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Abstract.  Here in this investigation, a two-dimensional thermoelastic problem of thick circular plate of 

finite thickness under fractional order theory of thermoelastic diffusion has been considered in frequency 

domain. The effect of frequency in the axisymmetric thick circular plate has been depicted. The upper and 

lower surfaces of the thick plate are traction free and subjected to an axisymmetric heat supply. The solution 

is found by using Hankel transform techniques. The analytical expressions of displacements, stresses and 

chemical potential, temperature change and mass concentration are computed in transformed domain. 

Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically 

simulated results are depicted graphically. The effect frequency has been shown on the various components. 
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1. Introduction 
 

The use of fractional order derivatives and integrals leads to the formulation of certain physical 

problems which is more economical and useful than the classical approach. There exist many 

material and physical situations like amorphous media, colloids, glassy and porous materials, 

manmade and biological materials/polymers, transient loading etc., where the classical 

thermoelasticity based on Fourier type heat conduction breaks down. In such cases, one needs to 

use a generalized thermoelasticity theory based on an anomalous heat conduction model involving 

time fractional (non- integer order) derivatives. 

Diffusion is defined as the spontaneous movement of the particles from high concentration 

region to the low concentration region, and it occurs in response to a concentration gradient 

expressed as the change in concentration due to change in position. Thermal diffusion utilizes the 

transfer of heat across a thin liquid or gas to accomplish isotope separation. The thermodiffusion in 

elastic solids is due to coupling of fields of temperature, mass diffusion and that of strain in 

addition to heat and mass exchange with the environment.  

Povstenko (2005) proposed a quasi-static uncoupled theory of thermoelasticity based on the 

heat conduction equation with a time-fractional derivative of order α. Because the heat conduction 

equation in the case 1α2 interpolates the parabolic equation (α=1) and the wave equation (α=2), 
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this theory interpolates a classical thermoelasticity and a thermoelasticity without energy 

dissipation. He also obtained the stresses corresponding to the fundamental solutions of a Cauchy 

problem for the fractional heat conduction equation for one-dimensional and two-dimensional 

cases. 

Povstenko (2009) investigated the nonlocal generalizations of the Fourier law and heat 

conduction by using time and space fractional derivatives. Youssef (2010) proposed a new model 

of thermoelasticity theory in the context of a new consideration of heat conduction with fractional 

order and proved the uniqueness theorem. Jiang and Xu (2010) obtained a fractional heat 

conduction equation with a time fractional derivative in the general orthogonal curvilinear 

coordinate and also in other orthogonal coordinate system. Povstenko (2010) investigated the 

fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated 

thermal stresses. 

Ezzat (2011a) constructed a new model of the magneto-thermoelasticity theory in the context 

of a new consideration of heat conduction with fractional derivative. Ezzat (2011b) studied the 

problem of state space approach to thermoelectric fluid with fractional order heat transfer. The 

Laplace transform and state-space techniques were used to solve a one-dimensional application for 

a conducting half space of thermoelectric elastic material. Povstenko (2011) investigated the 

generalized Cattaneo-type equations with time fractional derivatives and formulated the theory of 

thermal stresses. Biswas and Sen (2011) proposed a scheme for optimal control and a pseudo state 

space representation for a particular type of fractional dynamical equation. Ezzat and Ezzat (2016) 

constructed fractional thermoelasticity applications for porous asphaltic materials. Several 

researchers (Ezzat and Bary 2016, Marin and Oechsner 2017, Marin 2013, 1997, Marin et al. 

2013, Kumar et al. 2016b, 2016a, 2017), Lata 2018, 2018a, Mahmoud 2016) presented modelling 

of magneto-thermoelasticity for perfect conducting materials.  

Ying and Yun (2015) built a fractional dual-phase-lag model and the corresponding bio-heat 

transfer equation. Tripathi et al. (2015) analysed generalized thermoelastic diffusion problem in a 

thick circular plate with axisymmetric heat supply. Many active researchers worked and 

contributed in this area Abbas and Kumar (2015), Abbas et al. (2015), Abbas et al. (2015), 

Zenkour and Abbas (2014). Xiong and Niu (2017) established fractional order generalized 

thermoelastic diffusion theory for anisotropic and linearly thermoelastic diffusive media. Kumar 

and Sharma (2017) studied the effect of fractional order on energy ratios at the boundary surface 

of piezothermoelastic medium. Tripathi et al. (2018) studied fractional order generalized 

thermoelastic response in a half space due to a periodically varying heat source. 

