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Abstract.  In this paper we present geometrically exact Kirchhoff’s initially curved planar beam model. The 

theoretical formulation of the proposed model is based upon Reissner’s geometrically exact beam 

formulation presented in classical works as a starting point, but with imposed Kirchhoff’s constraint in the 

rotated strain measure. Such constraint imposes that shear deformation becomes negligible, and as a result, 

curvature depends on the second derivative of displacements. The constitutive law is plasticity with linear 

hardening, defined separately for axial and bending response. We construct discrete approximation by using 

Hermite’s polynomials, for both position vector and displacements, and present the finite element arrays and 

details of numerical implementation. Several numerical examples are presented in order to illustrate an 

excellent performance of the proposed beam model.  
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1. Introduction 
 

Many beam models in the framework of small and large displacements have been proposed in 

works of Reissner (1981), Simo (1985) and Ibrahimbegovic (1995). All existing beam models can 

be split into two groups. The first group includes Euler-Bernoulli’s models, enforcing Kirchhoff’s 

constraint with the section that remains rigid and perpendicular to the deformed beam axis. The 

second group includes Reissner’s type of beam model still assuming the section as rigid but no 

longer perpendicular to the deformed beam axis. The models in the first group neglect shear 

deformation and they are more suitable for representing thin structures with negligible shear 

deformation. The Euler-Bernoulli beam model in the framework of small displacement, yet called 

the classical beam theory, is well known, but an extension of this theory to the framework of large 

deformation/displacement is still a part of scientific research (Kitarovic 2014, Armero and 

Valverde 2012, Maurin et al. 2018). Recent works give a different formulation of such beam 

theory, which includes Kirchhoff’s constraint, but also use an additional unphysical degree of 

freedom (Boyer and Primault 2004, Maassen et al. 2018) or Lagrange multiplier for treatment of 
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axial deformation (Meier et al. 2019, Meier et al. 2018). The second group of the geometrically 

exact beam models or Reissner’s type of beam models, that include shear deformation, represent 

an extension of Timoshenko beam theory (Hadzalic et al. 2018, Imamovic et al. 2015, Hadzalic et 

al. 2018) to large deformation framework. These models were defined in classic works Reissner 

(1972), Simo et al. (1984), Ibrahimbegovic and Frey (1993a), and are later combined with many 

constitutive models. More recent works (Pirmanšek et al. 2017, Imamovic et al. 2017, Imamovic 

et al. 2018) present different ways of including a discontinuity in nonlinear kinematics of 

Reissner’s beam. 

The main novelty in this work concerns to the theoretical formulation and the numerical 

implementation of geometrically exact initially curved beam model including Kirchhoff’s 

constraint, which is imposed in kinematic equations of Reissner’s beam without the need to 

introduce any unphysical degree of freedom. This is achieved even for the case of constitutive law  

defined as plasticity with linear hardening, for both axial and bending response.  

The outline of the paper is as follows. In the next section, we present theoretical formulation of 

kinematics, chosen constitutive law and the weak form of governing equilibrium equations. The 

discrete approximation and numerical implementation details are presented in Section 3. The 

results of several numerical simulations are given in Section 4 in order to illustrate the model 

performance. The main conclusions are stated in Section 5. 
 

 

2. Theoretical formulation: kinematics, constitutive and weak form equilibrium 
equations 
 

In the framework of large displacement gradient theory, the position vector for Reissner’s beam 

(Ibrahimbegovic and Frey 1993) in deformed configuration can be written as 

 

 

sin
:

cos

x u

y v

 
 

 

   
      

   
0φ φ t

 

(1) 

where x and y are coordinates in the reference configuration, α is initial position of cross-section, u 

and v are displacement components in the global coordinate system, ζ is the coordinate along the 

normal to the beam axis in the reference configuration and ψ is the section rotation. The 

corresponding form of the deformation gradient F (Ibrahimbegovic 2009) can be written as: 

 

(2) 

where s is the coordinate along the beam axis in the reference configuration. 

By using the polar decomposition of the deformation gradient F, to attach its multiplicative 

split into rotation R and stretch U, we can define the corresponding rotated strain measure H:  

cos( ) sin( )
,  

sin( ) cos( )

T
   

   

   
      

  
F = RU U R F R H U I

 
(3) 

Furthermore, the stretch U can be additively decomposed into strech Uu,v related to 

displacement and strech Uψ related to rotation:  
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,u v  U U U
 (4) 
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The rotated strain measure components can be written as 

   

   

11

21

cos sin 1

sin cos

dx du dx dv
H K

ds ds ds ds

dx du dx dv
H

ds ds ds ds

d
K

ds

    

   



   
            

   

   
           

   


 

(5) 

where Σ, Γ are, respectively, the axial and shear strain in rotated configuration and K is the 

curvature strain.  

