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Vibration analysis of nonlocal strain gradient porous FG
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Abstract. This paper employs differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT)
for studying free vibrational characteristics of porous functionally graded (FG) nanoplates coupled by visco-elastic
foundation. A secant function based refined plate theory is used for mathematical modeling of the nano-size plate. Two
scale factors are included in the formulation for describing size influences based on NSGT. The material properties for
FG plate are porosity-dependent and defined employing a modified power-law form. Visco-elastic foundation is
presented based on three factors including a viscous layer and two elastic layers. The goverming equations achieved by
Hamilton’s principle are solved implementing DQM. The nanoplate vibration is shown to be affected by porosity,
temperature rise, scale factors and viscous damping.
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1. Introduction

When the pore distribution inside the material is selected to be non-uniform, it might be defined
as a functionally graded material since its properties obey some specified functions. However, the
term functionally graded is not used only for non-uniform porous foams only. This term is a general
term for a variety of materials in which the properties are graded and are not uniform. One example
is a functionally graded (FG) material based on two components which are ceramic and metal. In
fact, the properties are graded from ceramic to metal. In such gradation of material properties,
porosities could be inevitable. Due to contribution of two materials in this FG material, porosities
occur as a sequence of material combination defect. Many researches have been focused on such FG
material based structures with the consideration of pore effect (Jabari et al. 2008, Chikh et al. 2016,
Sobhy 2016, Lal et al. 2017, Bouderba et al. 2016, El-Hassar et al. 2016, Atmane et al. 2017, Alasadi
et al. 2019, Medani et al. 2019, Berghouti et al. 2019).

A structure at nano scale could not be modeled based on well-known elasticity theory which is
used for macro size structures. This shortcoming comes from the inexistence of a scale parameter in
classical elasticity. Thus, non-classical or higher order elasticity theories will be utilized in order to
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mathematically model a structure a nano scale. Such mathematical modeling is of great importance
since experiments are at nano level are still difficult. As a consequence, the well-known non-local
elasticity (Eringen 1983) is notably used in such mathematical modeling for structures at nano level.
After this mathematical modeling, it is possible to analyze structural behaviors of beams, plates and
shell having nano-dimension. Some examples are the works done by Berrabah et al. (2013), Zenkour
and Abouelregal (2014), Aissani et al. (2015), Besseghier et al. (2015), (2017), Elmerabet et al.
(2017), Bouadi et al. (2018), Yazid et al. (2018), Natarajan et al. (2012), Karami et al. (2018),
(2019a-d), Daneshmehr and Rajabpoor (2014), Belkorissat et al. (2015), Semmah et al. (2019),
Larbi Chaht et al. (2015). Due to the ignorance of strain gradient effect in nonlocal elasticity theory,
a more general theory will be required. Strain gradients at nano-scale are observed by many
researchers (Lam et al. 2003, Lim et al. 2015, Mirsalehi et al. 2017). Thus, nonlocal-strain gradient
theory was introduced as a general theory which contains an additional strain gradient parameter
together with nonlocal parameter (Fenjan et al. 2019, Barati and Zenkour 2017).

In this research, a thick plate model is studied based on 4 field variables (Mahi et al. 2015, Houari
et al. 2016, Merazi et al. 2015, Younsi et al. 2018, Issad et al. 2018, Sadoun et al. 2018, Bouafia et
al. 2017, Sayyad and Ghugal 2018, Daouadji et al. 2018). Note that classical plate model doesn’t
consider shear deformations for thick plates (Bourada et al. 2015, Draiche et al. 2016, Boulefrakh
et al. 2019, Chaabane et al. 2019, Mahmoudi et al. 2019, Attia et al. 2018, Zarga et al. 2019, Meksi
et al. 2019, Khiloun et al. 2019). Based on introduced plate theory, dynamic characteristics of nano-
scale plates made of porous FG material exposed to thermal-hygral loads will be studied. The
material is ceramic-metal with different pore distributions inside it. Nonlocal and strain gradient
effects due to nano-dimension of the plate have been considered. The governing equations of the
nano-dimension plate will be solved with the help of DQ approach. The obtained results will be
verified with a previously published article. The dynamic characteristics of porous FG nano-size
plate is shown to be dependent on applied loading, pore distribution, non-local impacts, and some
other parameters.

