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Abstract.  In this paper, we present a 2D multi-scale coupling computation procedure for localized failure. 

When modeling the behavior of a structure by a multi-scale method, the macro-scale is used to describe the 

homogenized response of the structure, and the micro-scale to describe the details of the behavior on the 

smaller scale of the material where some inelastic mechanisms, like damage or plasticity, can be defined. 

The micro-scale mesh is defined for each multi-scale element in a way to fit entirely inside it. The two scales 

are coupled by imposing the constraint on the displacement field over their interface. An embedded 

discontinuity is implemented in the macro-scale element to capture the softening behavior happening on the 

micro-scale. The computation is performed using the operator split solution procedure on both scales. 
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1. Introduction 
 

The first approach for multi-scale coupling is a numerical version of standard homogenization, 

where the standard form of the stiffness matrix is used, but with the elasticity tensor obtained by 

numerical homogenization. The latter is the product of computations at the micro-scale using the 

fine mesh on RVE - representative volume element (e.g., Feyel and Chaboche 2000, Geers et al. 

2010). The alternative approach for multi-scale coupling is presented in Ibrahimbegovic and 

Markovic (2003) and Ibrahimbegovic (2009), where the micro-scale mesh is placed inside a 

macro-element. Contrary to homogenization, we obtain the element residual and tangent stiffness 

matrix directly. The previously proposed numerical homogenization model is adequate for 

representing elastic behavior and hardening, but not for the localized failure. When a localized 

failure occurs on the micro-scale it cannot be properly transferred to the macro-scale, and the 

macro-scale element is not able to adequately represent the displacement jump. 

To overcome this problem, an embedded discontinuity multi-scale procedure is proposed. In 

this way, the localized failure can be represented on the macro-scale. The proposed procedure, 

described in detail, represents the main contribution and novelty in this paper. 

                                                      
Corresponding author, Ph.D. Student, E-mail: ivan.rukavina@utc.fr 
aChair for Computational Mechanics, Professor, E-mail: adnan.ibrahimbegovic@utc.fr 



 

 

 

 

 

 

Ivan Rukavina, Adnan Ibrahimbegovic, Xuan Nam Do and Damijan Markovic 

2. Multi-scale formulation 
 

In the proposed multi-scale coupling, the two scales are strongly coupled, which means that 

they are exchanging information during the whole analysis, and the computation advances 

simultaneously on both scales. At each time step, both macro and micro-scale computations are 

executed, and only when convergence is obtained at both scales, we advance to the next time step. 

The finite element method is used at both scales, which adds to the generality of the method and 

simplicity of its implementation. A micro-scale mesh, finitely smaller than the macro-scale mesh, 

is placed inside each of the macro-scale elements. Hence, the constitutive equation is not defined 

on the macro element, and its element arrays are obtained from the micro-scale computations. The 

two scales are strongly coupled using displacement based coupling, where the micro-scale 

displacements on the interface are imposed by the macro-scale displacements. 

For scale coupling, the localized Lagrange multiplier method (Park et al. 2002) is used. It 

allows to replace the standard computation of the element tangent stiffness matrices and the 

residual vectors by an assembly of micro-scale contributions which are statically condensed at the 

macro-scale (Hautefeuille et al. 2012). The finite element models on the micro-scale communicate 

between each other only through the degrees of freedom defined at the macro-scale. In this way, 

micro-scale computations are independent of each other and can be executed in parallel, 

significantly reducing execution time. 

 

 
Fig. 1 Multiscale model with FE mesh at both the macro and micro-scale (according to Ibrahimbegovic and 

Markovic 2003) 
 

 

For the variational formulation of a multi-scale problem, the total energy can be written as a 

sum of energies 

 (1) 

where Π𝑀 is the strain energy at the macro-scale, Π𝑚 strain energy at the micro-scale and ΠΓMm
 is 

the energy at the interface between the two scales. 