The results in Eqs. (5)1 and (5)2 can be rewritten in compact matrix notation as: 

   0 0, ( )
T T T    Σ Λ Λ h a ΛΛ

 
(6) 

0

cos sin cos sin
; ; (a)

sin cos sin cos

dx du

ds ds

dy dv

ds ds

   

   

 
     

       
      
 

Λ Λ h

 

By imposing at this stage Kirchhoff’s constraint, implying that the beam section remains not 

only plane, but also perpendicular to the beam axis resulting with zero shear strain (Γ=0), we 

further obtain 

tan( ) arctan
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With vanished shear deformation, Eq. (6) can be rewritten as 
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(8) 

By exploiting the result in (7) and in (5)3 we can obtain the corresponding expression for 

curvature of the geometrically exact Kirchhoff beam 

  

(9) 
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where 

 
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In the elastic regime the simplest set of the constitutive equations for finite strain beam is 

chosen in terms of Biot’s stress resultants and rotated strain measure: 

 
 ;  ,e e diag EA EI T C H C

 
(10) 

By using the rotated strain measure H, we obtain the only non-zero components, defined as: 

 11H K 
 

(11) 

The weak form of the equilibrium equation, see (Ibrahimbegovic and Frey 1993a): 

 
   ˆˆˆ, : 0ext
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(12) 

In Eq. (12) above, N and M denote stress resultants, expressed in terms of the Biot’s stress: 

 
  11 11, ;   EA ;   
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(13) 

The virtual strain measure can be derived by taking the directional derivative of the strain 

measures (8), which can be written explicitly as: 

  

(14) 

  

(15) 

The virtual rotation can be expressed in terms of first derivatives of virtual displacement field: 

  
(16) 

Finally, with previous results in hand, we can express virtual curvature as 
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(17) 

By using previous results Eqs. (8), (14), (9) and (17), the final expression of the equilibrium 
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equation weak form Eq. (12), can be written as 

  

(18) 

The final step needed for numerical implementation is the linearization of the weak form of 

equilibrium equations so that an iterative strategy can be employed. In order to provide quadratic 

convergence and employ Newton’s method, we need to find the consistent tangent stiffness. It can 

be obtained by the consistent linearization of the expression (18) to get 

  

(19) 

where 
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(20) 

The second part of tangent stiffness related to bending response can be written as: 
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where 
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In the elastic regime we choose the simplest set of linear constitutive equations for finite strain 

beam in terms of Biot’s stress resultants and rotated strain measure, see (10). In the plastic regime, 

the same constitutive relation can be used by using elastoplastic modulus Cep instead of elastic 

modulus Ce. The next step is the additive decomposition of the displacement and rotation gradients 

into elastic part (•e) and plastic part (•p), which corresponds to multiplicative decomposition of 

deformation gradient: 
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We also note that such multiplicative decomposition of the deformation gradient leads to the 

additive decomposition of the stretch tensor U (Imamovic et al. 2017): 
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The Helmholtz free energy can be defined as a quadratic form: 

  

(24) 

where Ue is the elastic part of the stretch tensor, ξp  is the vector of hardening variables and Kh  are 

the corresponding hardening moduli. The yield criterion condition is composed of two uncoupled 

criteria. The first is related to the axial force and the second to the bending moment. Both criteria 

are postulated in terms of stress resultants of the Biot stress, imposing that   

 
 ( , ) y   T q T T q

 
(25) 

where: q=[qN, qM] is the vector of internal hardening stress like variables related to the axial force 

and bending moment, respectively; and Ty=[Ny, My] are the yield stress resultants of Biot stress, 

axial force and bending moment. The second principle of thermodynamics (Ibrahimbegovic 2009) 

can be used for state that the plastic dissipation must remain non-negative: 
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The principle of maximum plastic dissipation (Hill 1950) can then be enforced to obtain the 

corresponding evolution equations of plastic strain and hardening variable. This principle can be 

formulated as the constrained minimization problem, where the constraint is yield function in (25). 