2. Nanoplate modeling based on NSGT

In the well-known nonlocal strain gradient theory (Lim et al. 2015), strain gradient impacts are
taken into accounting together with nonlocal stress influences defined in below relation

oij = o) Vo) 1)

in such a way that stress ai(jo) is corresponding to strain components eq and a higher order stress is

related to strain gradient components V&g which are (Lim et al. 2015):

of = | Cipen (e x,eo@ely (<) 22)

O-i(jl) - IZJ‘V Cijk| al(X1 X, e]_a)vgh (X’)dX, (2b)

in which Cju express the elastic properties; Also, esa and e;a are corresponding to nonlocality
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Fig. 1 Geometry of porous FG composite nanoplate coupled by visco-elastic medium

impacts and | is related to strains gradients. Whenever two nonlocality functions «;(x,x,e,a) and
a(x,x,ea) verify Eringen’s announced conditions, NSGT constitutive relation may be written as
follows

[1-(e2)* V][l (&)* V*]oy; = Cy[1-(e,2)* V7], — Cyy I°[L- (8,2)*V*IV3s, ©)
so that V2 defines the operator for Laplacian; by selecting e;=eo=e, above relationship decreases to
[1—(ea)*V?] oij = Ciu [1-17V?]g, ()

Taking into account the temperature/humidity impact Eq. (4) might be rewritten as
[1- (ea)ZVZ]Uij =Cij [1-17V*)(q - 74T - BiC) ®)

so that y;and ; respectively define the temperature and humidity expansion properties.

3. Modeling FG plates having porosity

For the nanoplate shown in Fig. 1, the material distribution in FG materials may be characterized
via a power-law function. FG materials are not always perfect because of porosity production in
them. Existence of porosities in the FG materials may significantly change their mechanical
characteristics. Depending on the type of porosity distribution, the elastic moduli E, density p,
temperature expansion property y and humidity expansion property S for porous FG material can be
expressed in the following power-law form having material gradient index p as

1

E(z)=(EC—Em)[%+Ejp+Em—%(EC+Em) (62)

pO=(-p)[ E43] +ou- 50 (6b)
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P

7(@)=(r. - m)(:1 ;j +7m—%(7c+7m) (6c)
z 1Y (04

ﬁ(z):(ﬁc_ﬂm)(h-’_zj +ﬁm_5(ﬂc+ﬁm) (6d)

where m and ¢ corresponds to the metallic and ceramic sides, respectively; o defines the porosity
volume fraction.

By defining exact location of neutral surface, the displacement components based on axial u,
lateral v, bending wy, and shear ws displacements may be introduced as (Fenjan et al. 2019)

u, (X y,z,t)=u(x,y,t)—( —-[Y(2) (7a)
u, (X, y,z,t)=v(xy,t)—(z—r ) 6y —[Y(2) (7h)
u, (X, y,z,t) =w(x, y,t) =w, +Ww, (7¢)
so that
. h/2 h/2 - h/2 h/2
r= j_mE(z) 2dz / j_m E@dz, 1" =[ E@Y(@)dz/ [ E(2)dz (8)
Here, secant type shear function is employed as
Y(z)=z- zsec(%) +zsec(0.5r)[1+0.5r tan(0.5r)],r =0.1 9)
Finally, the strains based on the four-unknown plate model have been obtained as
ou 62
e =——(2-r1 ) > —[Y(2)
OX
ov 8 W,
ey =——(z—r ) > —[Y(2)
oy
ou ov ow, o*w, (10)
7xy __+__2(Z ) 2[Y‘(Z)_ ] >
oy Ox axay oxoy
oW, v Ve =9

oy

Next, one might express the Hamilton’s rule as follows based on strain energy (U) and kinetic
energy (T)

j; SU —T 4V )dt =0 (11)
and V is the work of non-conservative loads. Based on above relation we have
ouU = j (6,06, +cPVe, to,d0¢, +0(1)6Ve +0, 57/xy+a(l)éV;/xy

