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Abstract.  The paper represents computer modeling of the deformed state of physically nonlinear 
transversally isotropic bodies with hole. In order to describe the anisotropy of the mechanical properties of 
transversally-isotropic materials a structurally phenomenological model has been used. This model allows 
representing the initial material in the form of the coupled isotropic materials: the basic material (binder) 
considered from the positions of continuum mechanics and the fiber material oriented along the anisotropy 
direction of the original material. It is assumed that the fibers perceive only the axial tensile-compression 
forces and are deformed together with the base material. 

To solve the problems of the theory of plasticity, simplified theories of small elastoplastic deformation have 

been used for a transversely-isotropic body, developed by B.E. Pobedrya. A simplified theory allows 

applying the theory of small elastoplastic deformations to solve specific applied problems, since in this case 

the fibrous medium is replaced by an equivalent transversely isotropic medium with effective mechanical 

parameters. The essence of simplification is that with simple stretching of composite in direction of the 

transversal isotropy axis and in direction perpendicular to it, plastic deformations do not arise. As a result, 

the intensity of stresses and deformations both along the principal axis of the transversal isotropy and along 

the perpendicular plane of isotropy is determined separately. The representation of the fibrous composite in 

the form of a homogeneous anisotropic material with effective mechanical parameters allows for a 

sufficiently accurate calculation of stresses and strains. The calculation is carried out under different loading 

conditions, keeping in mind that both sizes characterizing the fibrous material fiber thickness and the gap 

between the fibers-are several orders smaller than the radius of the hole. Based on the simplified theory and 

the finite element method, a computer model of nonlinear deformation of fibrous composites is constructed. 

For carrying out computational experiments, a specialized software package was developed. The effect of 

hole configuration on the distribution of deformation and stress fields in the vicinity of concentrators was 

investigated. 
 

Keywords:  FEM; transversally-isotropic medium; computational experiment; fibrous composite; 
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1. Introduction 
 

Recently, the development of science and computer technologies allows us to create computer 

models that could give us a clear reflection of the stress state of composite structures. Special 

attention has been given to the study of the influence of the structural features of fibrous materials 

and stress concentrators.  

The development of models and solving problems of physically nonlinear deformation of 

fibrous composite materials are devoted to the work of many authors, a list of which is cited in 

(Pobedrya 1997). Where sets out the basic provisions (postulates) of continuum mechanics. Along 

with the classical models, new models are considered, where the material is a composite and the 

connectedness of mechanical fields has been taken into account. An elastoplastic strain analysis is 

carried out for fibrous composites by using numerical modeling. (Polatov 2013) Application of 

homogeneous transversely-isotropic model was chosen based on a problem solution of a square 

plate with a circular hole under uniaxial tension. The results obtained in this study matches the 

solution of fiber model trial problem, as well as to analytical solution. Further, numerical 

algorithm and software has been developed, based on simplified theory of small elastic strains for 

transversely-isotropic bodies and FEM. According to a research (Yang and Chow 1998) the results 

of the experimental and numerical finite element determination of the indices of the anisotropic 

stress-strain state. The problem of uniaxial stretching of graphite-epoxy layered composite 

rectangular plates with unidirectional reinforcing carbon fibers that contain a central circular hole 

has been solved. In monograph (Jain and Mittal 2008) was given, an analysis of the concentration 

and distribution of stresses in isotropic, orthotropic and layered composite plates with a central 

round hole subjected to transverse static load. Moreover, research paper (Abdul and Ishrat 2016), 

represents the effect of a stress concentrator in a rectangular plate. Where the concentrator is a 

round hole. The values of stress concentration factors in the vicinity of the hole, are given and 

obtained by the finite element method. In a research (Tomashevskiy 2011), an algorithm and a 

solution to the problem were considered by taking into account the physical nonlinearity of bodies 

based on the theory of small elastoplastic deformations. It is noted that the solution process using 

the deformation theory is performed much faster than within the framework of the flow theory. It 

is known that the presence in the bodies of structural holes significantly affects the deformation in 

their vicinity. In the paper (Yazici 2007) the elastoplastic analysis of the stresses of an isotropic 

plate in the vicinity of a square hole is carried out. The boundaries of the field of plastic stresses 

around conformally displayed square holes are searched using the elastic equations of G.N. Savin. 

