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Abstract.  The present study is concerned with the thermoelastic interactions in a two dimensional 

axisymmetric problem in transversely isotropic thermoelastic solid using new modified couple stress theory 

without energy dissipation and with two temperatures.  The Laplace and Hankel transforms have been 

employed to find the general solution to the field equations. Concentrated normal force, normal force over 

the circular region, concentrated thermal source and thermal source over the circular region have been taken 

to illustrate the application of the approach. The components of displacements, stress, couple stress and 

conductive temperature distribution are obtained in the transformed domain. The resulting quantities are 

obtained in the physical domain by using numerical inversion technique. The effect of two temperature 

varying by taking different values for the two temperature on the components of normal stress, tangential 

stress, conductive temperature and couple stress are depicted graphically. 
 

Keywords:  transversely isotropic; thermoelastic; Laplace transform; Hankel transform; concentrated 

and distributed sources; new modified couple stress 

 
1. Introduction 
 

Couple stress theory is an extension to continuum theory that includes the effects of couple 

stresses, in addition to the classical direct and shear forces per unit area. The classical continuum 

theories are incapable of predicting the size effects in micro and nanoscales. So, higher order 

continuum theories have been proposed to account for the size effects. Couple stress theory is such 

a higher order theory. First mathematical model to examine the materials with couple stresses was 

presented by Cosserat and Cosserat (1909). This theory could not establish the constitutive 

relationships. Mindlin and Tierstein (1962) and Koiter (1964) developed initial version of couple 

stress theory, based on the Cosserat continuum theory (1909). Koiter introduced the constitutive 

relationships for couple stress theory, involving length scale parameters to predict the size effects. 

It involves four material constants for isotropic elastic materials which are very difficult to 

determine (1964). So, modified couple stress theory (M-CST) with one length scale parameter was 
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presented by Yang et al. (2002), in which the couple stress tensor is symmetrical. This theory 

suffers from some inconsistencies, e.g.  M-CST cannot describe the pure bending of plate 

properly. So, Hadjesfandiari et al. (2011) gave consistent couple stress theory (C-CST) with the 

skew-symmetric couple-stresses, that settles all the discrepancies of modified couple stress theory. 

Modified couple stress theory was not applicable to anisotropic materials. So, Chen and Li (2014) 

presented the new modified couple stress theory (NM-CST) for anisotropic materials containing 

three length scale parameters. Park and Gao (2006) studied the Bernoulli- Euler beam model based 

on a modified couple stress theory. Sharma and Sharma (2011) studied the damping in micro-scale 

generalized thermoelastic circular plate resonators under clamped plate and simply-supported 

plate. Lakes (1982) dynamical studied the effects of couple stress in human compact bone. 

Fakhrabadi studied the electromechanical behaviors of carbon nanotubes on the basis of modified 

couple stress theory and Homotopy perturbation method. Darijani and Shahdadi (2015) developed 

shear deformation based a new non-classical plate model in modified couple stress theory 

including two unknown functions. Ke and Wang (2011) investigated the size effect on dynamic 

stability of functionally graded microbeams based on a modified couple stress theory. Chen et al. 

(2011) presented a new modified couple stress model for bending analysis of composite laminated 

beams with first order shear deformation. Asghari (2012) studied the geometrically nonlinear 

micro-plate formulation based on the modified couple stress theory. Farokhi et al. (2018) 

formulated the modified couple stress theory in orthogonal curvilinear coordinates. Zozulya (2018) 

developed higher order couple stress model for plates and shells in orthogonal system of 

coordinates. Simsek and Reddy (2013) investigated the bending and vibration of functionally 

graded microbeams using a new higher order beam theory and the modified couple stress theory. 

Fang et al. (2013) examined the problem of thermoelastic damping in the axisymmetric vibration 

of circular microplate resonators using two dimensional couple stress heat conduction model. 

Ansari et al. (2014) studied the free vibration behavior of post-buckled functionally graded (FG) 

Mindlin rectangular microplates based on the modified couple stress theory (MCST). Ansari et al. 

(2014) presented an exact solution for the vibration analysis of piezoelectric microbeams on the 

basis of the modified couple stress theory for both Euler-Bernoulli and Timoshenko beam models 

using Hamilton’s principle. It was shown that when the length of microbeams is decreased, effects 

of piezoelectricity and size effects are more prominent. Gao and Zhang (2016) constructed a non-

classical Kirchhoff plate model by applying modified couple stress theory, surface elasticity theory 

and two–parameter elastic foundation. Marin et al. (2017) discussed the problem of effect of 

microtemperatures for micropolar thermoelastic bodies. Marin et al. (2017c) studied the Saint-

Venant’s problem in the context of the theory of porous dipolar bodies. Shaat et al. (2017) studied 

the bending analysis of nano-sized Kirchhoff plates using modified couple-stress theory in 

connection with surface elasticity theory of Gurtin and Murdoch to consider the surface energy 

effects. effect of nonuniformity and small scale effects were studied on varying the frequency 

terms. An axisymmetric problem of thick circular plate in modified couple stress theory of 

thermoelastic diffusion using Laplace and Hankel transforms technique have been investigated by 

Kumar and Shaloo (2016). Atanasov et al. (2017) examined the thermal effect on the free vibration 

and buckling of the Euler-Bernoulli double microbeam system based on the modified couple stress 

theory using Bernoulli–Fourier method. Malikan (2017) investigated the buckling of a thick 

sandwich plate under the biaxial non-uniform compression using the modified couple stress theory 

with various boundary conditions. Alimirzaei et al. (2019) presented the nonlinear analysis of 

viscoelastic micro-composite beam with geometrical imperfection using finite element method and 

modified strain gradient theory. Bourada et al. (2019) studied the composite laminated materials 
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using shear deformation theory. Zarga et al. (2019) studied the thermomechanical bending for 

functionally graded sandwich plates using a simple quasi-3D shear deformation theory. Abbas and 

Youssef (2009) and Abbas and Zenkour (2014) studied different problems under two-temperature 

generalized thermoelastic theory by finite element method. Abbas (2014c, 2015) studied phase lag 

models in fiber-reinforced anisotropic materials using generalized thermoelasticity. Abbas (2016) 

studied the exact solution for free vibration of thermoelastic hollow cylinder with two temperature 

and using generalized thermoelasticity theory. Lata et al. (2016) and Kumar et al. 

(2016,2017,2017a,2016a) studied the deformation in transversely isotropic material using 

thermoelasticity. Despite of this several researchers worked on different theory of thermoelasticity 

as Marin (1997,1997a) , Marin and Craciun (2017), Othman and Marin (2017), Hassan et al. 