(12)
40,07, +0QOV Y, +0,0 7, +0RN y,,)dV
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Note that for obtaining Eq. (12), the thickness effects have been neglected by the authors. Placing
Egs. (8) and (10) in Eq. (12) leads to

a b 05U Ow dSwW O%owW, . 825w o6V OW OSwW
5U :J- I [Nxx[_+__]_M)t:x zb _Mxx 2 [_ __]
0 OX OxX OX OX OX oy oy oy
2 2
_M)t/’y o 5\2/vb —ij 15] 5\2NS +ny(65u +a5v+@65w+@85w)_ fy o2 SW, (13)
oy oy oy OX oxX oy oy oOX Ooxoy
2
PIVE oA £+ Q, OOW, +Q, aéws]dydx
Y oxoy oy Ox
in which

h/2
N, =[ (o5 ~Vol)dz=NG VNG
_ 0 Oyl — N© @
Ny =" (07, ~Vol)dz=N© ~INE

h/2
N,, =j (0, ~Vodydz=N® -vN&

h/2

fozjh/ 2(0) ~Vo)dz =M} -vMm®

h/2
Mi =, f(oh ~Voi)dz=M® -vM:®
h/2
My =] 2o}, -Voli)dz=M" —VM;’;” (14a)

My = Ih;,zz f(o), ~Vol)dz=M:" -vM
M, = _[hh/,z 2(6, ~Vol)dz = MO - VM

_I o f(aXy ~-Vol )dz )_VMXS;?)
Qs =I o 9(c —Vo)dz ZQS) _vQ

h/2

Q. =, 9(cy, ~Voi)dz=QY -vQY
where

© _ (", (0 o_ ", o

N‘j _J.-h/z(aij )z, N‘j _J.-h/z(ai' )dz

h/2
ME© = j (ot )dz, MY = j_h/ 2(ot® )dz

hi2 I

M;w’: [ fo@)dz, M =["" £(o5® )az (14b)
h/2 .
D= 9@ )z, Q=] g )dz
0= (" gel®)dz, QY =["" gloi )z

So that (ij=xx, xy, yy). The variation for the works of non-conservative force is expressed by
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SV = IJ( Oa(wb+w)85(Wb+w)+Noa(wb+ws) 00 (W, +Ww,)
ox ) oy

o 6(Wb+w)6(wb+w) o(w, +w,)

2§N -k (W, +W.)o (W, +wW.)—c,0
+ 6X ay w( b+ s) (b+ s) d 8’[ (15a)
+kp(8(wb +W,) 06 (W, +W,) N o(w, +w,) 99 (w, +WS)))dde
OX OX oy oy

where Nf, NS , ny denote membrane forces; kw, K, and cq are viscoelastic substrate constants.

Herein, the nano-dimension plate has been exposed to the below in-plane loading while shearing
load has been neglected ny =0

N2 =N"+N", NS:NT+NH (15b)
where hygro-thermal resultants may be defined as

= f(z) 7(2) (T -T,)dz
(15¢)
h/2 E(z)
"=y A€ -Co)dz
so that C=AC+Cyand T=AT+T, define humldlty and thermal variations; Co and Toexpress prescribed
humidity and temperature.

Also, the kinetic energy variation is obtained as

SK = J-J-[I (au 65u 8v65v+6(wb+w)85(wb+w)) l(au aéwb oW, 0du 8v85wb
ot ot ot ot ot oxot 6x6t ot at oyot
+8\Nb aév) I+ oW, 85v+8w osu au OSW, 8v65ws) |+ oW, a§wb+aw aﬁwb)
oyot ot oyot ot oxot ot at oxot ot oyot oyot oyot  oOxot oxot
OW, OOW, OW, OSW, OW, OOW, OW, OOW, OW, OOW, OW, OSW,
+1.(+ + )+ 1,( + + + )]dydx
oyot oyot  oxot oxot OXot oxot  oyot oyot  Oxot oxot  dyot oyot
(16)
so that
(g1 T 1, 1) =j_“;/22(1, 20 (2= Y= (2= )X =), (Y =1")?) p(2)dz
(17)