A finite element approach is used to find numerical solutions. Theoretical and finite-element 

elastoplastic solutions for isotropic plates with square holes with corners rounded are compared. 

For the description of elastic-plastic strain process of fibrous composites based on averaging 

method different versions of the plasticity theory are proposed, in which the composite material is 

replaced by a homogeneous anisotropic medium (Bravo-Castillero et al. 2005). The simplified 

theory of small elastoplastic deformations opens up possibilities for solving specific applied 

problems. In the case of bodies with holes, it allows for fairly accurate calculation of stresses and 

strains under various types of loading. Provided that both sizes characterizing the fibrous material - 

the fiber thickness and the width of the gap between the fibers - are several orders of magnitude 

smaller than the radius of the hole (Karpov 2002). To calculate the values of the effective 

mechanical parameters of fibrous materials uses relations derived from asymptotic methods. 

Where the radial interaction of the components (matrices and fibers) is also taken into account, due 

to the difference in their Poisson ratios (Andrianov et al. 2007). Since the deformation of the 
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matrix ensures the loading of high-strength fibers, the consideration of its plastic deformations is 

an important task as well. This makes the study of the stress-strain state of fibrous composites 

most complete (Vasil'yev et al. 1990). 

Composite materials mechanics is one of very rapidly developing research areas, which 

obtained significant theoretical and experimental results. However, non-linear strain processes of 

composite materials with concentrators are not well investigated yet. Modern developments in 

mathematical modeling of transversely-isotropic materials’ elastic-plastic strain process cannot be 

considered as complete. Wide implementation of composite materials has led to the emergence of 

new fields in science related to the study of elastic-plastic materials strain (Lee et al. 2012). In 

connection with this, in order to have reliable composite materials strength evaluation it is relevant 

to use the modern computer technologies (Meer and Sluys 2009). 

In this paper is carried out computer modeling of elastoplastic stress state of fibrous composites 

with hole. A computer model of deforming physically nonlinear transversely isotropic bodies has 

been developed. Solutions of elastic and elastoplastic problems of deforming structures made of 

fibrous composites are obtained. The influence of the configuration of elliptical holes and cracks 

on the stress-strain state of the bonding matrix of fibrous composites in the vicinity of the stress 

concentrator was studied and discussed. 

Structural-phenomenological model is used to describe the anisotropy of the mechanical 

properties of transversely isotropic materials. The starting material is represented as a complex of 

two isotropic materials that work together. The main material (binder) and the material of the 

fibers, which are oriented along the anisotropy direction of the source material. In this case, the 

binder is considered from the standpoint of continuum mechanics. The material of the fibers is 

based on the assumption that the fibers perceive only axial tensile – compression forces and are 

deformed together with the binder. To solve the problem of the theory of plasticity, a simplified 

theory of small elastoplastic deformations is used for a transversely isotropic body (Pobedrya 

1984). Simplification consists in replacing the original fibrous medium with an equivalent 

transversely isotropic medium with effective mechanical parameters. As a result, with simple 

stretching of the composite in the direction of the axis of transversal isotropy and in the direction 

perpendicular to it, plastic deformation does not occur. The values of stress intensity and 

deformations are determined separately both along the main axis of the transverse isotropy 

Oz−(Qu, qu), and in the perpendicularly located isotropy plane Oxy−(Pu, pu).  

 
 
2. Problem statement and solution method 
 

The elastoplastic medium of inhomogeneous solid material is investigated. The medium 

consists of two components: fibers and a matrix (binder) material. The matrix material ensures the 

joint operation of reinforcing elements. To solve the problem, the theory of small elastoplastic 

deformations is used for a transversely isotropic medium (Pobedrya 1984). 

The general formulation of the boundary value problem of the theory of elasticity for 

anisotropic bodies includes: 

- equilibrium equations  

, 0,ij j i iX x V + = 
 (1) 

- generalized Hooke’s law  
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ij ijkl klC = 
 (2) 

- Cauchy relations  
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where ui- is the component of the displacement vector; Xi, Si
0- bulk and surface forces; Σ1, Σ2- part 

of the volume Σ bounding surface V; nj- external normal to the surface Σ2; Cijkl- tensor of elastic 

constants. 