(2018), Rafiq et al. (2019), Arif et al. (2018), Othman et al. (2015), Lata and Kaur (2019,2019a), 

Ezzat and AI-Bary (2016), Ezzat et al. (2017), Lata (2018,2018a), Karami et al. (2019a, b), 

Medani et al. (2019), Chaabane et al. (2019), Boulefrakh et al. (2019), Boukhlif et al. (2019), 

Boutaleb et al.(2019), Othman and Abbas (2012), Zenkour and Abbas (2014) , Abbas 

(2014a,2014b). Nowaki (1974) developed the theory of thermoelasticity with mass diffusion. 

In the present study we deal with the thermoelastic interactions in a two dimensional 

homogeneous, transversely isotropic thermoelastic solids without energy dissipation and with two 

temperatures in the context of new modified couple stress model.  The Laplace and Hankel 

transforms have been employed to find the general solution to the field equations. Concentrated 

normal force, normal force over the circular region and concentrated thermal source and thermal 

source over the circular region have been taken to illustrate the application of the approach. The 

components of displacements, stresses and conductive temperature distribution are obtained in the 

transformed domain. The resulting quantities are obtained in the physical domain by using 

numerical inversion technique. Numerically simulated results are depicted graphically to show the 

effect of two temperature on the components of normal stress, tangential stress and conductive 

temperature.  
 

 

2. Basic equations 
 

Following Chen and Li (2014), Kumar and Devi (2015), the field equations transversely 

isotropic thermoelastic medium using new modified couple stress theory in the absence of body 

forces, body couple and  without energy dissipation are given by  

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙 +
1

2
𝑒𝑖𝑗𝑘𝑚𝑙𝑘,𝑙 − 𝛽𝑖𝑗𝑇, (1) 

𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙,𝑗 +
1

2
𝑒𝑖𝑗𝑘𝑚𝑙𝑘,𝑙𝑗 − 𝛽𝑖𝑗𝑇,𝑗 = 𝜌𝑢̈𝑖, (2) 

𝐾𝑖𝑗𝜑,𝑖𝑗 − 𝜌𝐶𝐸𝑇̈ = 𝛽𝑖𝑗𝑇0𝜀𝑖̈𝑗, (3) 

 where 

𝛽𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝛼𝑖𝑗, (4) 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), (5) 

503



 

 

 

 

 

 

Parveen Lata and Harpreet Kaur 

𝑚𝑖𝑗 = 𝑙𝑖
2𝐺𝑖𝜒𝑖𝑗 + 𝑙𝑗

2𝐺𝑗𝜒𝑗𝑖 , (6) 

𝜒𝑖𝑗 = 𝜔𝑖,𝑗 , (7) 

𝜔𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗,  

𝑇 = 𝜑 − 𝑎𝑖𝑗𝜑,𝑖𝑗 . 
(8) 

Here, 𝑢 = (𝑢, 𝑣, 𝑤)   is the components of displacement vector, 𝑐𝑖𝑗𝑘𝑙(𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘 = 𝑐𝑗𝑖𝑘𝑙 =

𝑐𝑗𝑖𝑙𝑘) are elastic parameters, 𝑎𝑖𝑗  are the two temperature parameters, 𝜎𝑖𝑗  are the components of 

stress tensor, 𝜀𝑖𝑗 are the components of strain tensor,𝑒𝑖𝑗𝑘 is alternate tensor, 𝑚𝑖𝑗are the components 

of couple-stress,  𝛼𝑖𝑗are the coefficients of linear thermal expansion,𝛽𝑖𝑗 is thermal tensor,𝑇 is the 

thermodynamical temperature, 𝜑  is the conductive temperature, 𝑙𝑖(i = 1,2,3) are material length 

scale parameters ,𝜒𝑖𝑗 is curvature,𝜔𝑖 is the rotational vector,is the density, 𝐾𝑖𝑗  is the thermal 

conductivity, 𝑐𝐸 is the specific heat at constant strain, 𝑇0is the reference temperature assumed to be 

such that  𝑇 𝑇0
⁄ ≪ 1 , 𝐺𝑖  are the elasticity constants and  𝛽1 = (𝑐11 + 𝑐12)𝛼1 + 𝑐13𝛼3  , 𝛽3 =

2𝑐13𝛼1 + 𝑐33𝛼3.  

 

 

3. Formulation and solution of the problem 
 

We consider a homogeneous transversely isotropic , thermoelastic body initially at uniform 

temperature 𝑇0. We take a cylindrical polar co-ordinate system (𝑟, 𝜃, 𝑧) with symmetry about  –
axis. As the problem considered is plane axisymmetric, the field component 𝑣 = 0 , and 𝑢, 𝑤, 𝜑 

are independent of 𝜃.  We have used appropriate transformation following Slaughter (2002) on the 

set of Eqs. (1)-(3) to derive the equations for transversely isotropic  thermoelastic  solid  without 

energy dissipation and with two temperature and restrict our analysis to the two dimensional 

problem  with  𝑢⃗ = (𝑢, 0, 𝑤), we obtain  

Equation of motion  

𝑐11(
𝜕2𝑢

𝜕𝑟2 +
𝜕𝑢

𝑟 𝜕𝑟
+

𝑢

𝑟
) + 𝑐44

𝜕2𝑢

𝜕𝑧2 + (𝑐13 + 𝑐44)
𝜕2𝑤

𝜕𝑟𝜕𝑧
+

1

4
(𝑙2

2𝐺2 (−
𝜕4𝑢

𝜕𝑟2𝜕𝑧2 +
𝜕4𝑤

𝜕𝑟3𝜕𝑧
−

𝜕4𝑢

𝜕𝑧4 +
𝜕4𝑤

𝜕𝑟𝜕𝑧3))  

−𝛽1
𝜕

𝜕𝑟
(1 − 𝑎1(

𝜕2

𝜕𝑟2 +
1

𝑟
) − 𝑎3

𝜕2

𝜕𝑧2)𝜑 = 𝜌𝑢̈, 

(9) 

𝑐33
𝜕2𝑤

𝜕𝑧2 + (𝑐44 + 𝑐13 ) (
𝜕2𝑢

𝜕𝑟𝜕𝑧
+

𝜕𝑢

𝑟 𝜕𝑧
) + 𝑐44 (

𝜕2𝑤

𝜕𝑟2 +
𝜕𝑤

𝑟 𝜕𝑟
) −

1

4
(−𝑙2

2𝐺2 (−
𝜕4𝑢

𝜕𝑟3𝜕𝑧
+

𝜕4𝑤

𝜕𝑟4 +   

1

𝑟
(−

𝜕3𝑢

𝜕𝑟2𝜕𝑧
+

𝜕3𝑤

𝜕𝑟3 )) + 𝑙2
2𝐺2 (

𝜕4𝑢

𝜕𝑟3𝜕𝑧
−

𝜕4𝑤

𝜕𝑟2𝜕𝑧2 +
1

𝑟
(
𝜕3𝑢

𝜕𝑧3 −
𝜕3𝑤

𝜕𝑟2𝜕𝑧
)))  