This can further be recast as corresponding unconstrained minimization by using the Lagrange 

multiplier method: 

 ,min max ( , , ) ( , ) ( , )p pL 
    T q γ T q γ T q γ T qD

 
(27) 

where  is plastic multiplier. The corresponding Kuhn-Tucker optimality conditions result with 

the evolution equations for internal variables in rate form, along with the loading/unloading 

conditions: 
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The appropriate value of plastic multiplier  can be determined from the plastic consistency 

condition for the case of sustained plastic flow:  
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(29) 

By replacing the last result in stress rate equation, we can obtain the elasto-plastic modulus Cep 

that should replace the elastic modulus Ce in plastic regime: 
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(30) 

We note in passing that the elasto-plastic tangent modulus above remains the same in the time-

discretized problem, which is obtained by using the backward Euler time integration scheme 

applied to (28) with result replaced in (19).  
 

 

3. Finite element approximation 
 

We choose the Hermite’s polynomials (Meier et al. 2019, Sonneville et al. 2017) for 

constructing discrete approximation of bot position vector (x and y) and displacements (u and v). 

Some details of such numerical implementation are here illustrated for a beam element with two 

nodes, with position vectors in the initial and deformed configuration can be written as: 
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(31) 
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where X0
a is a position vector in the initial configuration, t0,a is a vector of tangents to initial 

predefined configuration, ua is a nodal displacement vector, tT
a is a vector of tangents in reference 

configuration and c is a constant equal to length of beam element.  

The derivatives of Eq. (31), needed for approximation of proposed beam model, can be written 

in explicit form as:  
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(32) 

where 
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and mapping of domena s∈[0, L] to  ξ ∈[-1,1]  

 

 
 

4. Numerical examples 
 

Several numerical examples are presented in this section in order to illustrate the performance 

of the proposed finite element formulation. All numerical computations are performed with a 

research version of the computer program FEAP (Taylor 2008). The proposed model is 

implemented and computed results are compared with those obtained by using FEAP built-in 

Reissner beam developed by Ibrahimbegovic. 
 

4.1 Straight cantilever under imposed end rotation 
 

In this example we present two different types of a response for a cantilever beam under free-

end bending load. The geometric properties of the cross section correspond to standard hot rolled 

IPE 200 section and material properties take values for steel class S235. The initially straight 

cantilever beam model is constructed with three different meshes of 2, 4 and 8 elements. Each 

analysis is performed under imposed end rotation ψ=2π. The first analysis represents the linear 

elastic response (see Fig. 1(a)), the second analysis represents the elasto-plastic response that  
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(a) (b) 

Fig. 1 Straight cantilever beam: geometry and deformed configurations 
 

  
(a) Elastic response (b) Elastic-plastic response 

Fig. 2 Responses of the straight cantilever beam 
 

Table 1 Cantilever beam under imposed an end rotation   

No. of elements 
Bending moment 

Elastic analysis Elastoplastic anal. 

2 1218300 kNcm 427560 kNcm 

4 1218300 kNcm 427560 kNcm 

8 1218300 kNcm 427560 kNcm 

16 1218300 kNcm 427560 kNcm 

Exact 1218320 kNcm 427556.43 kNcm 

 

 

Constitutive parameters: 

EI = 106 

EA = 100 EI 

R = 100 

 

Corresponding rectangular cross-section: 

b = 1.437 (width) 

h = 0.346 (height) 

 

Plasticity (assumed): 

Khb = Kha = 106 

My = 11468.8 (yield bending moment) 

Ny = 198881 (yield axial force) 

σy = 400000 (yield stress) 

Fig. 3 Clamped-hinged circular arc: geometry and constitutive parameters 
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reaches hardening phase (see Fig. 2(b)). The response diagrams show that the proposed model can 

provide mesh independent response. 

For the chosen properties of the cantilever (Young’s modulus: E=2∙104 kN/cm2; hardening 

modulus: K=0.05E; moment of inertia: I=1940 cm4; area of the cross section: A=28.5 cm2; yield 

bending moment: My=310000 kNcm). Some of the results can be verified analytically. Namely, the 

elastic bending moment can be computed as Me=π∙EI/L=1218320 kNcm and the elasto-plastic bending 

moment as Mep=(π-Ky)∙EK/(E+K)L + Ky∙EI/L=427556.43 kNcm. The comparison between these 

reference values against numerical results computed with different number of elements, is presented in 

Table 1.  
 