The external forces are assumed to apply only at the macro-scale, while the constitutive laws 

and the internal variables are defined only at the micro-scale. Hence, each of the energies can be 

written as 
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(2) 

where u𝑀 and u𝑚 are macro and micro-scale displacements respectively, b𝑀 represents volumetric 

forces, 𝑡̅ is the traction force, λ is the Lagrange multiplier that allows for scale coupling, and 𝜓𝑚 is 

the strain energy density. 

Since nonlinear inelastic behavior is considered, an incremental-iterative analysis (e.g., 

Ibrahimbegovic 2009) is used to obtain the final solution. In any typical increment, the central 

problem of multi-scale analysis can be posed as 

For given 𝑢𝑛
𝑀 = 𝑢𝑀(𝑥𝑀 , 𝑡𝑛), 𝑢𝑛

𝑚 = 𝑢𝑚(𝑥𝑚, 𝑡𝑛), 𝜆𝑛 = 𝜆(𝑥𝑀 , 𝑡𝑛), 𝜉𝑘,𝑛 =  𝜉𝑘(𝑥𝑚, 𝑡𝑛), ℎ =

𝑡𝑛+1 − 𝑡𝑛 

find 𝑢𝑛+1
𝑀 , 𝑢𝑛+1

𝑚 , 𝜆𝑛+1, 𝜉𝑘,𝑛+1, such that 

 

(3) 

 

(4) 

 

(5) 

with 𝜉𝑘,𝑛+1 = 𝜉𝑘,𝑛 +  ℎ𝑓(𝑢𝑛+1
𝑀 , 𝑢𝑛+1

𝑚 , 𝜆𝑛+1, 𝜉𝑘,𝑛+1) 

The standard finite element shape functions for the isoparametric Q4 element (e.g., 

Ibrahimbegovic 2009) are used at the macro-scale 

 
(6) 

where ξ𝑎 and η𝑎 are the coordinates of node a. 

At the micro-scale, the constant strain triangle (CST) element with one integration point is 

used. We implemented the damage model with incompatible mode, as described in Do and 

Ibrahimbegovic (2018) and Ibrahimbegovic and Brancherie (2003). 

The displacement field approximations at the micro and macro-scale, and localized Lagrange 

multipliers are calculated with standard finite element approximations, which can be written as 
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(7) 

Keeping in mind the above stated approximations, the central problem can now be rewritten as 

follows 

For given 𝑑𝑛
𝑀,𝐸 , 𝑑𝑛

𝑚, β𝑛 , ξ𝑘,𝑛;  ∀ΩM,E 

find 𝑑𝑛+1
𝑀,𝐸 , 𝑑𝑛+1

𝑚 , β𝑛+1, ξ𝑘,𝑛+1, 

such that (∀𝑒 ∈ [1, 𝑛𝑒𝑙
𝑚], ∀𝐸 ∈ [1, 𝑛𝑒𝑙

𝑀]) 

 

(8) 

 

(9) 

 
(10) 

with 𝜉𝑘,𝑛+1 = 𝜉𝑘,𝑛 +  ℎ𝑓(𝑑𝑛+1
𝑀,𝐸 , 𝑑𝑛+1

𝑚 , 𝜆𝑛+1, 𝜉𝑘,𝑛+1) 

The localized Lagrange multipliers enforce that the displacements of the interface nodes at the 

micro-scale are calculated as a linear interpolation of the nodal values of displacements at the 

macro-scale. This can be achieved by choosing the Dirac delta functions 𝛿(𝑥 − 𝑥𝑎) centered upon 

the micro-scale interface nodes 𝑥𝑎 ∈ 𝛤𝑀,𝐸. By introducing it into (10), we can obtain 

 
(11) 

Finally, the micro-scale nodal displacement vector on the interface can be written as 

 
(12) 

where 𝑇𝐸 is the connectivity matrix, and 𝑑𝑛+1
𝑀,𝐸

 are macro-scale nodal displacements. 