−𝛽3
𝜕

𝜕𝑧
(1 − 𝑎1 (

𝜕2

𝜕𝑟2 +
1

𝑟
) − 𝑎3

𝜕2

𝜕𝑧2)𝜑 = 𝜌𝑤,̈   

(10) 

Equation of heat conduction without energy dissipation  

𝐾1 (
𝜕2𝜑

𝜕𝑟2 +
𝜑

𝑟
) + 𝐾3

𝜕2𝜑

𝜕𝑧2 − 𝜌𝑐𝐸
𝜕2

𝜕𝑡2 (1 − 𝑎1 (
𝜕2

𝜕𝑟2 +
1

𝑟
) − 𝑎3

𝜕2

𝜕𝑧2)𝜑 = 𝑇0
𝜕2

𝜕𝑡2 (𝛽1
𝜕𝑢

𝜕𝑟
+ 𝛽3

𝜕𝑤

𝜕𝑧
).  (11) 

The constitutive relationships are 
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𝜎𝑧𝑧 = 𝑐13𝑒𝑟𝑟 + 𝑐13𝑒𝜃𝜃 + 𝑐33𝑒𝑧𝑧 − 𝛽3𝑇, 

𝜎𝑟𝑧 = 2𝑐44𝑒𝑟𝑧 −
1

4
((𝑙1

2𝐺1 − 𝑙2
2𝐺2) (−

𝜕3𝑢

𝜕𝑧𝜕𝑟2
+

𝜕3𝑤

𝜕𝑟3
) + (𝑙3

2𝐺3 − 𝑙2
2𝐺2) (−

𝜕3𝑢

𝜕𝑧3
+

𝜕3𝑤

𝜕𝑟𝜕𝑧2
)), 

𝜎𝜃𝜃 = 𝑐21𝑒𝑟𝑟 + 𝑐11𝑒𝜃𝜃 + 𝑐13𝑒𝑧𝑧 − 𝛽1𝑇, 

𝜎𝑟𝑟 = 𝑐11𝑒𝑟𝑟 + 𝑐12𝑒𝜃𝜃 + 𝑐13𝑒𝑧𝑧 − 𝛽1𝑇, 

𝑚𝜃𝑧 =
1

2
(𝑙2

2𝐺2 − 𝑙3
2𝐺3) (

𝜕2𝑢

𝜕𝑧2
−

𝜕2𝑤

𝜕𝑟𝜕𝑧
), 

(12) 

where    𝑒𝑟𝑟 =
𝜕𝑢

𝜕𝑟
  , 𝑒𝑟𝑧 =

1

2
(
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
) , 𝑒𝜃𝜃 =

𝑢

𝑟
  , 𝑒𝑧𝑧 =

𝜕𝑤

𝜕𝑧
, 𝑇 = (1 − 𝑎1 (

𝜕2

𝜕𝑟2 +
1

𝑟
) − 𝑎3

𝜕2

𝜕𝑧2)𝜑. 

 In the above equation we use contracting subscript notation (1 → 11,2 → 22,3 → 33,4 →
23,5 → 31,6 → 12) to relate 𝑐𝑖𝑗𝑘𝑙 to 𝑐𝑚𝑛. The basis of the symmetries of  𝐶𝑖𝑗𝑘𝑙 is due to 

i. The stress tensor is symmetric, which is only possible if (𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙) 

ii. If a strain energy density exists for the material, the elastic stiffness tensor must 

satisfy 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 

iii. From stress tensor and elastic stiffness tensor symmetries infer (𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘) and 𝐶𝑖𝑗𝑘𝑙 =

 𝐶𝑘𝑙𝑖𝑗 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 

To  facilitate the solution, we define the dimensionless quantities  as  

𝜃′ =
𝜃

𝐿
, 𝑟′ =

𝑟

𝐿
 , 𝑧′ =

𝑧

𝐿
, 𝑡′ =

𝑐1

𝐿
𝑡 , 𝑢′ =

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑢,  𝑤′ =

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑤,  𝑇 , =

𝑇

𝑇0
 , 𝜑, =

𝜑

𝑇0
 ,  𝜎𝑧𝑟

, =
𝜎𝑧𝑟

𝛽1𝑇0
,𝜎𝑟𝑟

, =
𝜎𝑟𝑟

𝛽1𝑇0
,   𝜎𝑧𝜃

, =
𝜎𝑧𝜃

𝛽1𝑇0
,   𝑚32

, =
𝑚32

𝐿𝛽1𝑇0
, 𝑎1

′ = 
𝑎1

𝐿
 , 𝑎3

′ = 
𝑎3

𝐿
.                                                                                              

(13) 

Defining Laplace and Hankel transformation as 

 𝑓(𝑟, 𝑧, 𝑠) = ∫ 𝑓
∞

0
(𝑟, 𝑧, 𝑡)𝑒−𝑠𝑡𝑑𝑡, (14) 

𝑓(𝜉, 𝑧, 𝑠) = ∫ 𝑓(𝑟, 𝑧, 𝑠)𝑟𝐽𝑛(𝑟𝜉)𝑑
∞

0
𝑟 . (15) 

Applying the dimensionless quantities defined by (13) and Laplace Hankel defined by (14)-(15) 

to the Eqs. (9)-(11) , we obtain  

(−𝜖1 + 𝛿2𝐷
2)𝑢̃ − 𝛿1𝜉𝐷𝑤̃ +

1

4𝐿2𝑐11
𝑙2
2𝐺2((𝜉

2𝐷2 − 𝐷4)𝑢̃ − (𝜉3𝐷 + 𝜉𝐷3)𝑤̃) 

+𝜉(1 +
𝑎1

𝐿
𝜉2  −

𝑎3

𝐿
𝐷2)𝜑̃ = 0,  

(16) 

𝛿1𝜖2𝐷𝑢̃ + (𝜖8 + 𝛿3𝐷
2)𝑤̃ −

𝜉

4𝐿2𝑐11
𝑙2
2𝐺2( (𝜉

2𝐷 − 𝐷3)𝑢̃ − (𝜉3 + 𝐷2𝜉)𝑤̃) 

−𝜖9𝐷(1 +
𝑎1

𝐿
𝜉2  −

𝑎3

𝐿
𝐷2)𝜑̃ = 0,  

(17) 

𝜖6𝜉𝑠
2𝑢̃ + 𝜖7𝐷𝑠2𝑤̃ + (𝜖2 + 𝜖5𝐷

2 − 𝜖4𝑠
2(1 +

𝑎1

𝐿
𝜉2  −

𝑎3

𝐿
𝐷2)) 𝜑̃ = 0,  (18) 

where 
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𝛿1 =
𝑐13+𝑐44

𝑐11
, 𝛿2 =

𝑐44

𝑐11
,     𝛿3 =

𝑐33

𝑐11
, 𝜖1 = 𝑠2 + 𝜉2,    𝜖2 =

−𝜉2+1

𝜉
 ,      𝜖4 =

𝜌𝑐𝐸𝑐1

𝐾1𝐿
 ,         𝜖5 = 

𝐾3

𝐾1
, 

𝜖6 =
𝑇0𝛽1

2

𝐾1𝜌
, 𝜖7 =

𝑇0𝛽1𝛽3

𝐾1𝜌
, 𝜖8 = −𝛿2𝜉

2 − 𝑠2,          𝜖9 = 
𝛽3

𝛽1
,         𝜖10 = 𝛿2 −

𝑙2
2𝐺2

4𝐿2𝑐11
(−𝜉2),         

𝜖11 = −𝛿1𝜉 −
𝑙2
2𝐺2

4𝐿2𝑐11
𝜉3, 𝜖12 = 𝜖8 +

𝑙2
2𝐺2

4𝐿2𝑐11
𝜉4,  𝜖13 = 𝜖2 − 𝜖4𝑠, 𝜖14 = 𝛿3 + 𝜉2 𝑙2

2𝐺2

4𝐿2𝑐11
. 

