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Abstract.  In this paper, a new application of a four variable refined plate theory to analyze the nonlinear 

bending of functionally graded plates exposed to thermo-mechanical loadings, is presented. This recent 

theory is based on the assumption that the transverse displacements consist of bending and shear 

components in which the bending components do not contribute toward shear forces, and similarly, the shear 

components do not contribute toward bending moments. The derived transverse shear strains has a quadratic 

variation across the thickness that satisfies the zero traction boundary conditions on the top and bottom 

surfaces of the plate without using shear correction factors. The material properties are assumed to vary 

continuously through the thickness of the plate according to a power-law distribution of the volume fraction 

of the constituents. The solutions are achieved by minimizing the total potential energy. The non-linear 

strain–displacement relations in the von Karman sense are used to derive the effect of geometric non-

linearity. It is concluded that the proposed theory is accurate and simple in solving the nonlinear bending 

behavior of functionally graded plates. 
 

Keywords:  functional composites; plate; large deformation; energy method; thermo-mechanical 

loading 

 
1. Introduction 
 

Functionally graded materials (FGM) are a class of composites in which the properties of the 

material gradually change over one or more Cartesian directions. A typical FGM plate considers a 

continuous variation of material properties over the thickness direction by mixing two different 

materials (Miyamoto et al. 1999). The gradual variation of properties avoids the delaminating type 
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failure that is common in laminated composites. The FGM concept has many applications in 

several fields such as aerospace and civil (Miyamoto et al. 1999, Sobhy 2013, Eltaher 2013, 

Ahmed 2014, Kar and Panda 2015, Hadji et al. 2016, Kar and Panda 2016ab, Akbaş 2017, Akavci 

2016, Aldousari 2017, Avcar and Alwan 2017, Civalek 2017, Shahsavari et al. 2018, Ghayesh and 

Farokhi, 2018, Avcar and Mohammed 2018, Bensaid et al. 2018, Avcar 2019, Mohammadzadeh et 

al. 2019). The increase of FGM applications requires accurate plate theories with more realistic 

assumptions. Typically, the analysis of FGM plates is performed using the first-order shear 

deformation theory (FSDT) (Thai and Choi 2013) or higher-order shear deformation theories 

(HSDT), Mantari et al. 2011, Thai and Kim 2013, Siddiqui 2015, Kolahchi et al., 2017). The 

FSDT gives acceptable results but depends on the shear correction factor which is hard to find 

since it depends on many parameters. Although the HSDT with five unknowns are sufficiently 

accurate to predict response of thin to thick plate without the need of a shear correction factor, 

their equations of motion are much more complicated than those of FSDT and classical plate 

theory (CPT).  

A new four variable refined plate theory is developed recently to study the static and the free 

vibration behavior of FGM plate. This new refined plate theory is based on the assumption that the 

in-plane and transverse displacements consist of bending and shear components. Noting that, the 

bending components do not contribute toward shear forces and, likewise, the shear components do 

not contribute toward bending moments. The most interesting feature of this theory is that the 

resulting transverse shear strains has a quadratic variation across the thickness with zero traction 

boundary conditions on the top and bottom surfaces of the plate without using shear correction 

factors. In addition, it has strong similarities with the classical plate theory (CPT) in some aspects 

such as governing equation, boundary conditions and moment expressions. 

It should be noted that recently, the refined theory become more and more popular since it 

simplify the solution by reducing the number of the required unknown variables. This theory has 

been used to solve different mechanical and thermal FGM plates problems (Nguyen-Xuan et al. 

2014, Nguyen-Xuan et al. (2014)). Although several studies on the nonlinear bending behavior of 

functionally graded plates have been carried out based on variety of plate theories, only few 

studies are conducted to study the nonlinear bending behavior of FGM plates using the refined 

plate theory. Therefore, the aim of this study is to extend this new refined theory to the analysis of 

the nonlinear bending behavior of FGM plates.  