The connectivity matrix 𝑇𝐸 is based on the particular values of macro-scale shape functions 

which correspond to the interface nodes. Namely, that matrix is constructed by simply introducing 

the isoparametric coordinates of each micro-scale node on the interface into the macro-scale shape 
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functions 𝑁𝑎. 

The standard finite element system of equations for computing the increment of the 

displacement field on the micro-scale can be written as 

 

(13) 

where 𝐊̿ is the part of the stiffness matrix related only to interface nodes, 𝐊̅ is related to interface 

nodes in relation to free nodes and 𝐊 is related only to free nodes. In the same way, ∆𝐝̅ and 𝐫̅ are 

the displacement increments and residuals of the interface nodes, and ∆𝐝 and 𝐫 are displacement 

increments and residuals of free nodes. 

The static condensation (e.g., Ibrahimbegovic 2009) can be performed on the previous system 

of equations. First, the displacement field increment of free nodes can be expressed as 

 (14) 

Introducing (14) to the first equation from (13) we can obtain 

 
(15) 

Then, the statically condensed stiffness matrix and residual obtained at the micro-scale can be 

written as 

 

(16) 

After the computations on the micro-scale have converged, the final values of the condensed 

stiffness matrix and residual are used to compute the values of the stiffness matrix and residual to 

be used at the macro-scale 

 

(17) 

When the values of the macro-scale stiffness matrix and residual are computed, they are used to 

update the values of the macro-scale displacement field. The standard finite element system of 

equations needs to be solved 

 (18) 

 
 

3. Multi-scale formulation for localized failure 
 

The multi-scale formulation described in the previous chapter cannot take into account the 

crack propagation. So the localized failure that can happen on the micro-scale cannot be 

transferred to the macro-scale. In order to allow for the multi-scale model to represent localized 

failure, the corresponding incompatible mode is introduced inside the macro-scale element. In this 

way, the displacement discontinuity can be properly transferred from micro to macro-scale. The 

discontinuity is positioned at the center of the Q4 element. Vectors n and m are normal and 
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tangential vectors at the discontinuity. In this paper, for simplicity, we will illustrate such model 

for a simple tension test, which can take into account only the crack opening in mode I. Thus, only 

the normal direction vector will have a non-zero value. The element domain is divided into two 

sub-domains: Ω𝑒− and Ω𝑒+, as shown in Fig. 2(a). Hence, the incompatible mode function can be 

written as 

 
(19) 

where 𝐻Γ is the Heaviside step function defined as 

 
(20) 

 

 

  
(a) (b) 

Fig. 2(a) Q4 isoparametric element with two sub-domains related to the displacement jump; (b) 

Incompatible mode shape function M for the discontinuity in the middle of the element 

 

 

Now, the macro-scale displacement field from (7) can be rewritten as 

 
(21) 

where α𝑛+1
𝑀,𝐸

 is the value of the displacement discontinuity. 

Now the macro-scale displacement field approximation can be introduced into (10) 

 

(22) 

The displacement field on the micro-scale interface nodes is now a function of both the macro- 

scale displacement field and the displacement discontinuity 

 
(23) 
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The final expression used to compute the micro-scale nodal displacement field on the interface 

can be written as 

 
(24) 

where 𝐒E  is the connectivity matrix for the incompatible mode, and 𝛼𝑛+1
𝑀,𝐸

 is the displacement 

jump.  

The additional connectivity matrix 𝐒E is constructed based on the macro-scale incompatible 

mode function. The isoparametric coordinates of each micro-scale interface node are introduced 

into the macro-scale incompatible mode function M. 

The system of equations that needs to be solved on the macro-scale can be defined as 

 
(25) 

To construct the macro-scale stiffness matrix needed for solving the macro-scale system of 

equations, submatrices 𝐊M, 𝐅M and 𝐇M are computed as 

 

(26) 

This corresponds to the way this submatrices are computed in the standard finite element 

procedure on the global level for the incompatible mode method 

 

(27) 

where 𝐁𝑒  is the matrix containing the shape functions derivatives, 𝐆𝑒  is the matrix containing 

incompatible mode function derivatives, and 𝐂𝑒𝑑 is the tangent elasto-damage tensor. 