The non trivial solution of the system of Eqs. (16)-(18) yields 

(𝑃𝐷8 + 𝑄𝐷6 + 𝑅𝐷4 + 𝑆𝐷2 + 𝑇) = 0, (19) 

where 

𝑃 = −𝜖26𝜉
2𝛼1

2, 

𝑄 = 𝜖10(𝜖14𝜖26 − 𝜖16𝜖22) + 𝛼1(𝜖12𝜖26 + 𝜖14𝜖25 − 𝜖16𝜖21) − 𝜉𝜖20𝛼1𝜖16 − 𝜖20𝜖14𝜖15 +
𝜉𝜖11𝛼1𝜖26 + 𝛼1𝜉(𝜖27𝜖26 + 𝜖2𝜖25𝛼1 − 𝜖22𝜖15),  

𝑅 = −𝜖1(𝜖14𝜖26 − 𝜖16𝜖22) + 𝜖10(𝜖12𝜖26 + 𝜖14𝜖25 − 𝜖16𝜖21) + 𝛼1(𝜖12 − 𝜖25) + 𝜖20𝜖27𝜖16 +
𝜉𝜖19𝛼1𝜖16 + 𝜖15𝜖19𝜖14 − 𝜖11(𝜖27𝜖26 − 𝜉𝜖25𝛼1 − 𝜖22𝜖15) + 𝛼1𝜉(𝜖27𝜖25 + 𝜖15𝜖21),  

𝑆 = −𝜖11(𝜖27𝜖25 + 𝜖15𝜖21) − 𝜖19𝜖27𝜖16 − 𝜖20𝜖15𝜖12 − 𝜖1(𝜖12𝜖26 + 𝜖14𝜖25 − 𝜖16𝜖21) +
𝜖12𝜖10𝜖25,  

𝑇 = −𝜖1𝜖12𝜖25 + 𝜖19𝜖12. 

The roots of Eq. (19) are±𝜆𝑖(𝑖 =  1, 2, 3, 4, 5),using the radiation condition that 𝑢̂, 𝑤̂,  𝜑,̂→ 0 as 

𝑧 → ∞ the solution of equation (24) may be written as 

(𝑢̃, 𝑤̃, 𝜑̃) = ∑(1, 𝑅𝑖 , 𝑆𝑖)𝐴𝑖𝑒
−𝜆𝑖𝑧

4

𝑖=1

, (20) 

𝑅𝑖 =
−𝜖1𝜖25 + 𝜖15𝜖19 + (−𝜖1𝜖26 + 𝜖10𝜖25 + 𝜖15𝜖20)𝜆𝑖

2 + (𝜖10𝜖26 + 𝛼1𝜖13)𝜆𝑖
4 + 𝛼1𝜖26𝜆𝑖

6

𝜖1𝜖25 + (𝜖12𝜖26 + 𝜖14𝜖25 + 𝜖16𝜖21)𝜆𝑖
2 + (𝜖14𝜖26 − 𝜖16𝜖22)𝜆𝑖

4 , (21) 

𝑆𝑖 =
−𝜖1𝜖12 + (−𝜖1𝜖14 + 𝛼1𝜖12 − 𝜖27𝜖11)𝜆𝑖

2 + (𝜖10𝜖14 + 𝛼1(𝜖12 + 𝜉𝜖27 + 𝜉𝜖11))𝜆𝑖
4 − 𝛼1(−𝜖14 + 𝜉

2
𝛼1)𝜆𝑖

6

𝜖1𝜖25 + (𝜖12𝜖26 + 𝜖14𝜖25 + 𝜖16𝜖21)𝜆𝑖
2 + (𝜖14𝜖26 − 𝜖16𝜖22)𝜆𝑖

4 , (22) 

where 

𝜖15 = 𝜖6𝑠
2𝜉,   𝜖16 = 𝜖7𝑠

2,     𝜖17 =  1 +
𝑎1

𝐿
𝜉2 , 𝜖18 =

𝑎3

𝐿
,    𝜖19 = −𝜉𝜖17,  𝜖20 = 𝜉𝜖18,   

𝜖21 = 𝜖9𝜖17, 𝜖22 = 𝜖9𝜖18, 𝜖23 = 𝜖4𝑠
2𝜖17, 𝜖24 = 𝜖4𝑠

2𝜖18,   

𝜖25 = −𝜖2 + 𝜖23,  𝜖26 = −𝜖5 − 𝜖24,     𝜖27 = 𝜖2𝛿1 + 𝛼1𝜉
3, 𝛼1 = −

𝑙2
2𝐺2

4𝐿2𝑐11
, 

 

 

4. Boundary conditions 
 

For Mechanical forces/ Thermal sources acting on the surface  

The boundary conditions are  

𝜎𝑧𝑧(𝑟, 𝑧, 𝑡) = −𝑃1(𝑟, 𝑡),  

𝜎𝑧𝑟(𝑟, 𝑧, 𝑡) = 0,   
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Fig. (I) The coordinate system used for derivation of the equations 

 

 

𝜕𝜑

𝜕𝑟
(𝑟, 𝑧, 𝑡) = 𝑃2(𝑟, 𝑡),  

𝑚𝜃𝑧 = 0. 
(23) 

𝑃1(𝑟, 𝑡) and 𝑃2(𝑟, 𝑡)  are well behaved functions.                                                 

Here 𝑃2(𝑟, 𝑡)  =0  corresponds to plane boundary subjected to normal force and 𝑃1(𝑟, 𝑡)  =0 

corresponds to plane boundary subjected to thermal point source.  

Case 1. Concentrated normal force/ Thermal point source  

When plane boundary is subjected to concentrated normal force/ thermal point force, then 

𝑃1(𝑟, 𝑡), 𝑃2(𝑟, 𝑡)  take the form  

(𝑃1(𝑟, 𝑡), 𝑃2(𝑟, 𝑡)) = (
𝑃1𝛿(𝑟)𝛿(𝑡)

2𝜋𝑟
  ,

𝑃2𝛿(𝑟)𝛿(𝑡)

2𝜋𝑟
).  (24) 

𝑃1 is the magnitude of the force applied , 𝑃2 is the magnitude of the constant temperature applied on 

the boundary and 𝛿(𝑟) is the Dirac delta function. 