Substituting Egs. (13)-(16) into Eg. (11) then collecting the coefficients for field variables results
in four equations of motion
oN, ON,, | o%u o°w, o°w,

ox oy Yot toxot®  Coxet? (18)

ON,, ON o%v ocw, o°w,
a—><y+Wy:|°¥_llayatb2_ISayat2 (19)
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2 b aZMb aZMb 2
6 Ile+2 xy+ —(NT+NH k )[a (Wb+W) a (Wb_z'_w)]
oX oxoy oy? oy
o(w, +w,) 0% (W, +W,) o%u o%v
—k,, (W, +w,) —c, bat =1, abtz + Il(axétz + 6y8t2) (20)
o 0% ,0%w, o 9% ,0%w,

X ) - L+ =)

_| — 4+ — ) (—2= — S
2(ax2 oy?’" ot? “ox? oy?’t ot?

O*M; LMy oMy aQ,  Q a(wb+w) O ),y

X+ + L+ Z—(NT+N" —k)[
OX oxoy oy oX oy oy?
K (W, + ), a(Wba‘[ W)y, 0+ ) @)
o°u o°v o%w, 0% 0% ,0%w,
+|3(6x6t2 6’y6t2) I ( y)( ) — (ery)(?)

Next, all edge conditions for x=0, a and y=0, b may be expressed by
Specify un, +vn, or N, n?+2nn N, +NnZ=0

Specify —un, +vn, or (N, —N,)nn, + N, (nf—n7)=0

y

My +—6M 5 -1 @+ O°W, +1 o°w, n

Specify W, or | ox oy  tot? Zoxat?  toxat? )
oM, oM 2 3 3

+( W, Xy Iav o°w, 8W5Jny:0

— ==+
oy ox ot % oyot? oyot?

(22)
M +—8M 5 +Q,, —1 _azu + 0w, +1 o, n
Specify w; or |  &x oy @ B oat? T toxot? Coxat? )
oM, oM; 2 3 3
4 W+_Xy+QyZ_36_\2/ 6Wb2 I 6W52 I"Iy:O
oy = o a2z | toyat? | °ayat

. OW,
Specify 5 & or M2 nZ +nn M2 +MJnZ=0
n

Note that d( )/on=nxo( )/ox+nyd( )/dy; nx and ny respectively define axial as well as lateral normal
vectors at edges, and non-classic edge condition may be written as

- 0°W,
Determine 3 2 or M® =0
X
2

. O°W,
Determine —Zb or |\/|;’y(1) -0

(23)

2

Determine ° V\zls or M:® =0
OX
2

Determine oW, or M3® =0
ayZ yy
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Finally, the nonlocal strain gradient constitutive relations based on refined FG plate model can

be expressed by

oy 1 v 0 0 0 &y —AT —BAC
oy v 1 ) 0 0 gy—}/AT—,BAC
@-uv3) oy _E®@ )@-av®)lo o @wiz 0 0 Yy
o v 00 0 (1-v)/2 0 ,
yz 0o 0 0 @)z )| Y?
xz Yxz
After integrating Eq. (24) in thickness direction, we get to the following relationships
au
Ny 1 v 0 ox
A-mv)INy t=Al-AV ) v 1 0 %
Ny 0 0 (1-v)/2 o ov
oy ox
_827"‘4) _52Ws
MQ 6X2 6X2
) 5 2 1 v 0 62 2 1 v 0 62W
@-@wHMy =DA-AVE)|v 1 0o [{-TSR LeE(Q-AVS)|v 1 0 (-2
b 00 (1vy2)| ¥ 00 (Qvy2)| ¥
X 22w _,0%ws
oxoy oxoy
o%wy 0Pwg
s ox2 o2
Mx , [t v oo 5 , [t v oo ,
@AMy [=EQ-AVS)|[v 1 o —67"‘2’*3 fFA-AVS)|v 1 o |19 e
s 00 @v2)| ¥ 00 @avy2)| ¥
Mxy 62w0 62W
-2 -2 S
oxoy oxoy
o %
2, JQx 2 ox
- 1-AV
4o ){Qy} Aaa )(0 1j ows
oy
in which
J'W E(2) ) dz, J‘“’Z E(Z)(Z dz, E_ Jhlz E(2)(z-r )(Y r )d
hr21 —y? h/2 h/2 1—v?
h/2 E(Z)(Y r’)? 2 E(z)
Ih/z dz, A :J.—h/z 201
+V)

