1119 

Present = 0 0.4350 0.4649 0.4966 0.5303 0.5850 0.6881 0.8085 0.9490 1.1125 

Mantari and 

Soares (2013) 
 0 0.4340 0.4634 0.4947 0.5280 0.5822 0.6849 0.8056 0.9473 1.1130 

Mantari and 

Soares (2012) 
= 0 0.4350 0.4649 0.4966 0.5303 0.5850 0.6881 0.8085 0.9490 1.1125 

TPT (Mantari and 

Soares 2013) 
 0 0.4552 0.4867 0.5200 0.5554 0.6126 0.7201 0.8449 0.9898 1.1580 

1 

Present  0 0.2060 0.2195 0.2340 0.2495 0.2749 0.3234 0.3813 0.4499 0.5309 

Present = 0 0.2062 0.2204 0.2355 0.2515 0.2774 0.3264 0.3835 0.4502 0.5277 

Mantari and 

Soares (2013) 
 0 0.2063 0.2199 0.2344 0.2499 0.2753 0.3240 0.3819 0.4506 0.5317 

Mantari and 

Soares (2012) 
= 0 0.2062 0.2204 0.2355 0.2515 0.2774 0.3264 0.3835 0.4502 0.5278 

TPT (Mantari and 

Soares 2013) 
 0 0.2196 0.2345 0.2503 0.2671 0.2944 0.3460 0.4065 0.4775 0.5603 

 

Table 8 Non-dimensional transverse shear stress xz  (0, b/2, 0) for various EG plates, a/h=10 

b/a Theory εz 
p 

0.1 0.3 0.5 0.7 1.0 1.5 2.0 2.5 3.0 

6 

Present 0 0.4630 0.4622 0.4607 0.4583 0.4533 0.4413 0.4250 0.4051 0.3821 

Present =0 0.4629 0.4621 0.4605 0.4582 0.4532 0.4412 0.4249 0.4050 0.3820 

Mantari and 

Soares (2013) 
0 0.4634 0.4626 0.4610 0.4586 0.4536 0.4416 0.4253 0.4065 0.3845 

Mantari and 

Soares (2012) 
=0 0.4633 0.4625 0.4609 0.4585 0.4536 0.4415 0.4252 0.4064 0.3842 

TPT (Mantari 

and Soares 2013) 
0 0.4776 0.4769 0.4753 0.4730 0.4681 0.4564 0.4405 0.4209 0.3981 

5 

Present 0 0.4576 0.4568 0.4552 0.4529 0.4479 0.4361 0.4200 0.4003 0.3776 

Present =0 0.4575 0.4567 0.4551 0.4528 0.4478 0.4360 0.4199 0.4002 0.3775 

Mantari and 

Soares (2013) 
0 0.4579 0.4571 0.4556 0.4532 0.4483 0.4364 0.4203 0.4017 0.3800 

Mantari and 

Soares (2012) 
=0 0.4579 0.4571 0.4555 0.4531 0.4482 0.4363 0.4202 0.4016 0.3797 

TPT (Mantari 

and Soares 2013) 
0 0.4720 0.4713 0.4697 0.4674 0.4626 0.4510 0.4353 0.4159 0.3935 

4 

Present 0 0.4479 0.4471 0.4456 0.4433 0.4385 0.4268 0.4111 0.3918 0.3696 

Present =0 0.4478 0.4470 0.4455 0.4432 0.4384 0.4267 0.4110 0.3917 0.3695 

Mantari and 

Soares (2013) 
0 0.4482 0.4475 0.4459 0.4436 0.4388 0.4271 0.4114 0.3933 0.3720 

Mantari and 

Soares (2012) 
=0 0.4482 0.4474 0.4458 0.4435 0.4387 0.4271 0.4113 0.3931 0.3717 

TPT (Mantari and 

Soares 2013) 
0 0.4620 0.4613 0.4598 0.4575 0.4528 0.4415 0.4261 0.4071 0.3851 
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Table 8 Continued 

b/a Theory εz 
p 

0.1 0.3 0.5 0.7 1.0 1.5 2.0 2.5 3.0 

3 

Present 0 0.4283 0.4276 0.4261 0.4239 0.4193 0.4082 0.3931 0.3747 0.3534 

Present =0 0.4282 0.4275 0.4260 0.4238 0.4192 0.4081 0.3930 0.3746 0.3533 

Mantari and 

Soares (2013) 
0 0.4286 0.4279 0.4264 0.4242 0.4196 0.4084 0.3934 0.3761 0.3558 

Mantari and 

Soares (2012) 
=0 0.4285 0.4278 0.4263 0.4241 0.4195 0.4084 0.3933 0.3760 0.3555 

TPT (Mantari and 

Soares 2013) 
0 0.4418 0.4411 0.4396 0.4375 0.4330 0.4221 0.4074 0.3893 0.3683 

2 

Present 0 0.3807 0.3800 0.3787 0.3768 0.3727 0.3628 0.3494 0.3330 0.3141 

Present =0 0.3806 0.3800 0.3786 0.3767 0.3726 0.3627 0.3493 0.3330 0.3141 

Mantari and 

Soares (2013) 
0 0.3810 0.3803 0.3790 0.3770 0.3730 0.3630 0.3497 0.3344 0.3165 

Mantari and 

Soares (2012) 
=0 0.3809 0.3803 0.3789 0.3770 0.3729 0.3630 0.3496 0.3343 0.3162 

TPT (Mantari and 

Soares 2013) 
0 0.3927 0.3921 0.3908 0.3889 0.3849 0.3752 0.3621 0.3460 0.3273 

1 

Present 0 0.2379 0.2375 0.2366 0.2354 0.2328 0.2267 0.2183 0.2081 0.1962 

Present =0 0.2378 0.2374 0.2366 0.2354 0.2328 0.2266 0.2183 0.2080 0.1962 

Mantari and 

Soares (2013) 
0 0.2380 0.2376 0.2368 0.2356 0.2330 0.2268 0.2185 0.2094 0.1985 

Mantari and 

Soares (2012) 
=0 0.2380 0.2376 0.2368 0.2356 0.2330 0.2268 0.2184 0.2093 0.1983 

TPT (Mantari and 

Soares 2013) 
0 0.2454 0.2450 0.2442 0.2430 0.2405 0.2344 0.2263 0.2162 0.2045 

 

 

component for the bending analysis of rectangular exponentially graded plates based on both 

hyperbolic quasi-3D and 2D higher-order shear deformation theories. The theories are variationally 

consistent and does not require shear correction factor. It should be recalled that the first theory 

(quasi-3D HySDT) contains only five unknowns and five governing equations in which both shear 

deformation and thickness stretching effects are included, while the second theory (2D HySDT) 

without including the stretching effect and contains only four unknowns and four governing 

equations. However, the static problem under consideration are solved analytically by using 

Navier’is solution method to obtained closed form solution for displacements and stresses of simply 

supported rectangular EG plates subjected to sinusoidal distributed load for various material 

parameter, side-to-thickness ratio and aspect ratio. The numerical results obtained by using the 

present formulation are verified with the published results available in the open literature. As 

expected, it can be stated that the proposed theories predicts more accurate transverse shear stresses 

than those provided by other refined theories as compared to exact values. An improvement of the 

present formulation will be considered in the future work to consider other type of materials 

(Daouadji 2017, Shahsavari and Janghorban 2017,  

Panjehpour et al. 2018, Ayat et al. 2018, Akbaş 2018b and 2019, Draoui et al. 2019, Karami et 

al. 2019d,  Hussain et al. 2019, Medani et al. 2019, Semmah et al. 2019). 
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