Making use of equations (23), (24), (12)-(14) and (20) the components of distance , stress , couple 

stress and conductive temperature are given by (26)-(31). 

Case 2. Normal force over the circular region/ Thermal source over the circular region  

Let a uniform pressure of total magnitude / constant temperature applied over a uniform circular 

region of radius a is obtained by setting  

(𝑃1(𝑟, 𝑡), 𝑃2(𝑟, 𝑡)) = (
𝑃1

𝜋𝑎2
𝐻(𝑎 − 𝑟)𝛿(𝑡)  ,

𝑃2

𝜋𝑎2
𝐻(𝑎 − 𝑟)𝛿(𝑡)), (25) 

where 𝐻(𝑎 − 𝑟)is the Heaviside unit step function. 

Making use of dimensionless quantities defined by (11) and then applying Laplace and Hankel 

transforms defined by (13)-(14) on (25) ,we obtain   

(𝑃1̃(𝜉, 𝑠), 𝑃2̃(𝜉, 𝑠)) = (
𝑃1

𝜋𝑎𝜉
𝐽1(𝑎𝜉)  ,

𝑃2

𝜋𝑎𝜉
𝐽2(𝑎𝜉)). 

The expressions for the components of displacements, stress, couple stress and conductive 

temperature are obtained by replacing 
𝑃1

2𝜋
 with 

𝑃1𝐽1(𝑎𝜉)

𝜋𝑎𝜉
  and by replacing 

𝑃2

2𝜋
  with  

𝑃2𝐽1(𝑎𝜉)

𝜋𝑎𝜉
 in Eqs. (26)-

(31)  respectively  and are given by (32)-(37).   
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𝑢̃ =
1

∆
∑ (

𝑃1

2𝜋
𝐵1𝑖 +

𝑃2

2𝜋
𝐵3𝑖)𝑒

𝜆𝑖𝑧,4
𝑖=1   (26) 

𝑤̃ =
1

∆
∑ 𝑅𝑖(

𝑃1

2𝜋
𝐵1𝑖 +

𝑃2

2𝜋
𝐵3𝑖)𝑒

𝜆𝑖𝑧,4
𝑖=1   (27) 

𝜑̃ =
1

∆
∑ 𝑆𝑖(

𝑃1

2𝜋
𝐵1𝑖 +

𝑃2

2𝜋
𝐵3𝑖)𝑒

𝜆𝑖𝑧,4
𝑖=1   (28) 

𝜎𝑧𝑧̃ =
1

∆
∑ (

𝛽1𝑇0

𝜌𝑐1
2 (𝐶13𝜖2 − 𝐶33𝜆𝑖𝑅𝑖) − 𝛽3𝑇0𝑆𝑖) (

𝑃1

2𝜋
𝐵1𝑖 +

𝑃2

2𝜋
𝐵3𝑖)𝑒

𝜆𝑖𝑧,4
𝑖=1   (29) 

 𝜎𝑧𝑟̃ =
1

∆
∑ (

𝛽1𝑇0

𝜌𝑐1
2 𝐶44(−𝜆𝑖 − 𝜉𝑅𝑖) − 𝛽1𝑇0 (𝛼1(−𝜉2𝜆𝑖 − 𝜉3𝑅𝑖) + 𝛼2(−𝜆𝑖

3 + 𝜉𝜆𝑖
2𝑅𝑖))) (

𝑃1

2𝜋
𝐵1𝑖 +

𝑃2

2𝜋
𝐵3𝑖)𝑒

𝜆𝑖𝑧,5
𝑖=1   (30) 

𝑚𝜃𝑧̃ =
𝛽1𝑇0(𝑙1

2𝐺1−𝑙2
2𝐺2)

2∆𝜌𝑐1
2𝐿2

∑ (
𝑃1

2𝜋
𝐵1𝑖 +

𝑃2

2𝜋
𝐵3𝑖)

4
𝑖=1 (𝜆𝑖

3 + 𝜉𝜆𝑖
2𝑅𝑖)𝑒

𝜆𝑖𝑧.   (31) 

For circular region 

𝑢̃ =
1

∆
∑ (

𝑃1𝐽2(𝑎𝜉)

𝜋𝑎𝜉
𝐵1𝑖 +

𝑃2𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵3𝑖)𝑒

𝜆𝑖𝑧,4
𝑖=1    (32) 

𝑤̃ =
1

∆
∑ 𝑅𝑖 (

𝑃1𝐽2(𝑎𝜉)

𝜋𝑎𝜉
𝐵1𝑖 +

𝑃2𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵3𝑖)𝑒

𝜆𝑖𝑧,4
𝑖=1   (33) 

𝜑̃ =
1

∆
∑ 𝑆𝑖(

𝑃1𝐽2(𝑎𝜉)

𝜋𝑎𝜉
𝐵1𝑖 +

𝑃2𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵3𝑖)𝑒

𝜆𝑖𝑧,4
𝑖=1   (34) 

𝜎𝑧𝑧̃ =
1

∆
∑ (

𝛽1𝑇0

𝜌𝑐1
2 (𝐶13𝜖2 − 𝐶33𝜆𝑖𝑅𝑖) − 𝛽3𝑇0𝑆𝑖) (

𝑃1𝐽2(𝑎𝜉)

𝜋𝑎𝜉
𝐵1𝑖 +

𝑃2𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵3𝑖)𝑒

𝜆𝑖𝑧,4
𝑖=1   (35) 

𝜎𝑧𝑟̃ =
1

∆
∑ (

𝛽1𝑇0

𝜌𝑐1
2 𝐶44(−𝜆𝑖 − 𝜉𝑅𝑖) − 𝛽1𝑇0(𝛼1(−𝜉2𝜆𝑖 − 𝜉3𝑅𝑖) + 𝛼2(−𝜆𝑖

3 + 𝜉𝜆𝑖
2𝑅𝑖))) (

𝑃1𝐽2(𝑎𝜉)

𝜋𝑎𝜉
𝐵1𝑖 +

𝑃2𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵3𝑖)𝑒

𝜆𝑖𝑧,5
𝑖=1   (36) 

𝑚𝜃𝑧̃ =
𝛽1𝑇0(𝑙1

2𝐺1−𝑙2
2𝐺2)

2∆𝜌𝑐1
2𝐿2

∑ (
𝑃1𝐽2(𝑎𝜉)

𝜋𝑎𝜉
𝐵1𝑖 +

𝑃2𝐽1(𝑎𝜉)

𝜋𝑎𝜉
𝐵3𝑖)