In the simplified theory of small elastoplastic deformations of a transversely isotropic medium, 

the generalized Hooke law (2) takes the following form 

( )2 4 3 33 , =  + + 
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(5) 

where 

4 52 (1 ( )) , 2 (1 ( ))u u u u u uP p p Q q q=  − =  −
 (6) 

( )1( ) 1 sp p p =  −  and ( )2( ) 1 sq q q =  −   - A. Ilyushin’s plasticity functions, whose values in 

the elastic zone are equal to zero.  

1, sр  - hardening coefficients and elastic deformation limits in the isotropy plane Oxy. 

2 , sq  - hardening coefficients and elastic deformation limits along the isotropy axis Oz. 

In the elastic area, the parameters σij  are determined from Hooke‘s law. In the area of plastic 

deformation, the parameters σij are determined on the basis of the A. Ilyushin’s deformation 

theory; 

λi  - elastic constants of a transversally-isotropic medium; 

(Pij, pij) - components of the deviator parts of the transversely-isotropic stress and strain tensors 

in the isotropy plane Oxy; 

(Qij, qij) - components of the deviator parts of the transversely-isotropic stress and strain tensors 

along the isotropy axis Oz  (Pobedrya 1984) 
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where 

( ) ( )3 3 33 3 3 3 3 3 3
2

ij ij i j ij i j i j j ip


=  +   − +    −   +  
 

(9) 

3 3 3 3 33 3 3ε δ ε δ 2ε δ δij i j j i i jq = + −
,       11 22 =  + , (10) 

( ) ( )3 3 33 3 3 3 3 3 3ij ij i j ij i j i j j iP =  +   − +   −   + 
 

(11) 

3 3 3 3 33 3 32ij i j j i i jQ =   +  −   
,      ( )11 22 2=  +

. (12) 

The mechanical parameters of the transversely isotropic material are related to the modules λi 

by the following relations 

( ) 2

1 2 3

2

4 5

1 , ( ) (1 ) , ,

2(1 ) , , 1 2 , .

ef tf ef ef ef ef ef ef

ef ef ef ef ef ef ef

E l E k l E l

G E G l k k E E

   = −  =  +  +  =  

    = = +  = = − −  =   

where μef- effective Poisson's ratio and Eef- effective elastic moduli in the isotropy plane of the 

transversely isotropic material; μ′ef- effective Poisson ratios and E′ef - effective elastic moduli along 

the isotropy axis of the transversely isotropic material. 

It is assumed that the transversal isotropy plane coincides with the plane Oxy, and the isotropy 

axis with the axis Oz. The studied medium is homogeneous with effective mechanical parameters 

both along the isotropy axis and along the isotropy plane. Based on this, the iterative process of the 

initial stress method is used to solve the elastoplastic problem (Brovko et al.  2011). 
 
 

3. Verification of the proposed approach 
 

Software provides users with the universal tools for preparation of the process routine tasks 

automation, data processing, and storage (Polatov and Nodirjanova 2014). In the software 

structure’s finite element model formation is considered, finite elements in the type of 

quadrangular parallelepiped has been used. Computational experiments were performed on the 

basis of FEM. The reliability and correctness of the proposed homogeneous model is confirmed by 

the coincidence of the results obtained on its basis, in the case of an elastic problem, with the 

results of solving a test problem of fibrous structure stretching in the form of a square plate with a 

central circular hole along the fiber (Karpov 2002). And also, on the model of a homogeneous 

transversely isotropic material with effective elastic mechanical characteristics of boron/aluminum 

(Polatov 2013). In the case of an elastoplastic problem, the calculation results coincide with the 

results of solving the problem of stretching a square plate of fibrous material based on the 

variation-difference method (Khaldjigitov 2003). The geometrical dimensions of structures, stress 

concentrators and nodes displacement are dimensionless relative to the length side of a square 

plate. 