(24)

(25)

(26)

(27)

(28)

(29)

Three equations of motion based on neutral surface location will be achieved by placing Egs.
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(25)-(28) in Egs. (18)-(21) by

62 L1-v o%u 1+v o% o%u o’w, o*w, \

A(l—AV? )( 5 $+ 5 axéy) A-uv?) (=1, o 52 +1 W+|36xat2)_o (30)
ﬂ 1- vﬂ 1+v d°u ooy OV Dw, o’w, |
A(l—AV? )( AR aay)+(1 “V)( Ioatz_'_llayatz_'_lsay@tz)_o (31)
2y O W, o*w, 6 w, o'w,  o'w,

—DU-AVI)( 2y T oy )-E@-AV? )( 26X28y2+ ay“)
ooy g OCW+w) L u D
+1— V) (=1, o2 Il(axatz +8yat ) (32)
oy*
0 o2 o?
_(kw_'_gcd)(wb_’_ws)"'k [ (V;b‘:W) (V;jy‘FWs)]):O
2y, 0 W, o*w, a“ W, o'w,  o'w,
EQ- V(G2 g+ ) - FU-Av? )( Zaxzayz )
62 82 w, B o° (Wb+Ws)_ o°u v
+A,(1-2V? )( 8y )+ A=V (-1, e |3(6x8t2 +6y8t2) -
A 5 wS NT O (Wb+W) o2 (w, +w,)
+ 15V (at2 )—(N"+N™)[ o oy 1
B 0 0% (W, +Ww,) 6(Wb+w)
(kw_'_at Cd)(Wb +Ws)+k [ 6x2 ay ]) 0

4. Solution by differential quadrature method (DQM)

In the present chapter, differential quadrature method (DQM) has been utilized for solving the
governing equations for NSGT porous FG nanoplate. According to DQM, at an assumed grid point
(xl-, yj) the derivatives for function F are supposed as weighted linear summation of all functional
values within the computation domains as

am"rF
ml X=X Zl 1c(")F(x]) (34)
where
W__ 7 .
Cij = (i—x)) (x)) i,j=12,..,N, Y (35)
in which r(x;) is defined by
n(x) = Ma(xi—x), i#) )

Andwheni =j
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P =cP=-3N,cl0, i=12,..N, i#k i=j (37)
Then, weighting coefficients for high orders derivatives may be expressed by
Ci(jZ) = Xh=1 Ci(kl )C,E})
Ci(jg) = k=1 Ci(k1 )CS) = ¥k=1 Ci(kz )CIEJI')
CP =3 ey =i, cPc?  ij=12..N (38)
Ci(jS) = Xi=1 Ci(kl ) C}S) = Yk-1 Ci(: ) C,E})
¢ =3, cPc® =3, P

According to presented approach, the dispersions of grid points based upon Gauss-Chebyshev-
Lobatto assumption are expressed as

xX; = %[1 — cos(%n)] i=12,..,N,

) (39)
b - .
Vi = 5[1 — CoS (1\]4_—11n)] j=12,..,M,
Next, the time derivative for displacement components may be determined by
W, (X, ¥,t) =W, (x, y)e" (40)
w, (X, y,t) =W (x, y)e'* (41)

where Wy, and W, denote vibration amplitudes and w defines the vibrational frequency. Then, it is
possible to express obtained boundary conditions as

w, =w, =0,

o'w, _ 0w, _o'w, _ O'wy, _ 9

aXZ aXZ ayz ayz (42)
o'w, _0'w, _d'w, _O'w, _ 0

oxt  ooxt oyt oyt
Now, one can express the modified weighting coefficients for all edges simply-supported as
CH=cP =0, i=12.,M,
(D@ _og = (43)
Y =Cum=0, i=12..,N.