4
𝑖=1 (𝜆𝑖

3 + 𝜉𝜆𝑖
2𝑅𝑖)𝑒

𝜆𝑖𝑧,  (37) 

where 

𝐴1𝑖 =
𝛽1𝑇0

𝜌𝑐1
2

(𝐶13𝜖2 − 𝐶33𝜆𝑖𝑅𝑖) − 𝛽3𝑇0𝑆𝑖 , 𝐴2𝑖 =
𝛽1𝑇0

𝜌𝑐1
2 𝐶44(−𝜆𝑖 − 𝜉𝑅𝑖) − 𝛽1𝑇0(𝛼1(−𝜉2𝜆𝑖 − 𝜉3𝑅𝑖) + 𝛼2(−𝜆𝑖

3 + 𝜉𝜆𝑖
2𝑅𝑖)), 

𝐴3𝑖 = −𝜆𝑖𝑆𝑖 , 

𝐴4𝑖 =
𝛽1𝑇0

2𝜌𝑐1
2𝐿2

(𝑙1
2𝐺1 − 𝑙2

2𝐺2)(𝜆𝑖
2 − 𝜉𝜆𝑖𝑅𝑖), 

∆= ∆1 − ∆2 + ∆3 − ∆4, 

∆1= 𝐴11𝐴22(𝐴33𝐴44 − 𝐴43𝐴34) − 𝐴11𝐴23(𝐴32𝐴44 − 𝐴42𝐴34) + 𝐴11𝐴24(𝐴32𝐴43 − 𝐴42𝐴33), 

∆2= 𝐴12𝐴21(𝐴33𝐴44 − 𝐴43𝐴34) − 𝐴12𝐴23(𝐴31𝐴44 − 𝐴41𝐴34) + 𝐴24𝐴12(𝐴31𝐴43 − 𝐴41𝐴33), 

∆3= 𝐴13𝐴21(𝐴32𝐴44 − 𝐴42𝐴34) − 𝐴22𝐴13(𝐴31𝐴44 − 𝐴41𝐴34) + 𝐴13𝐴24(𝐴31𝐴42 − 𝐴41𝐴32), 

∆4= 𝐴14𝐴21(𝐴32𝐴43 − 𝐴42𝐴33) − 𝐴22𝐴14(𝐴31𝐴43 − 𝐴41𝐴33) + 𝐴14𝐴23(𝐴31𝐴42 − 𝐴41𝐴32), 
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𝐵11 = ∆1/𝐴11, 

𝐵12 = −∆2/𝐴12, 

𝐵13 = ∆3/𝐴13, 

𝐵14 = −∆4/𝐴14, 

𝐴𝑖 =
1

∆
(𝑃1̃(𝜉, 𝑠)𝐵1𝑖 + (𝑃2̃(𝜉, 𝑠)𝐵3𝑖), 

𝐵31 = 𝐴12(𝐴23𝐴44 − 𝐴43𝐴24) − 𝐴13(𝐴22𝐴44 − 𝐴42𝐴24) + 𝐴14(𝐴22𝐴43 − 𝐴42𝐴23), 

𝐵32 = −𝐴11(𝐴23𝐴44 − 𝐴43𝐴24) + 𝐴13(𝐴21𝐴44 − 𝐴41𝐴24) − 𝐴14(𝐴21𝐴43 − 𝐴41𝐴23), 

𝐵33 = 𝐴11(𝐴22𝐴44 − 𝐴42𝐴24) − 𝐴12(𝐴21𝐴44 − 𝐴41𝐴24) + 𝐴14(𝐴21𝐴42 − 𝐴41𝐴22), 

𝐵34 = −𝐴11(𝐴22𝐴43 − 𝐴42𝐴23) + 𝐴12(𝐴21𝐴43 − 𝐴41𝐴23) − 𝐴13(𝐴21𝐴42 − 𝐴41𝐴22). 

 

 

5. Particular cases 
 

1. If 𝑎1 = 𝑎3 = 0  from equations (26)-(31) we obtain the corresponding expressions for 

displacements,  stresses, couple stress and conductive temperature in thermoelastic medium 

without energy dissipation.   

2. If we take 𝑎1 = 𝑎3 = 𝑎 , 𝑐11 = 𝜆 + 2𝜇 = 𝑐33, 𝑐12 = 𝑐13 = 𝜆, 𝑐44 = 𝜇, 𝛽1 = 𝛽3 = 𝛽, 𝛼1 =
𝛼3 = 𝛼, 𝐾1 = 𝐾3 = 𝐾   in equations (26)-(31)  , we obtain the corresponding expressions for 

displacements,  stresses, couple stress and conductive temperature for isotropic thermoelastic solid 

without energy dissipation.  

 

 

6. Inversion of the transformations 
 

To obtain the solution of the problem in physical domain, we must invert the transforms in Eqs. 

(30)-(36). Here the distance components, normal and tangential stresses ,conductive temperature 

and  couple stress are functions of 𝑧, the parameters of Hankel and laplace transforms are 𝜉 and 𝑠 

 respectively and hence are of the form 𝑓 (𝜉 , 𝑧, 𝑠). To obtain the function 𝑓(𝑟, 𝑧, 𝑡) in the physical 

domain, we first invert the Hankel transform using 

𝑓(𝑟, 𝑧, 𝑠) = ∫ 𝜉𝑓(𝜉 , 𝑧 , 𝑠)𝐽𝑛(𝜉𝑟)
∞

0
𝑑𝜉.   (38) 

Now for the fixed values of  𝜉 ,𝑟 and 𝑧  the function 𝑓(𝑟 , 𝑧 , 𝑠) in the expression above can be 

considered as the Laplace transform 𝑔 (𝑠) of 𝑔 (𝑡) . Following Honig and Hirdes (1984), the 

Laplace transform  function 𝑔 (𝑠) can be inverted.  The function 𝑔(𝑡) can be obtained by using 

𝑔(𝑡) =
1

2𝜋ἰ
∫ 𝑒𝑠𝑡𝑔̂(𝑠)𝑑𝑠,

𝐶+ἰ∞

𝐶+ἰ∞
  (39) 

where 𝐶 is an arbitrary real number greater than all the real parts of the singularities of 𝑔(𝑠). 

Taking 𝑠 =  𝐶 +  𝑖𝑦 we get 

𝑔(𝑡) =
𝑒𝐶𝑡

2𝜋
∫ 𝑒ἰ𝑡𝑦𝑔(𝐶 + ἰ𝑦)𝑑𝑦

∞

−∞

, (40) 

Now, taking 𝑒−𝐶𝑡𝑔(𝑡)  as ℎ(𝑡)  and expanding it as Fourier series in [0, 2L], we obtain 
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approximately the formula 

𝑔(𝑡) = 𝑔∞(𝑡) + 𝐸𝐷 , 

where 

𝑔∞(𝑡) =
𝐶0

2
+ ∑ 𝐶𝑘,

∞
𝐾=1       0 ≤ 𝑡 ≤ 2𝐿, 

and 

𝐶𝑘 =
𝑒𝐶𝑡

𝐿
𝑅𝑒 [𝑒

𝜋ἰ𝑘𝑡

𝐿 𝑔̂ (𝐶 +
ἰ𝑘𝜋𝑡

𝐿
))]. (41) 

𝐸𝐷 is the discretization error and can be made arbitrarily small by choosing 𝐶 large enough.  