In the same way, the macro-scale residuals are computed using the values of micro-scale 

residuals and transformation matrices T and S 

 

(28) 

In the standard finite element procedure, the values of residuals are computed as 

 

(29) 
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Fig. 3 The macro-scale and micro-scale data transferred between the scales in every time step (according to 

Ibrahimbegovic and Markovic (2003) with added data for the incompatible mode) 

 

 

The system of Eq. (25) is solved using the operator split procedure (e.g., Ibrahimbegovic 2009). 

First, the values of the macro-scale displacements are fixed, while the correct value of α𝑀 has to 

be calculated iteratively. Each iteration consists of calling the micro-scale computations with the 

imposed micro-scale interface displacement field as a function of the macro-scale displacement 

field and displacement discontinuity field. After each micro-scale iteration, the value of the macro-

scale displacement jump increment is computed from the equation 

 (30) 

and then the value of the macro-scale displacement jump is updated as 

 (31) 

If the value of the residual 𝐡𝑛+1
𝑀,𝐸(𝑖,𝑗)

 obtained by the micro-scale computations is smaller than 

the chosen tolerance, we can stop the iterations, since the correct value of 𝛂𝑛+1
𝑀,𝐸(𝑖)

 is reached. If the 

residual 𝐡𝑛+1
𝑀,𝐸(𝑖,𝑗)

 is greater than the tolerance, we start another micro-scale iteration (j) to update 

the value of 𝛂𝑛+1
𝑀,𝐸(𝑖)

. The micro-scale computation is then executed with the updated value of 

𝛂𝑛+1
𝑀,𝐸(𝑖,𝑗+1)

 from the current iteration, so the micro-scale interface displacement field is updated 

again using (24). The detailed flow-chart of the proposed multi-scale operator split solution 

procedure is shown in Algorithm 1. 

After the value of 𝛂𝑀  has converged, the second step of the operator split procedure is 

activated. In the second step the value of 𝛂𝑀  is fixed and the values of the macro-scale 

displacement field iterative contributions are computed as 

 (32) 
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followed by the corresponding update of the macro displacements 

 (33) 

 

 

 
Algorithm 1: Operator split multi-scale iterative solution procedure 
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4. Software implementation 
 

For implementing the proposed procedure, we use the Finite Element Analysis Program 

(FEAP) (see Zienkiewicz et al. 2013). It is chosen because different material behaviors can be 

easily implemented by changing the existing code. To simulate behavior on both macro and micro-

scale, two different version of FEAP code are implemented (as explained in Niekamp et al. 2009). 

macroFEAP is used on the macro-scale, and its behavior is different from the standard version in 

the sense that it can initiate the execution of microFEAP instances and use the obtained results. 

microFEAP was modified in a way that it can take the input data, and its execution can be 

controlled from the macroFEAP code. For coupling the two codes and exchanging information 

between them, Component Template Library (CTL) is used (see Niekamp et al. 2014). 

 

 

 
Fig. 4 Parallel execution and code coupling with CTL (according to Niekamp et al. 2009) 

 

 

To solve a multi-scale problem example, one instance of macroFEAP process and 𝑛𝑒𝑙𝑒𝑚
𝑀  

instances of microFEAP processes are created (as shown in Fig. 4), where 𝑛𝑒𝑙𝑒𝑚
𝑀  is the number of 

elements in the macro mesh. microFEAP instances are executed in parallel, as they do not need 

any communication between them, since they are not using the same data. Input data for the 

macro-scale consists of defining the macro mesh and boundary conditions. The constitutive 

properties of the material do not have to be defined, as they will be obtained from the micro-scale 

computations. On the micro-scale, the mesh has to be defined, but no boundary conditions, as 

those are automatically imposed by the multi-scale solution procedure. 