First test.  To test the algorithm, the results of the calculation of the problem of two-sided 

compression of a transversely isotropic elastoplastic single cube from a magmatic with uniformly 

distributed loads Pxx = ±104 MPa along the axis OX are considered. Construction material has a 

linear hardening. The main axis of transversal isotropy is directed along the OZ axis. For a given  
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Table 1 Comparison of calculation results 

Model u σxx [MPa] pu Pu[MPa] 

Transversely-isotropic -10.20*10-2 -0.997*104 0.1494 0.705*104 

(Khaldjigitov 2003) -09.57*10-2 -1.003*104 0.1500 0.707*104 

 
Table 2 Comparison of calculation results 

Model σxx [MPa] σzz [MPa] τzx [MPa] τzx [MPa] 

Fibrous (Karpov 2002) 5.91 63.16 -9.12 1.81 

Transversely-isotropic 5.65 60.32 -9.83 1.64 

 

 

load, a uniaxial stress state is observed throughout the cube. The material is completely in plastic 

state. In the first line of Table 1 presents the results of solving the above elastoplastic problem. To 

substantiate the reliability of the obtained results of the calculation, the second line contains the 

solutions of a similar problem based on the variation-difference method (Khaldjigitov 2003). 

Comparison of results confirms the correctness of the results obtained and it should be noted that 

with uniaxial stress, there is a steady convergence of the iterative process. 

Second test.  To confirm correctness transversely isotropic model-elastic problem of stretching 

a plate with a central circular notch was solved. 

The plate is stretched along the axis OZ by a uniformly distributed load Pzz=±10 MPa. The 

studied material is boron/aluminum, which is a fibrous composite. The bonding material is D16 

aluminium alloy, and as an armature - boron fibers directed along the axis OZ are used. The 

volume fraction of boron in the material v=60%.  

For aluminium alloy: Young’s modulus E = 7*104 MPa, Poisson’s ratio μ = 0,32.  

For boron fiber: E′ = 3,9*105 MPa, Poisson’s ratio μ′ = 0,21.  

For boron aluminum, the effective elastic characteristics are as follows:  

E = 16*104 MPa, E ′ = 2,6*105 MPa, G ′ = 5,1*104 MPa (Karpov 2002). 

For comparison, Table 2 shows the results of solving the problem using fibrous and 

transversely isotropic models. The proximity of the solutions suggests that the developed model is 

correct. 
 
 

4. Finite element outcomes and discussion 
 

4.1 Elastic calculation  
 

To study the effect of an isolated hole on the body’s stress-strain state of unidirectional 

composite, a three-dimensional elastic problem of deforming a rectangular plate (its height is 1, 

width – 0,5 and thickness – 0,1) is considered with a uniform uniaxial tension along the axis with a 

distributed load Pzz =100 MPa, applied on the lower and upper edges (Fig. 1). The parameters of σij 

are determined from Hooke’s law, and in relation (6) of the values of the functions of plasticity 

π(p) and χ(q) are equal to zero. As the matrix material is used aluminium alloy D16 with the 

parameters: E=7,1∙104 MPa (modulus of elasticity), μ=0,32 (Poisson’s ratio), ps=0,003. Boron 

fibers with characteristics are used as reinforcing elements: E′=39,7∙104 MPa, μ′ =0,21 (Vasil’yev 

et al. 1990). The fibers of the material are oriented along the axis Oz, the volume content of fibers  
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Fig. 1 The fourth part of the plate section on plane Oxz 

 
Table 3 Parameters of stress-strain state at point A of a cracked plate 

r3/r1 u·105
 σxx, MPa σzz, MPa τzx, MPa pu Pu, MPa 

4 –0,5710 4,215 5,5695 –0,6092 0,00151 1,972 

2 –1,2372 8,684 11,427 –1,0252 0,00266 3,489 

4/3 –1,9507 14,250 18,058 –1,3152 0,00351 4,592 

1 –2,7033 20,406 25,219 –1,5375 0,00421 5,5225 

3/4 –2,6036 32,746 37,874 –1,0085 0,00352 4,6143 

1/2 –2,4438 53,186 59,049 –0,1149 0,00317 4,1593 

1/4 –1,9935 85,801 94,233 0,9611 0,00500 6,5544 

0 –2,060 74,888 30, 862 2,2877 0,00244 32,0307 

 
Table 4 Parameters of stress-strain state at point B of a plate with an elliptical hole (τzy=0) 

r3/r1 w·105
 σxx,  MPa σzz, MPa pu Pu, MPa 

4 3,0528 –46,102 –12, 586 0,00181 23,705 

2 4,3270 –69,287 –13,306 0,00302 39, 595 

4/3 5,6192 –78,653 –10,791 0,00366 47,997 

1 6,9720 –83,022 –7,9411 0,00405 53,104 

3/4 6,4114 –81,179 –7,4131 0,00398 52,174 

1/2 5,8184 –80,714 –7,0060 0,00398 52,132 

1/4 5,0181 –85,329 –7,6285 0,00419 54,956 

0 4,7642 –77,201 –4,4764 0,00393 51,437 

 