The value of 𝐶 and L are chosen according to the criteria outlined by Honig & Hirdes (1984). 

Since the infinite series in (42) can be summed up only to a finite number of N terms, so the 

approximate value of 𝑔(𝑡) becomes 

𝑔𝑁(𝑡) =
𝐶0

2
+ ∑ 𝐶𝐾 ,𝑁

𝐾=1       0 ≤ 𝑡 ≤ 2𝐿. (42) 

Now, we introduce a truncation error 𝐸𝑇 , that must be added to the discretization error to 

produce the total approximate error in evaluating 𝑔(𝑡) using the above formula. To accelerate the 

convergence, the discretization error and then the truncation error is reduced by using the 

‘Korrecktur method’ and the ‘ϵ-algorithm’, respectively as given by Honig & Hirdes (1984). 

The Korrecktur method formula, to evaluate the function 𝑔(𝑡)is 

𝑔(𝑡) = 𝑔∞(𝑡) − 𝑒−2𝐶𝐿𝑔∞(2𝐿 + 𝑡) + 𝐸𝐷
, , 

where 

|𝐸𝐷
, | ≪ |𝐸𝐷|. 

Thus, the approximate value of 𝑔(𝑡) becomes 

𝑔𝑁𝑘(𝑡) = 𝑔𝑁(𝑡) − 𝑒−2𝐶𝐿𝑔𝑁′(2𝐿 + 𝑡), (43) 

where 𝑁′ is an interger such that  𝑁′ < 𝑁. 
We shall now describe the 𝜖-algorithm, which is used to accelerate the convergence of the 

series in (42). Let N be an odd natural number and 𝑆𝑚 = ∑ 𝐶𝑘
𝑚
𝑘=1  be the sequence of partial sums 

of (42).   We define the ‘𝜖 -sequence’ by 

𝜖0,𝑚 = 0, 𝜖1,𝑚 = 𝑆𝑚, 𝜖𝑛+1,𝑚 = 𝜖𝑛−1,𝑚+1

1

𝜖𝑛,𝑚+1 − 𝜖𝑛,𝑚
; 𝑛,𝑚 = 1,2,3………. 

The sequence   𝜖1,1, 𝜖3,1, ……… 𝜖𝑁,1  converges to   𝑔(𝑡) + 𝐸𝐷 −
𝐶0

2
  faster than the sequence of 

partial sums 𝑆𝑚 ,   𝑚 = 1,2,3, …….  The actual procedure to invert the Laplace transform consists 

of (43) together with the ‘𝜖 −algorithm’. 

The last step is to calculate the integral in Eq. (38). The method for evaluating this integral is 

described in Press et al. (1986). It involves the use of Romberg’s integration with adaptive step 

size. This also uses the results from successive refinements of the extended trapezoidal rule 

followed by extrapolation of the results to the limit when the step size tends to zero. 
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Fig. 1 Variation of conductive temperature 𝜑 with the distance  r(concentrated normal force) 

 
 
7. Results and discussions 
 

For numerical computations, we take the copper material which is transversely isotropic. 

Physical data for a single crystal of copper is given by 

𝑐11 = 18.78 × 1010 𝐾𝑔𝑚−1𝑠−2,     𝑐12 = 8.76 × 1010 𝐾𝑔𝑚−1𝑠−2,     𝑐13 = 8.0 × 1010 𝐾𝑔𝑚−1𝑠−2, 

𝑐33 = 17.2 × 1010 𝐾𝑔𝑚−1𝑠−2, 𝑐44 = 5.06 × 1010 𝐾𝑔𝑚−1𝑠−2,      𝐶𝐸 = 0.6331 × 103𝐽𝐾𝑔−1𝐾−1, 

𝛼1 = 2.98 × 10−5𝐾−1,       𝛼3 = 2.4 × 10−5𝐾−1,    𝑇0 = 293𝐾,      𝜌 = 8.954 × 103𝐾𝑔𝑚−3, 

𝐾1 = 0.433 × 103𝑊𝑚−1𝐾−1,       𝐾3 = 0.450 × 103𝑊𝑚−1𝐾−1,       𝐺1 = 0.1,       𝐺2 = 0.2, 

    𝐺3 = 0.3,      𝐿 = 1,      𝑙1 = 𝑙2 = 𝑙3 = .843. 

Following Dhaliwal and Singh (1980), magnesium crystal is chosen for the purpose of 

numerical calculation (isotropic solid). In case of magnesium crystal like material for numerical 

calculations, the physical constants used are  

𝜆 = 2.17 × 1010𝑁𝑚2, 𝜇 = 3.278 × 1010𝑁𝑚2   , 𝐾 = 1.7 × 102  𝑊𝑚−1𝐾−1,     

 𝛽 = 2.68 × 106  𝑁𝑚−2𝐾−1   ,   𝜌 = 8.954 × 103𝐾𝑔𝑚−3,   𝑇0 = 298 𝐾,    𝐶𝐸 = 1.04 × 103𝐽𝐾𝑔−1𝐾−1.   

The values of normal force stress 𝜎𝑧𝑧  , tangential stress 𝜎𝑧𝑟  , conductive temperature  and 

couple stress 𝑚𝑧𝜃for a transversely isotropic thermoelastic solid with two temperature  (TITWT) , 

isotropic thermoelastic solid with two temperature(ITS)and thermoelastic solid without two 

temperature (TSWT) are presented graphically to show the impact of two temperature.   

i). The solid line with central symbol square(−  −) corresponds to  (TSWT)  for   𝑎1 = 𝑎3 =
0.  

ii) small dashed line with central symbol  circle (− − 𝑜 − −) corresponds to(TITWT) for 𝑎1 =
.05, 𝑎2 = .07. 

iii) solid line with centre symbol triangle (−  ∆ −)  corresponds to (TITWT) for 𝑎1 = .02, 𝑎2 =
.04.  

iv) dashed line with no central symbol(− − − −)   corresponds to (ITS) for 𝑎1 = 𝑎3 = .06.                                                                             
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Fig. 2 variation of tangential stress 𝜎𝑧𝑟  with the distance  𝑟(concentrated normal force) 

 

 
Fig. 3 Variation of normal stress 𝜎𝑧𝑧 with the distance  𝑟(concentrated normal force) 

 

 