Kaci and his co-authors (Bakhti et al. 2013, Kaci et al. 2014, 2013a, b and 2014) presented 

many pieces of research work where they studied the nonlinear bending behavior of simply-

supported FG plate subjected to the action of mechanical loads based on the refined plate theory. 

Nguyen-Xuan et al. (2014) presented isogeometric finite element approach with a refined plate 

theory to carry out static, vibration and buckling analyze FGM plates. Also, and his co-authors 

carried out an Isogeometric analysis of FGM plates where their solution is based on a new quasi-

3D shear deformation theory with adopting the physical neutral surface as a reference. Li et al. 

(2017) studied the thermomechanical bending behavior of sandwich plates using a four-variable 

refined theory. Another refined theories based on non-polynomial kinematics is presented by 

Ramos et al. (2016) to study simply supported sandwich FGM plates under linear and nonlinear 

thermal loading. In their paper, Tornabene et al. (2016) compared the vibration characteristics 

numerical 2D of cylindrical bending models of FGM plats using finite element method versus 3D 

exact model. 

    The primary objective of this paper is to present a general formulation for functionally 

graded plates using the third-order shear deformation plate theory with only four variables instead 
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of five variables and developing the concept of minimal energy method for analysis FGM thick 

plates for simply supported plates based on the third-order theory and non-linear static that 

accounts for the thermo-mechanical coupling and geometric non-linearity. To make the study 

reasonably complete, numerical results of the linear and linear theory are also presented. 

 

 

2. Theoretical formulation 
 

2.1 Displacement field and strains 
 

Consider an elastic plate occupying the region [0,a]×[0,b]×[-h/2, h/2] in rectangular Cartesian 

coordinates  (x, y, z). The mid-plane of the plate is defined by z=0 and its external bounding planes 

being defined by z=±h/2, as shown in Fig. 1. The top and bottom layers of the plate are made of an 

isotropic material with material properties varying smoothly in the z (thickness) direction only. 

Hence, the following displacement field is assumed 
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The function f(z) is chosen in the following form 
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where u0 and v0 are corresponding displacements of a point along the mid plane; wb and ws are the 

bending and shear components of transverse displacement, respectively. 

The non-linear von Karman strain–displacement relationship is as follows 
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On the basis of the displacement field given in Eq. (1), Eq. (3) becomes 
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Fig. 1 Geometry and dimensions of the plate 
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(4) 

 

(5) 

 

2.2 Constitutive equations 
 

Consider a FG plate made of two constituent functionally graded materials, the material 

properties of the plate such as Young’s modulus E, the coefficient of thermal conductivity k, the 

coefficient of thermal expansion α are considered to change continuously across the thickness by 

power law are given by the rule of mixtures as 

( )
mcmc

EVEEzE +−=)(  

( )
mcmc

Vz  +−=  )(  

( )
mcmc

Vz  +−=  )(  

(6) 

where ( )n
c

hzV /5.0 +=  is the volume fraction of ceramic, the subscripts c and m refer to ceramic and 

metal, respectively and n(0≤n≤∞) is the gradient index indicating the volume fraction of material.  
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Fig. 2 Variation of volume fraction of ceramic Vc through the thickness of a FG plate for various gradient 

indexes n 
 

 

The variation of the volume fraction of ceramic Vc across the thickness of the plate is plotted in 

Fig. 2 for various values of the power law index. 

The linear thermo-elastic constitutive relations of an isotropic material are given by 
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(7) 

where 

 
(8) 

and ΔT is the temperature change from a stress-free state. 

 

2.3 Equations of motion 
 

The equilibrium equations associated with the present shear deformation theory are 
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where q(x) is the transverse load on the top surface of the plate. 

In Eq. (9), the generalized stress resultants are defined as 

 

(11) 

Using Eq. (7) in Eqs. (11), the stress resultants of a plate can be related to the total strains by 
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where 

 

(13) 

where Aij, Bij, etc., are the plate stiffness, defined by 

 

(14) 
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(14) 

The stress and moment resultants, T
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2.3 Thermal analysis 
 

It is assumed that the temperature varies only in the thickness direction and constant at the 

ceramic and metal rich surfaces. The one dimensional steady-state heat conduction equation in the 

z-direction is given by 
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Here a stress-free state is assumed to exist at T0=25°C. The thermal conductivity coefficient 

k(z) is assumed to follow the power-law relation in Eq. (5). 