 

in the composite is v=60%, the corresponding effective mechanical parameters of boron/aluminum 

are as follows: E=1,3992∙105 MPa, E′=2,6682∙105 MPa MPa, G=0,6551∙105 MPa, G′=0,5396∙105  

MPa, μ=0,0682, μ′=0,2480 (Karpov 2002). 

By computational experiment, the influence of the shape of the hole on the distribution of 

deformation fields and stresses in the plane Oxy of transversal isotropy is investigated. The sizes of 

the large (r1) and small (r3) axes of the concentrator in the form of an ellipse vary. Logically, the 

process is completed by solving an elastic problem of fibrous structure stretching with a horizontal 

rectilinear crack in the center. On the border of a crack, a front is marked out - a plane in which the 

cracks join. From the point of view of the formulation and solution of the problem, the crack banks 

play the role of an additional body boundary. Due to the smallness of the distance between the 

crack tips, it can be considered a mathematical cut, that is, a cavity of zero volume, which is  
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Fig. 2 Changes in the displacements of u- at point A (curve 1) and w- at point B (curve 2) 

 

 

bounded by two geometrically coinciding surfaces—the cut edges. Obviously, the greatest 

stress concentration will be observed near the front. Therefore, in the calculations, the vicinity of 

the crack is divided into smaller finite elements. 

As a stress concentrators are considered: 

- perforating hole in the shape of an ellipse (r1=0,05 and r3=0,01); 

- perforating horizontal rectilinear crack (l=0,1). 

Characteristic points A and B are located in zones of stress concentration: 

for an ellipse (Fig. 1), this is point A at the intersection of the hole contour with the axis and point 

B at the intersection with the axis; for a crack: A- point of the crack tip, B - point in the middle of 

the crack length). 

Tables 3 and 4 show the values of the components of the stress-strain state at characteristic 

points in the vicinity of the hole in the cross section (u, w are the projections of the displacement 

of points, respectively, on the axis Ox and Oz) in the isotropy plane.  When r3/r1=0 (the case of a 

crack) the intensity of stresses Pu in the isotropy plane increases. This is due to the increase in the 

difference of values σxx and σzz. At the same time, the value of the component of the shear stress τzx  

increases and its sign changes to the opposite (Table 3). 

However, the value of the intensity of deformations in the isotropy plane remains half as much 

as if there is an opening in the shape of an ellipse (r3/r1=1/4) (Table 4). Since the transversely 

isotropic medium is a model of a fiber composite, the zone of the last fiber cut by a crack becomes 

the place of the greatest concentration of breaking stress (Fig. 1). The first fiber, adjacent to the 

broken, takes the main load and reduces the intensity of stresses at the points of fiber break 

(Karpov 2002). 

Fig. 2 shows the behavior of displacements u at point A (curve 1) and w at point B (curve 2). 

Each of them reaches its maximum value at a ratio r3/r1=1; in this case, the hole takes the form 

of a circle and has the largest area.  

Fig.3 shows the distributions of the intensity of deformations pu in the isotropy plane in the 

cross section Oxz depending on the ratio r3/r1. Elevated values pu are localized and concentrated in 

the vicinity of the hole. Under the action of tensile load, the central part of the structure, together 

with the hole, is compressed axially Ox. This is also confirmed by the presence of a compressive 

stress component σxx (Table 4). As a result, the hole along the axis Oz is stretched. 