 

  

Fig. 4 Elastic analysis: deformed structure and response curve (FA-vA) 

 

  
(a) Plastic response (b) Comparison proposed model vs. FEAP 

Fig. 5 Plastic analysis 

 
Table 2 Buckling load of the circular arc   

Formulation Buckling load 

Present 721 

Ibrahimbegovic and Frey (1993) 897.5 

DaDeppo and Schmidt (1975) 897 

FEAP – Reissner’s beam 

(multi-layered cross-section) 
890.22 

FEAP – Euler-Bernoulli beam (2nd order) (multi-layered cross-section) 631.9 (397.7) 
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4.2 Bending of deep arc 
 

This example presents a non-linear analysis of a circular arch whose one end is clamped and 

the other hinged. The chosen properties for the arc are presented in Fig 3. The force is applied at 

the top of arc (point A), while the constitutive parameters for elastic analysis are chosen that axial 

modulus is being 100 times larger than bending modulus, see (Ibrahimbegovic and Frey 1993a, 

DaDeppo and Schmidt 1975). In order to show the performance of proposed beam model, we have 

also performed plastic analysis, where we assumed that hardening modulus is 10 times smaller 

than corresponding elastic bending modulus and the yield bending moment is equal to zero, while 

the axial response remains elastic. With the aim of comparing computed results, both analyses are 

also performed by using FEAP built-in beam models. 

The linear stability analysis has determined critical force, which is smaller than the value 

obtained by using Reissner’s beam model in Ibrahimbegovic and Frey (1993), DaDeppo and 

Schmidt (1975) and FEAP (Reissner’s beam and Euler-Bernoulli beam (2nd order), multi-layered 

cross-section), see Table 2.  

The pre-buckling response matches the reference response very well, but the critical point is 

lower and is reached under smaller structure deformation. It is known that the critical load depends 

on a model formulation (Fig. 4), but to the best of the authors knowledge the literature review did 

not reveal the reference solution of critical load for deep arc obtained by using either Kirchoff or 

(nonlinear) Euler Bernoulli beam. The FEAP built-in (2nd order) Euler-Bernoulli beam provides 

even lower critical point than the proposed beam model. However, the pre-buckling response 

matching with the reference solution is evident.   

Two stability analyses with included plastic material behavior are performed. In the first 

analysis (Fig. 5(a)) we have adopted listed material properties (My=0, Ny=∞) (Fig. 3) in order to 

show the capability of the proposed model to reach large structural deformation, such is obtained 

in reference works. The second stability analysis is performed with both the proposed model and 

Reissner beam (FEAP), by using listed material properties (Fig. 3). Results are shown in Fig 5b. 

We can conclude that a good match between two responses is obtained. We can also conclude that 

the proposed model allows to capture larger structural deformation compared to FEAP built-in 

Reissner beam.  

 

4.3 Williams toggle frame 
   

In this example, we present the capability of the presented beam model to predict the response 

of a shallow arc, including buckling effect. In order to validate obtained results, geometry and 

material properties (Fig. 6) are set according to classic work Williams (1964). The linear elastic 

computation of shallow beam/arc is performed by using the proposed model and FEAP finite 

beam, with the same mesh density with 14 beam elements.  

The obtained responses are compared with the analytical solution (Fig. 7(a)), showing good 

matching between the results computed by the proposed beam model against the analytical 

solution. In order to present the performance of the proposed beam model, we have computed the 

same shallow beam with assumed constitutive parameters related to plasticity (Fig. 6). The 

assumed constitutive parameters trigger plasticity only in axial response. The comparison of 

elasto-plastic vs. elastic response (Fig. 4(b)) shows a significant difference between the two 

responses.  

 

547



 

 

 

 

 

 

Ismar Imamovic, Adnan Ibrahimbegovic and Emina Hajdo 

 
Fig. 6 Geometry of Williams toggle frame 

 

  

(a) FEAP beam vs. analytical solution vs. proposed 

model 

(b) Elastic vs. elasto-plastic response 

Fig. 7 Responses comparison 

 

 

  
(a) First buckling mode (Linear 

buckling analysis) 
(b) Deformed shape in time 

when instability occurs (Finite 

strain analysis) 

(c) Deformed shape in time when 

instability occurs (our model) 

Fig. 8 Stability analysis of the tower 

 
Table 2 Comparison of the critical force and vertical displacement values   

 Analysis type Linear buckling Finite strain Our model 

A = 0.00538 m2 

I = 6.04E-06 m4 

Fcr [kN] 16439.0 16175.0 16360.0 

vcr [m] -2.517E-02 -2.558E-02 -2.577E-02 

A = 11.75E-04 m2 

I = 107.22E-08 m4 

Fcr [kN] 2989.60 2923.80 2959.40 

vcr [m] -2.097E-02 -2.116E-02 -2.134E-02 
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Fig. 9 Response of the tower 

 

 

4.3 Tower analysis 
 

In order to validate our model in the computation of more complex structures, we will perform 

a stability analysis of a tower, which was analyzed in Ibrahimbegovic et al. (2013) using linear 

buckling and finite strain model, and also in Ngo et al. (2014). The vertical force is applied at top 

of the tower, as well as small horizontal perturbation force. The comparison of the deformed shape 

in time when instability occurs, using finite elements described here, to the buckling mode and to 

the deformed shape of the tower from Ibrahimbegovic et al. (2013), is given in Fig. 8.  