By using the boundary conditions T(h/2)=Tc and T(-h/2)=Tm, and separating the variables in Eq. 

(16) and substituting for κ(z) yields 
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Then, the following variables are introduced 
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Substituting Eq. (18) into Eq. (17) and integrating the result yields 
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Noting that, the exact solution of the integral in Eq. (18) is evaluated by Tuma (1970) for n=0.5 

and integer values of n. Accordingly, by using the solution of Eq. (18) in Eq. (16) for n=0, 0.5 and 

integer values of n, we find 
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where C1n and C2n are simply evaluated by applying the appropriate thermal boundary conditions 

on the top and bottom surfaces of the plate. So, we get 
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Also for the integer values of n the quantity An appearing in Eq. (20) is given by 

 

(23) 

 

2.4 Solution procedure 
 

The summation of strain energy and the change in potential energy of the uniform externally 

applied pressure The total potential energy ( ) of the FGM plate is determined by and is written 

as 

VU +=  (24) 

Here, V (the potential energy of uniform pressure) is given by 
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The principal of minimum potential energy is applied assuming a first guess solution for the 

considered displacements (i.e., u0, v0, wb and ws) over the mid-surface of the plate with considering 

the boundary condition for the simply supported boundaries, as 
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The required above fields of displacement and rotation that satisfy the simply supported 

boundary conditions, are defined as 

 

(28) 

where C, 
bW

0 , and 
sW

0  are arbitrary parameters. These parameters are determined by minimizing 

the total potential energy as 
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Eq. (26) yields a set of three nonlinear equilibrium equations in terms of C, 
bW

0 , and 
sW

0 . 

Noting  that after solving these equations, the obtained constants will be used to calculate the 

displacements (Eq. (28)) and then the strain and stresses are found using Eq. (4) and (7).  
 

 

3. Numerical results and discussion 
 

In the present analysis, two test examples have been analyzed to ensure the accuracy and 

effectiveness of the present proposed method. The features of volume fraction of the ceramic 

phase through the dimensionless thickness direction are outlined in Figure 2. Throughout the 

analysis, it is assumed that the materials are perfectly elastic during the deformations. The 

validation and comparison of the proposed algorithm is analyzed by comparing the results with 

those available in the literature. 

The following nondimensional parameters are introduced: 

• central deflection W=w/h  

• loading parameter Q=qa4/(Emh4)  

• axial stress )/( 22 qah
x

 = , )/(100 22 LTEh
cccx

 =  

• thickness coordinate Z=z/h 
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Table 1 Nonlinear central deflection W=w/h of Si3N4/SUS304 square FGM plates with varying volume 

fraction indexes n subjected to uniform lateral pressure 

a/h n 
q0=4 q0=8 q0=12 q0=16 q0=20 q0=40 

Ref (a) Present Ref (a) Present Ref (a) Present Ref (a) Present Ref (a) Present Ref (a) Present 

10 

0 0.1200 0.1228 0.2551 0.2325 0.3185 0.3258 0.3911 0.4047 0.4597 0.4726 0.6984 0.7152 

0.5 0.1343 0.1378 0.2421 0.2546 0.3402 0.3506 0.4189 0.4306 0.4850 0.4991 0.7471 0.7435 

1 0.1406 0.1444 0.2587 0.2646 0.3504 0.3623 0.4295 0.4435 0.4962 0.5128 0.7618 0.7604 

5 0.1552 0.1596 0.2840 0.2901 0.3814 0.3960 0.4660 0.4827 0.5399 0.5564 0.8209 0.8178 

10 0.1626 0.1671 0.2969 0.3039 0.4031 0.4129 0.4891 0.5021 0.5590 0.5775 0.8901 0.8450 