7.1 Normal force on the boundary of the half-space 
 

Case 1: Concentrated normal force 

      In Fig. 1, value of conductive temperature  𝜑 decreases for 0 ≤ 𝑟 ≤ 1.5 and increases in the 

remaining range. It is clear from the figure value of 𝜑 is small for all the four cases. In Fig. 2 variation 

of tangential stress  𝜎𝑧𝑟 shows oscillatory behavior for  0 ≤ 𝑟 ≤ 2. For 𝑎1 = 𝑎3 = 0   and 𝑎1 =
.05, 𝑎3 = .07   curves are opposite oscillatory. For 𝑎1 = .02, 𝑎2 = .04  curves first rises for  0 ≤ 𝑟 ≤
1.2 and then falls in the remaining range. Amplitude in above mentioned three cases are smaller. But 

for isotropic case (ITS) curve follow a different trend with large amplitude. Effect of two temperature 

parameter is clearly observed from the figure. In Fig. 3 variation of  normal stress  𝜎𝑧𝑧 is similar as that  
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Axisymmetric deformation in transversely isotropic thermoelastic medium… 

 
Fig. 4 Variation of couple  stress 𝑚𝑧𝜃 with the distance  𝑟(concentrated normal force) 

 

 
Fig. 5 Variation of conductive temperature 𝜑 with the distance  𝑟(normal force over the circular region) 

 

 
Fig. 6 Variation of tangential stress 𝜎𝑧𝑟with the distance 𝑟(normal force over the circular region) 
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Fig. 7 Variation of normal stress 𝜎𝑧𝑧 with the distance  𝑟(normal force over the circular region) 

 

 
Fig. 8 Variation of couple  stress 𝑚𝑧𝜃 with the distance  𝑟 (normal force over the circular region) 

 

 

of Fig. 1 except that of the amplitude/value of the curves. The value of 𝜎𝑧𝑧 is higher than that of the 

corresponding value of  𝜑.  Very near the loading surface values of 𝜑 and 𝜎𝑧𝑧are high.  In fig. 4 couple 

stress 𝑚𝑧𝜃 first monotonically decreases for 0 ≤ 𝑟 ≤ 1.6 and increases slightly in the rest of distance 

axes. Near the loading surface value of  𝑚32 is smallest for (ITS) 𝑎1 = 𝑎3 = 0    than the remaining 

three cases. 

 

Case 2: Normal force over the circular region 

In Fig. 5  variation of  𝜑  with the distance 𝑟 is similar to  that of Fig. 1. Value of  𝜑 are also almost 

same for the same value of 𝑟. In Fig. 6  variation of 𝜎𝑧𝑟 is almost similar to that of Fig. 2. For  𝑎1 =
.02, 𝑎3 = .04  curve is descending oscillatory at the lowest position from the all four curves with very 

small amplitude. For  𝑎1 = .05, 𝑎3 = .07 and For  𝑎1 = 𝑎3 = 0 curves are opposite oscillatory with 

almost same amplitudes.  For isotropic solid curve first decreases for 0 ≤ 𝑟 ≤ 1.2  and then increases 

in the remaining range. Amplitude is greatest in this case. In Fig. 7 all the four curves decrease  as  
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Fig. 9 Variation of conductive temperature  𝜑   with the distance  𝑟(thermal point source) 

 

 
Fig. 10 Variation of tangential stress 𝜎𝑧𝑟  with the distance  𝑟(thermal point source) 

 

 
Fig. 11 Variation of normal stress 𝜎𝑧𝑧 with the distance  𝑟(thermal point source) 
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Fig. 12 Variation of couple  stress 𝑚𝑧𝜃 with the distance  𝑟(thermal point source) 

 

 
Fig. 13 Variation of conductive temperature 𝜑 with the distance  𝑟 (thermal source over the circular region) 

 

 
Fig. 14 Variation of tangential stress 𝜎𝑧𝑟with the distance 𝑟(thermal source over the circular region) 
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Fig. 15 Variation of normal stress 𝜎𝑧𝑧 with the distance  𝑟(thermal source over the circular region) 

 

 
Fig. 16 Variation of couple stress 𝑚𝑧𝜃 with the distance  𝑟(thermal source over the circular region) 

 

 

distance 𝑟 increases  from 𝜎𝑧𝑧 = 2.75 to 00.5 appx. The curve for 𝑎1 = .05, 𝑎3 = .07 is at the lowest 

positon, then curve for 𝑎1 = .02, 𝑎3 = .04 is at above of that . Then comes the curve for  𝑎1 = 𝑎3 = 0 . 

Curve  in case of isotropic thermoelastic solid starts from the uppermost position and cuts the curve for 

𝑎1 = .02, 𝑎3 = .04 at 𝑟 = 1.2.  In Fig. 8  curves for the 𝑚𝑧𝜃 first increase in 0 ≤ 𝑟 ≤ 1.3 and then 

decrease with the moderate amplitude in the rest of the range. 

 

7.2 Thermal source on the boundary of half-space 
 

Case-I: Thermal point source and Case-II: Thermal source over the circular region  

     Figs. 9-12 show the characteristics for thermal source for circular region and Figs. 13-16 show the 

characteristics for concentrated thermal source. It is depicted from Figs.9-16 that the distribution curves 

for  normal stress 𝜎𝑧𝑧 , conductive temperature 𝜑 ,tangential stress 𝜎𝑧𝑟  and couple stress 𝑚𝑧𝜃  for 

thermal source for circular region and concentrated thermal source ,decrease  with  the increase in the 

distance 𝑟  with difference in magnitudes/ value  in their respective patterns for all the cases of 𝑎1 =
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.02, 𝑎3 = .04   𝑎1 = .05, 𝑎3 = .07 , 𝑎1 = 𝑎3 = 0  and isotropic thermoelastic solid(𝑎1 = 𝑎3 = .06). 
Values of physical quantities are higher near the loading surface than the remaining range.   Curve for 

(ITS) 𝑎1 = 𝑎3 = 0   is at uppermost position than the remaining three curves , with the largest 

amplitude in all the Figs. 9-16.  

                                                          

 

7. Conclusions 
 

From the above investigation, it is clear that effect of two temperature plays an important part 

in the study of the deformation of the transversely isotropic thermoelastic body using new 

modified couple stress theory. As r varies from the point of application of the source the 

components of normal stress, tangential stress, couple stress and conductive temperature for 

concentrated normal force and normal force over the circular region follow different types of 

pattern. For thermal point source and thermal source over the circular region, it is observed that the 

variations of normal stress, tangential stress, couple stress and conductive temperature are 

monotonically decreasing with the increase of r with difference in magnitude/value. As the 

disturbances travel through different constituents of the medium, it suffers sudden changes, 

resulting in a variable/ non- uniform pattern of curves. The trend of curves exhibits the properties 

of two temperature of the medium and satisfies the required condition of the problem. The results 

of this problem are very useful in the two dimensional problem of dynamic response of the 

transversely isotropic thermoelastic solid without energy dissipation and with two temperature 

which has various geophysical, biological and industrial applications. 
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