Obtained values of the critical force values and corresponding vertical displacement of the node 

at the top of the tower are summarized in Table 2. Our model gives the critical force value between 

values computed using linear buckling and finite strain model. Displacement values are almost the 

same in all three analyses. We can conclude that the proposed model can be used in the stability 

analysis of the different types of structures. 

Next, we make the tower more flexible by using reduced values of the cross-sectional 

properties, while keeping the height and the span of the tower the same. The obtained results of the 

critical force and corresponding displacement are shown in Table 2.  

In Fig. 9, we give the response of the tower for two analyses, where F is vertical force applied 

at the node at top of the tower, and v is the vertical displacement of the same node. We can see a 

very good match between these two results. 

Furthermore, we want to test the behavior of the tower in the elasto-plastic regime. The 

constant vertical force is applied at the top of the tower while increasing horizontal force is acting 

at the same point (Fig. 10(a)). In Fig. 10(b) we give the comparison between the tower response in 

elasticity and in elastoplasticity. The force in Fig. 10(b) denotes the horizontal force at the node at 

top of the tower, and the displacement is the horizontal displacement of the same node. 

 
4.4 Cable structure under dead load 

 

This example is adopted from the reference work Ibrahimbegovic (1992) in order to test the 

accuracy of our formulation for static analysis of a cable structure. We observe a straight cable 

structure in the reference configuration with pretensioned force P=20000, which is applied 

imposing displacement of support ∆u=51. The span of the cable structure is L=20000 and 

Young’s modulus is E=2ꞏ108. The round cross-section is assumed, while the radius R=0.288 is 

calculated from the cross-section area A=0.065. 
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(a) Geometry and the constitutive parameters (b) Elastic vs. elasto-plastic response of the tower 

Fig. 10 Pushover analysis of the tower 

 

 

Material and geometric charact.: 

L = 100 m 

A = 2.88E-04 m2 

E = 7.75E+07 kN/m2 

Utimate stress and stress 

resultant: 

σu,t = 3.96E+06 kN/m2 

Nu,t = 114 kN 

Vertical load – force: 

P = 22 kN 

Pretension force: 

Np,t = 0.7Nu,t = 79.8 kN 

Fig. 11 Material and geometric characteristics of the power line 

 

  
(a) Two tension towers (b) Tension and transition tower 

Fig. 12 Response of power line–cable response 

 

 

The reference solution of the vertical displacement in the middle of span is v=292.6863, while 

the proposed formulation of Kirchhoff beam results with v=293.23, which demonstrates an 

excellent performance for analysis of a cable structure.   
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4.5 Cable structure – Power line between two transmission tower 
 

In this example, we present an application of the proposed beam model to the cable structure, 

such as a power line between two transmission towers. Namely, it is known, a few transmission 

tower types exist, such as the tension tower and the transition tower. In power line (cable) analysis, 

the first type can be model with fixed support, and the second with sliding support. 

Our model can be used in the cable computation when both ends are fixed, or when one end is 

fixed and the other one is sliding support. The first case can be interesting in the design of a cable 

section. The second is useful in computing deflection of the cable (power line), and it depends on 

prestress force acting at the sliding end of the cable. The results of the computations are shown in 

Fig. 12.  

 

 

5. Conclusions 
 

In this paper, we have presented theoretical formulation and numerical implementation of 

geometrically exact initially curved beam model including Kirchhoff’s kinematics constraint of 

vanishing shear deformation. The formulation has been derived from Reissner’s beam model 

theory imposing Kirchhoff’s constraint on a particular choice of shear deformation measure in 

terms of rotated strain. The same choice of strain measure allows us to develop the constitutive law 

of plasticity with linear hardening, with the corresponding yield criterion applied separately for 

axial force and bending moment.  

The finite element approximation is constructed by using Hermite’s polynomials for both 

position vector and displacement components, providing smoothness between two elements.    

Through several numerical simulations, we have demonstrated an excellent performance of the 

proposed beam model. The model is able to deal with buckling and post-buckling analysis of thin 

beam structure and cable structure, also accounting for nonlinear material behavior. 
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