20 

0 0.1142 0.1179 0.2163 0.2246 0.3075 0.3162 0.3816 0.3945 0.4491 0.4622 0.6837 0.7063 

0.5 0.1283 0.1327 0.2342 0.2466 0.3303 0.3412 0.4086 0.4207 0.4751 0.4889 0.7108 0.7347 

1 0.1343 0.1390 0.2419 0.2563 0.3407 0.3527 0.4202 0.4333 0.4873 0.5024 0.7262 0.7512 

5 0.1479 0.1532 0.2730 0.2811 0.3711 0.3850 0.4560 0.4712 0.5267 0.5448 0.7818 0.8078 

10 0.1550 0.1604 0.2856 0.2941 0.3870 0.4018 0.4740 0.4907 0.5502 0.5661 0.8198 0.8343 

50 

0 0.1123 0.1167 0.2133 0.2225 0.3037 0.3137 0.3781 0.3918 0.4456 0.4594 0.6806 0.7037 

0.5 0.1263 0.1314 0.2315 0.2445 0.3269 0.3387 0.4051 0.4181 0.4675 0.4862 0.7807 0.7321 

1 0.1322 0.1376 0.2392 0.2541 0.3373 0.3501 0.4167 0.4306 0.4841 0.4996 0.7246 0.7485 

5 0.1455 0.1515 0.2616 0.2785 0.3675 0.3821 0.4524 0.4682 0.5236 0.5416 0.7780 0.8048 

10 0.1524 0.1587 0.2739 0.2914 0.3835 0.3989 0.4707 0.4876 0.5433 0.5630 0.8041 0.8315 

100 

 

0 0.1119 0.1165 0.2128 0.2222 0.3031 0.3133 0.3776 0.3914 0.4450 0.4590 0.6806 0.7033 

0.5 0.1259 0.1312 0.2310 0.2442 0.3263 0.3384 0.4045 0.4177 0.4670 0.4858 0.7072 0.7317 

1 0.1319 0.1374 0.2388 0.2537 0.3367 0.3497 0.4162 0.4302 0.4836 0.4992 0.7233 0.7482 

5 0.1451 0.1512 0.2611 0.2781 0.3669 0.3816 0.4518 0.4677 0.5231 0.5412 0.7782 0.8044 

10 0.1520 0.1584 0.2734 0.2910 0.3829 0.3984 0.4701 0.4872 0.5428 0.5626 0.8040 0.8311 

(a) Talha and Singh (2011) 
 

 

Fig. 3 Comparison of load-deflection curve for zirconia/aluminum square FGM plate subjected to uniform 

pressure for different theories 
 

 

Example 1: In this example we consider the nonlinear bending analysis of a square FGM plate  
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Nonlinear thermoelastic analysis of FGM thick plates 

made of silicon nitride (Si3N4) and stainless steel (SUS304), as given by Yang and Shen (2003). 

The top surface of the plate is ceramic-rich, whereas the bottom surface is metal-rich. The material 

properties are:  

Metal (SUS304): Em=207.78 GPa; v=0.28 

Ceramic (Si3N4): Ec=322.27 GPa; v=0.28 

Table 1 shows the nonlinear central deflection for Si3N4/SUS304 FGM square plates. The 

width-to-thickness ratio is taken as a/h = 10, 20, 50 and 100,(i.e., ranging from thick to thin plates) 

and uniform lateral pressure (q= 4, 8, 12, 20, 40). The volume fraction index varies from n=0 to n 

= 10. It is realized that there is no considerable difference in central deflection observed for 

volume fraction index n ≥ 5. According to Table 1 and Fig. 3, a good agreement is observed 

between the present solutions and the literature. 

Example 2. To show the effectiveness of the minimal energy method, illustrative numerical 

examples of nonlinear bending behavior of FGM plate, are solved and the predicted results are 

compared with the existing data available in the literature.  

Considering a plate composed of Aluminum and Zirconia as the respective metal and ceramic 

substances of a FGM which have the following material properties: 

Metal (Aluminum): Em=70 GPa; ν=0.3; αm=23.10-6/°C; κm=204 W/mK. 