In each time step, the macroFEAP instance transfers the nodal displacement field and 

displacement discontinuity field for each macro-scale element to the corresponding microFEAP 

instance using CTL. Based on that input, microFEAP instances solve the imposed problem in 

parallel. After obtaining the final values of the stiffness matrix and residual, they transfer them 
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back to macroFEAP. Only when all microFEAP instances finished their execution and results are 

transferred, macroFEAP can continue its execution. 
 

 

5. Numerical examples 
 

5.1 Validation examples for the proposed multi-scale approach 
 

To validate the theoretical formulation with numerical examples, we have chosen a simple 

tension test. The results for the proposed multi-scale method are compared against the monolithic 

solution and previously developed multi-scale method. The goal was to prove that the embedded 

discontinuity multi-scale method can represent the localized failure and produce the same quality 

results as the monolithic solution. The simple tension test with boundary conditions and imposed 

displacement is shown in Fig. 5. 
 

 

 
Fig. 5 Simple tension test - boundary conditions 

 

 

The mesh for the mono-scale example (shown in Fig. 6(a)) consist of 18 x 18 CST elements. 

The weakened elements that are going to crack first are shown in gray. The macro-scale mesh 

(shown in Fig. 6(b) of the multi-scale example has the same dimensions as the mono-scale mesh, 

and consists of 3 x 3 Q4 elements. 
 

 

  
(a) (b) 

Fig. 6(a) Mono-scale mesh; (b) Macro-scale mesh 
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(a) (b) 

Fig. 7(a) Micro-scale mesh with weakened elements; (b) Micro-scale mesh without weakened elements 

 

   
(a) (b) (c) 

Fig. 8 Force-displacement diagrams for elastic response: (a) Mono-scale; (b) Multi-scale; (c) ED-FEM 

multi-scale 

 

 

Inside each of the macro-scale elements there is a micro-scale mesh that consists of 6 x 6 CST 

elements. A different micro-scale mesh can be defined for each macro-scale element. The three 

central macro-scale elements (where the crack should appear) contain the micro-mesh shown in 

Fig. 7(a). The other six macro-scale elements on the left and the right side contain the micro-mesh 

without the weakened elements (shown in Fig. 7(b)). For the multi-scale example, there are 

boundary conditions imposed only on the macro-scale. 

In this way, the mono-scale and the multi-scale examples have the same total number of CST 

elements, the same position of the weakened elements and the same dimensions, and therefore 

should behave in the same way. The central column of the weakened CST elements inside the 

micro-scale mesh coincides with the displacement discontinuity of the Q4 macro-scale element. 

The element used for this analysis is the CST damage element described in Do and 

Ibrahimbegovic (2018). 

We have chosen the following material parameters for the CST damage element: the Young’s 

modulus E = 38 000 MPa, the hardening modulus 𝐾̅ = 1000 MPa, the Poisson’s ratio ν = 0, the 

limit stress for hardening 𝜎̅ = 2 MPa, the ultimate stress 𝜎̿ = 2.5 MPa, the ratio of the softening 

parameter and the ultimate stress is 20, and the ratio between the tangential and the normal 

direction ultimate stress is 0.3. The dimensions of the mesh are 300 x 300 mm and the imposed 

displacement 𝑢̅ = 1 mm. 
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Fig. 9 Superposed force-displacement diagrams for elastic response computed by three different methods 

 

 

5.2 Elastic response 
 

When the stress is small enough and only elastic response is obtained, the results for mono-

scale and both multi-scale methods produce the same force-displacement diagram as shown in Fig. 

8. Both multi-scale methods are giving the same results since no crack appears on the micro-scale, 

so there is no need to represent it on the macro-scale. Only the stiffness matrix 𝐊𝑀 and the residual 

𝐡𝑀 are transferred from the micro to the macro-scale. 