3 N 1 2 4 N 1 3

By placing Egs. (38)-(39) into Egs. (30)-(33) and performing some simplifications leads to the
following system based on mass matrix [M], stiffness matrix [K] and damping matrix [C] as
U

mn

L _ V
HKI+ia[Cl+ @ M} ™ ¢=0 (45)

W

smn
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Fig. 2 Changing of normalized frequency for ideal nanoplates with respect to temperature variation based on
diverse nonlocality and strain gradients factors (a/h=15, K.=0, K,=0, AC=0%)

Six grid points are adequate for convergence of the method. The presented results are based on
the following dimensionless factors

k,a* k,a* a® E.h°
w P T~ °>d = Cd s e = 2
E. D, D, JphD, 12(1-v?)

(46)

5. Obtained results and discussions

This section studies vibrational behaviors of porous FG nano-dimension plates coupled by visco-
elastic foundation using secant function based four-variable plate model and DQ approach. Nonlocal
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Fig. 3 Normalized frequency of FG nanoplate according to damping coefficient for diverse pore volume
fraction (p=1, a/h=10, AT=10, Ky=5, Ky=0.5, p=0.2, A=0.1)

and strain gradient coefficients are used in order to define the size-dependent behavior of nano-size
plate. Presented results indicate the prominence of moisture/temperature variation, damping factor,
material gradient index, nonlocal coefficient, strain gradient coefficient and porosities on vibrational
frequencies of FG nano-size plate. A verification study is presented in Table 1 for FG nanoplate
with comparing the vibrational frequency presented by DQM and those obtained by Natarajan et al.
2012. Also, each material property for FG plate may be assumed by:

E. = 380 GPa, p.=3800kg/m® , v,=03 , y,.=7%x107°1/°% , B, =
0.001 (wt.% Hy0)™ !

E, = 70 GPa, p, =2707kg/m3 , v, =03, ¥, =23x107°1/°C , B =
0.44 (wt.% H,0)™ !
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Fig. 4 Changing of normalized frequency of porous nanoplates according to nonlocal coefficient based on
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In Fig. 2, one can see the variation of vibrational frequency versus temperature for a variety of
both nonlocal and strain gradient coefficients. This figure has three parts and each part is related to
one value for material gradient index. Porosity parameter for nanoplates is chosen to be zero. It can
be understand from Fig. 2 that vibration frequency of system will rise with strain gradient coefficient
and will reduce with nonlocality coefficient. This observation is valid for all values of material
gradient index. So, vibration behavior of double nanoplate system is dependent on both scale effects.

In Fig. 3 one can see the variation of vibrational frequency of nanoplate system versus damping
factor of visco-elastic substrate with different porosity coefficients. Thus, the effect of surrounding
visco-medium is considered for this figure. It can be understand from Fig. 3 that vibration frequency
of system will reduce with pore coefficient and humidity rise. By considering visco-elastic substrate,
vibrational frequency will reduce with the damping factor magnitude. So, the nanoplate system will
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be less rigid as the damping factor or visco-elastic parameters become stiffer.

One can see from Fig. 4 the variation of vibrational frequency of the nano-size plate against non-
local and strain gradient coefficients when a=10h. Void or pore dispersion is set as uniform with
different values for material gradient index (p). The vibration frequency of a large-size plate might
be achieved by selecting a zero non-local parameter. From the figure, it might be seen that non-local
coefficient assigns a stiffness devaluation characteristic together with a smaller vibration frequency.
Besides, growth of material gradient index yields a smaller frequency regardless of non-local
parameter magnitude.

6. Conclusions

This article focused on vibration characteristic of a nanoplate system coupled by visco-elastic
medium and modeled by NSGT and refined plate theories. Nanoplates were considered to be
porosity-dependent accounting for thermal effects. It was understood that vibration frequency of
system raised with strain gradient coefficient and reduced with nonlocality coefficient. It was also
found that vibration frequency of system might reduce with pore coefficient. By considering visco-
elastic substrate, vibrational frequency will reduce with the damping factor magnitude. Besides,
growth of material gradient index yields a smaller frequency regardless of non-local parameter
magnitude.
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