Ceramic (Zirconia): Ec=151 GPa; ν=0.3; αc=10.10-6/°C; κc=2.09 W/mK. 

where the thermal load is considered as: Tm=T0 and Tc=T0+300°C. 
 

 

 

Fig. 4 Temperature profile through the thickness of aluminum-Zirconia FGM plate 
 

 

Fig. 5 Non-dimensional central deflection in terms of load parameter P in FGM plate for various values of 

volume fraction exponent in case of linear and nonlinear type of analysis 
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Fig. 6 Non-dimensional central deflection in terms of load parameter P for a simply supported FGM 

square plate under temperature field 

 

 

Fig. 7 Variation of the plate central deflection under combined uniform load and temperature field in case 

of linear and nonlinear analysis 

 

 

Fig. 8 Non-dimensional deflection versus thermal load 

 

 

Fig. 4 represents the variation of the temperature across the FGM plate for various values of the 

volume fraction exponent n. it should be noted the temperature in the FGM plates is always greater 
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Nonlinear thermoelastic analysis of FGM thick plates 

than found in fully ceramic or fully metallic plates. Fig. 5 shows non-dimensional central 

deflection of the FGM plate under load parameter for various values of volume fraction exponent 

in case of linear analysis and nonlinear analysis. Generally, it is observed that linear analysis 

overestimates the central deflection. Also, it is observed that the largest difference between linear 

and the nonlinear analysis is found in case of fully metal plate. Fig. 6 shows the non-dimensional 

central deflection of the plate in terms of the mechanical load with temperature field through the 

thickness of the plate. It should be noted that the central deflection for plate with graded material is 

greater than that of homogenous plate (ceramic or metal). This is due to the effect of the thermal 

conductivity on the deflection where in case of homogenous plate the thermal conductivity has no 

effect on the deflection, while in case of graded plate; the deflection is dependent on the thermal 

conductivity. Also, it is expected that the central deflection of fully metallic plate is greater than 

fully ceramic one. This is because the metal has a higher coefficient of thermal expansion than 

ceramic. In addition, graded plate tends to has downward deflection for higher mechanical 

pressure.  

Variation of the plate central deflection under combined uniform load and temperature field is 

presented in Fig. 7. One can observe that also in this case of loading the linear analysis 

overestimates the central deflection especially in case of fully metallic plate. In addition to that, 

when only thermal load is applied, the deflection of fully metallic plate has the largest positive 

value which means that the plate has upward deflection. A comparison of linear and non-linear 

analysis for non-dimensional center deflection of FGM plates subjected to thermal loading is 

displayed in Fig. 8. Two values of power law index, n, 0.5 and 1 are considered. The figure show 

that the non-linear theory predicts greater deflections than linear theory. It must be emphasized 

that when only thermal load is existing, the use of linear analysis may result in great errors. 

Figs. 9 and 10 show the non-dimensional axial stress through the thickness of the plate under 

uniform loading in case of linear and nonlinear analysis, respectively. It is seen that under the 

application of the pressure loading, the stress are compressive at the top surface and tensile at the 

bottom surface. For the different volume fraction exponents chosen, the plate corresponding to 

n=2 yielded the maximum compressive stress at the top surface. This is the ceramic rich surface. 

Note that the ceramics are weaker in tension than in the compression. 

Fig. 9 shows the non-dimensional central deflection of FGM plate under thermal loading in 

case of linear and nonlinear analysis. By comparing the linear and nonlinear predictions, it is 

observed that grater values are predicted by the nonlinear analysis compared to linear analysis, 

which means that under thermal loading the linear analysis underestimates the central deflection. 

Figs. 10, 11 and 12 show, respectively, the linear and nonlinear plots of the axial stress through the 

thickness of the plate under uniform loading of 104𝑁/𝑚2. For fully metal or fully ceramic plate, 

the axial stress distribution is linear through the thickness for both linear and nonlinear analysis but 

with higher magnitude for linear analysis.  