 

5.3 Elasto-damage with hardening 
 

When the structure enters the hardening phase, the force-displacement diagrams for all three 

methods are still the same, as shown in Fig. 10. The only change compared to the elastic phase are 

the values of the stiffness matrix 𝐊𝑀 due to the introduction of the hardening modulus 𝐾̅. These 

changes are successfully captured and transferred from the micro to the macro-scale for both 

multi-scale methods. 

 

 

   
(a) (b) (c) 

Fig. 10 Force-displacement diagrams for elasto-damage with hardening: (a) Mono-scale; (b) Multi-scale; (c) 

ED-FEM multi-scale 
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Fig. 11 Superposed force-displacement diagrams for elasto-damage with hardening computed by three 

different methods 
 

   
(a) (b) (c) 

Fig. 12 Force-displacement diagrams for elasto-damage with softening: (a) Mono-scale; (b) Multi-scale; (c) 

ED-FEM multi-scale 

 

 
Fig. 13 Superposed force-displacement diagrams for elasto-damage with softening computed by three 

different methods 
 

 

5.4 Elasto-damage with softening 
 

When the value of the ultimate stress in the CST element is reached, a macro-crack appears and 

starts to open. The regular multi-scale method cannot transfer the displacement jump on the 
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macro-scale and therefore cannot produce the correct results. The micro-scale nodal displacement 

field on the interface is not computed correctly, which leads to a concentration of the stresses 

around the crack, and finally a collapse of the whole structure. That results in a force-displacement 

diagram shown in Fig. 12(b). 

The proposed ED-FEM multi-scale method can transfer the displacement jump on the macro- 

scale and therefore allow the crack opening to increase until the stresses reach zero (as shown in 

12(c)). The results for the mono-scale and ED-FEM multi-scale are the same for each time step of 

the analysis, and the values differ only after the fifth significant figure. 

 

5.5 Validation examples of mesh objectivity 
 

To prove that the proposed ED-FEM multi-scale method is not mesh dependent, we have tested 

it for two more examples with a different number of micro-scale mesh elements. In Fig. 14(a), the 

micro-scale mesh consists of 6 x 6 CST elements, in Fig. 14(b) of 18 x 18 elements and in Fig. 

14(c) of 54 x 54 CST elements. The weakened elements that are present only in the central macro-

scale elements are again shown in gray. 
 

 

   
(a) (b) (c) 

Fig. 14 Micro-scale mesh (a) 6 x 6 elements; (b) 18 x 18 elements; (c) 54 x 54 elements 

 

 

After running the ED-FEM multi-scale method examples with different micro-scale meshes, we 

have obtained the identical results for all three cases as shown in Fig. 15. 
 

 

   
(a) (b) (c) 

Fig. 15 Force-displacement diagrams for elasto-damage with softening for different number of micro-scale 

elements: (a) 6 x 6 elements; (b) 18 x 18 elements; (c) 54 x 54 elements 
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Fig. 16 Superposed force-displacement diagrams for elasto-damage with softening computed with different 

number of micro-scale elements 
 
 
6. Conclusions 
 

In this work, we have presented an improved version of a strong multi-scale coupling that can 

take into account localized failure. The crack opening on the macro-scale is modeled using the 

embedded strong discontinuity. It allows the computation to enter into the softening phase, where 

the damage occurs and the crack starts to propagate. The operator split procedure is introduced on 

the macro-scale to compute the nodal displacement field and the displacement discontinuity field. 

We have shown on a simple 2D tension test that the proposed method produces the same results as 

a benchmark mono-scale method, and shows an improvement for the softening phase compared to 

the previously developed multi-scale method. 

The next step for improving this method would be to add the functionality of crack opening for 

both mode I and mode II (Do et al. 2017). In this way, a crack could occur and propagate at a 

certain angle, and some more complex examples, like the three-point bending test, could be 

executed. Additionally, the multi-scale coupling formulation can be adapted to work for localized 

failure in 3D. 
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