Increased levels of strain intensities and stresses in the isotropy plane are observed in the 

vicinity of the upper and lower parts of the hole. The highest values pu=0,00419 and Pu=54,96  
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Fig. 3 Patterns of the distribution of strain intensity pu in the Oxz section 

 

 

Isolines: 

 
 

Fig. 4 Distribution of strain intensity values -pu in case of crack 

 

   
(a) (b) (c) 

   

(d) (e)  

Fig. 5 The stress intensity distribution Pu [MPa]  (1/4 of the plate) 

 

 

MPa are achieved at r3=0,0125. The distributions of the strain intensity in three computational 

experiments (with ratios r3/r1=4, 2 and 4/3) confirm the locality of the effect of the hole on the 

change in the strain intensity field. According to Fig. 3, it is limited to areas located in the vicinity 

of the upper and lower parts of the hole’s contour. 

In the presence of an isolated straight-line crack (Fig. 4), the maximum values of the strain 

intensity in the isotropy plane are concentrated along the crack brinks, and in the vicinity of the top 

of its value are somewhat lower. 

Zones of stress intensity  Pu in the isotropy plane in the vicinity of the stress concentrator with a 

ratio r3/r1 from 1 to 1/8 (r1=0,005) are shown in Fig. 5(a)-5(d). The maximum of intensity values  
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Fig. 6 Graph of tension changes τzx  (curve 1) and pu at point A (curve 2) 

 

   
(a) (b) (c) 

   

(d) (e) (f) 

 

Isolines: 

 
(g)  

Fig. 7 Distribution of tangential stresses τzx [MPa] in 1/4 of the plate 

 

 

Pu are concentrated near the top (and, at the bottom accordingly, not shown here) of the hole. 

However, as the vertical size of the hole decreases near its lateral parts, zones of elevated stress 

intensity are also formed, which is associated with an increase in the curvature coefficient of the  
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Isolines: 

 
Fig. 8 Distribution of values of tangential stresses τzx [MPa] in case of crack 

 

 

ellipse. It should be noted that in the vicinity of point A, the intensity values of the stresses are 

insignificant. This zone can be clearly seen in Fig. 5(e), which corresponds to the case of an 

isolated straight-line crack. 

Graphs of changes in the tangential component of the stress τzx and strain rate in the isotropy 

plane pu in the vicinity of point A are shown in Fig. 6. Analysis of the results shows that in the 

presence of a crack and a flattened (r3/r1 =1/8) in the direction of the axis of the ellipse, the values 

of the tangential stresses are positive. 

With an increase in the value of the ratio of semiaxes r3/r1 in the range from 1/4 and higher, the 

tangential stresses change sign to negative and reach the maximum value at r3/r1 =1 (circle). The 

presence of tangential stresses usually causes a change in shape. The change in sign with a 

decrease in the value of the vertical axis of the elliptical hole means that the region of maximum 

tangential stresses is formed in the vicinity of point A. This leads to cracks. They propagate along 

the fibers over the entire length of the sample and can lead to a general destruction of the structure.  

To determine the zones of maximum tangential stresses τzx with different ratios of the hole 

parameters, computational experiments were carried out with the values r3/r1 given in Table 1. The 

results of the experiments are presented in Fig. 7. 

At values of r3/r1 =1 (circle) and smaller in the vicinity of the hole, a stable region of maximum 

values τzx is formed. With a decrease in the size of the semi-axis r3 of the elliptical hole (at a 

constant r1 =0,05), the maximum value area encompasses the hole contour (Fig. 7(a)-7(g). In a 

problem with a crack, tangential stresses τzx form in the vicinity of its tips (Fig. 8). These areas are 

the most vulnerable in terms of strength in fiber structures with a hole or crack. Since in this place 

there is a probability of separation of the matrix from high-strength fibers. 
 

4.2 Elastoplastic calculation 
 

The three-dimensional elastoplastic problem of uniformly distributed tension of the plate along 

the axis of the load (Pzz=950 MPa) is considered. The load is applied to the lower and upper edges 

of the plate. The plate has an isolated hole in the shape of an ellipse (r3/r1 =1/8) or a rectilinear 

horizontal crack. The geometric and mechanical parameters of the problem are identical to the 

parameters of the problem in the case of elastic calculation. In the first approximation, the 

effective material constants of the plasticity function of an equivalent transversely isotropic 

medium are equal to the material constants of the duralumin matrix. For comparison, the results in 

Table 5 and 6 show the values of the components of the elastic and elastoplastic state of the plate 

in the transverse isotropy Oxy plane for the section Oxz. They characterize of the matrix material  
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Table 5 Stress-strain state parameters at point B of a plate with an elliptical hole (τzx = 0) 