Also, for linear analysis, the axial stress for different volume fractions is null at the mid-plane, 

while the zero-stress location for the nonlinear analysis is dependent on the volume fraction value.  

It is noted also that, for the linear analysis of graded plate, the axial stress at the top surface is 

same for different volume fractions profile. The same observation is noticed at the bottom surface. 

However, the later observation is not valid for the nonlinear case of analysis.  

In terms of stress magnitude, it should be noted that, the stress magnitude for the linear analysis 

is greater than that predicted by the nonlinear analysis. But for both cases, the magnitude of the 

compression stress at the top surface is always greater than the tensile stress magnitude at the 

bottom surface, for graded FGM plate. Figs. 11 and 12 illustrate the distribution of axial stress  
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Fig. 9 Axial stress through the thickness of the plate under uniform loading of −1x104N/m2 in case of 

linear analysis 

 

 

Fig. 10 Axial stress through the thickness of the plate under uniform loading of −1x104N/m2 in case of 

nonlinear analysis 

 

 

Fig. 11 Non-dimensional axial stresses in a simply supported square FGM plate under uniform loading of 

- 1 x l04 N/m2 and temperature field (aluminum zirconia)- Non-linear analysis 

 

 

through the thickness of FGM plate, according to linear and nonlinear theory under both 

mechanical and thermomechanical loadings for magnitude of transverse load 100x104 N/m2. It is  
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Nonlinear thermoelastic analysis of FGM thick plates 

 

Fig. 12 Non-dimensional axial stresses in a simply supported square FGM plate under uniform loading of 

- 1 x l04 N/m2 and temperature field (aluminum zirconia)- linear Analysis 
 

 

seen that for Fig. 11, the nature of the profile changes drastically for the metallic plate, and the 

magnitude of the compressive stress increases for FGM plates. Again, except for the ceramic plate, 

the stress profiles are close to each other, for the graded plates. Note that the stresses in the latter 

case are again compressive but with a higher magnitude, and this is because of the elastic strain 

which is different between the total strain and the thermal strain. Fig. 12 shows the FGM plate 

corresponding to n=2 experiences the maximum compressive stress at the top surface and the 

metallic and ceramic plates experience the maximum tensile stress at the bottom surface.  
 

 

4. Conclusions 
 

Theoretical formulation models based on the new third-order shear deformation theory with 

four variables is presented in this paper to carry out a nonlinear bending analysis of FGM plates. 

The formulation accounts for the thermo-mechanical coupling and Von-Karman type of geometric 

non-linearity. The material properties are assumed to be graded in the thickness direction 

according to a simple power-law distribution in terms of the volume fractions of the constituents. 

The concept of minimal energy method is used to obtain the solution.  

It is found that the basic response of the plates that correspond to properties intermediate to that 

of the metal and the ceramic, does not necessarily lie in between that of the ceramic and metal.  

The non-dimensional deflection was found to reach a minimum at a volume fraction index that 

depends on the properties and the ratio of the constituents. In the absence of thermal loading, the 

response of the graded plates is intermediate to that of the metal and ceramic plates. This is not the 

case when both thermal and mechanical loads are applied. This behavior is found to be true 

irrespective of boundary conditions. Thus, the gradients in material properties play an important 

role in determining the response of the FGM plates. Additionally, the numerical results show that 

the non-linearity effect on the plate responses is significant. An improvement of the present 

formulation will be considered in the future work to consider other type of materials (Akgöz and 

Civalek 2011, Daouadji et al. 2016, Mahapatra et al. 2016abc, Lal et al. 2017, Daouadji 2017, 

Mehar et al. 2017 and 2018, Hirwani et al. 2018, Patle et al. 2018, Katariya et al. 2018, Behera 

and Kumari 2018, Akbaş 2018 and 2019, Mehar and Panda 2019, Katariya and Panda 2019ab, 

Panjehpour et al. 2018, Ayat et al. 2018, Hussain and Naeem 2019, Sharma et al. 2019, Dash et al. 

2019). 
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