Type of calculation pu σxx, МPа Pu, МPа 

elastic 0,00398 –810,63 522,09 

elastoplastic 0,00327 –622,23 410,95 

difference, in % 17,84 23,24 21,29 

 
Table 6 Comparison of parameters calculated differently for a plate with a crack 

 
at the top of the crack (A) difference, in 

% 

at the midpoint (B) difference, in 

% elastic elastoplastic elastic elastoplastic 

pu 0,00232 0,00155 33,19 0,00373 0,00338 9,38 

σxx,  MPa 711,44 492,22 30,81 –733,41 –634,13 13,54 

Pu,  MPa 304,29 203,10 33,25 488,65 418,18 14,42 

 

   
(a) (b) (c) 

 

Isolines: 

 

(d)  

Fig. 9 Distribution of strain intensity pu in a plate with an elliptical hole (a, b) and a crack (c, d) in an 

elastic (a, c) and elastoplastic (b, d) cases 
 

 

behavior of fibrous composites. Table 5 contains the values of the parameters of the stress-strain 

state in the isotropy plane in the vicinity of point B of the elliptical hole. Data analysis indicates a 

significant decrease in the values of the intensity of deformations pu and stresses Pu in the isotropy 

plane due to plastic deformations. 

Next, the results of the calculation of the stress-strain state of a plate with a notch in the form of 

a horizontal straight crack (Table 6) are analyzed. 

In the vicinity of the midpoint on the crack tips, the strain intensity values pu>ps in the isotropy 

plane determine the plastic zone. However, in the vicinity of the crack tips, the strain intensity 

values pu<ps correspond to the elastic zone. This confirms that when the fibrous composite is 

stretched along the axis of transverse isotropy, the region of plastic deformations along the  
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(a) (b) (c) 

 

Isolines: 

 
(d)  

Fig. 10 Distribution of tangential stresses τzx [MPa] in a plate with an elliptical hole (a, b) and a crack (c, 

d) in an elastic (a, c) and elastoplastic (b, d) cases 

 

 

isotropy plane concentrates in the vicinity of the middle of the crack tips. And in the vicinity of the 

tips of the crack - the area is elastic. 

Fig. 9 shows the distributions of the intensity of deformations in the isotropy plane for a plate 

with a hole in the form of an ellipse at r3/r1=1/8, plates with a crack obtained from elastic (Fig. 

9(a), 9(c)) and elastoplastic calculations (Fig. 9(b), 9(d)). The areas of plastic deformations are 

concentrated in the vicinity of the upper and lower parts of the ellipse (Fig. 9(b)) and in the 

vicinity of the middle of the crack tips (Fig. 9(d)). 

The same redistribution can be observed even in the presence of a central horizontal rectilinear 

crack (Fig. 10(c), 10(d)). The maximum values of the tangential stress component are formed in 

the vicinity of the crack tips. In the elastoplastic case, the maximum values of this component are 

concentrated directly at the crack tips (Fig. 10(c)).  

Thus, the computational experiment makes it possible to investigate the influence of the shape 

of the holes on the stress-strain state of structures made of fibrous composites, to determine the 

zones of formation of plastic deformations and the localization of areas with maximum tangential 

stresses causing fiber separation from the matrix. The results of the elastoplastic calculation make 

it possible to specify the stress-strain state of the structures and evaluate the true behavior of 

fibrous composites. 

 

 

5. Conclusions 
 

As a result of theoretical studies and computational experiments made, the following were 

performed: 

• A computer model has been developed for solving three-dimensional problems of elastic and 
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elastoplastic deformation of fibrous composites on the basis of the simplified theory of small 

elastoplastic deformations of transversely isotropic media and the finite element method. 

• The effect of holes’ shape on the stress-strain state and the distribution of the strain intensity 

in the isotropy plane in the vicinity of the fibrous composites’ stress concentrator was studied. 

• The plastic deformations areas in the isotropy plane and the redistribution of the parameters of 

the fibrous composites’ stress-strain state in the vicinity of stress concentrators were determined. 

• By means of computational experiment, for different configurations of holes in fibrous 

composites, the location of areas with maximum values of tangential stresses, where high strength 

fibers can detach from the matrix, is defined. 
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