Here in this investigation, an axisymmetric thick circular plate under fractional order theory of 

thermoelastic diffusion has been examined in frequency domain. The upper and lower surfaces of 

the thick plate are traction free and subjected to an axisymmetric heat supply. The solution is 

found by using Hankel transform techniques. The components of displacements, stresses and 

chemical potential, temperature change and mass concentration are computed numerically. 

Numerically computed results are depicted graphically. The effect of frequency has been shown on 

the various components.  

 

 

2. Basic equations 
 

Following Ezzat and Fayik (2014), the basic equations of motion, heat conduction and mass 

diffusion using the fractional order theory of thermoelastic diffusion in a homogeneous isotropic 
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thermoelastic solid in the absence of body forces, heat sources and mass diffusion sources are 

(𝜆 + 𝜇)∇(∇. 𝑢) + 𝜇∇2𝑢 − 𝛽1∇𝑇 − 𝛽2∇𝐶 = 𝜌𝑢̈, (1) 

𝐾𝑇,𝑖𝑖 = (1 +
(𝜏0)

𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼) [𝜌𝐶𝐸𝑇̇ + 𝛽1𝑇0𝑒̇𝑘𝑘 + 𝑎𝑇0𝐶̇], (2) 

(𝐷𝛽2∇
2(∇. 𝑢) + 𝐷𝑎∇2𝑇 − 𝐷𝑏∇2𝐶) +

𝜕

𝜕𝑡
(1 +

(𝜏)𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼)𝐶 = 0, (3) 

and the constitutive relations are 

𝜎𝑖𝑗 = 2𝜇𝑒𝑖𝑗 + 𝛿𝑖𝑗(𝜆𝑒𝑘𝑘 − 𝛽1𝑇 − 𝛽2𝐶), (4) 

𝜌𝑇0𝑆 = (1 +
(𝜏0)

𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼) (𝜌𝐶𝐸𝑇 + 𝛽1𝑇0𝑒𝑘𝑘 + 𝑎𝑇0𝐶), (5) 

𝑃 = −𝛽2𝑒𝑘𝑘 − 𝑎𝑇 − 𝑏𝐶. (6) 

Following Caputo (1967), the fractional derivative of order 𝛼 ∈  (0,1]  of the absolutely 

continuous function f(t) is 

𝑑𝛼

𝑑𝑡𝛼 𝑓(𝑡) = 𝐼1−𝛼𝑓′(𝑡), (7) 

and the fractional integral 

𝐼𝛼𝑓(𝑡) = ∫
(𝑡−𝜏)𝛼−1

Γ(𝛼)
𝑓(𝜏)𝑑𝜏,

𝑡

0
 𝛼 > 0. (8) 

where 𝐼𝛼  is the fractional integral of the function 𝑓(𝑡) of order 𝛼  defined by Miller and Ross 

(1993), 
𝑑𝛼

𝑑𝑡𝛼 represents the derivative of order 𝛼, 𝑓(𝑡) is any well defined continuous function of 

variable t, 𝛽1= (3𝜆 + 2𝜇)𝛼𝑡, 𝛽2= (3𝜆 + 2𝜇)𝛼𝑐, 𝛼𝑐  is the coefficient of linear diffusion expansion 

and 𝛼𝑡 is the coefficient of thermal linear expansion. In above equations, a comma followed by 

suffix denotes spatial derivative and a superposed dot denotes derivative with respect to time. 

 

 

3. Formulation and solution of the problem 
 

Consider a thick circular plate of thickness 2d occupying the space D defined by 0 ≤ 𝑟 ≤ ∞, 

−𝑑 ≤ 𝑧 ≤ 𝑑. Let the plate be subjected to an axisymmetric heat supply and chemical potential 

source with stress free boundary depending on the radial and axial directions of the cylindrical co-

ordinate system. The initial temperature in the thick plate is given by a constant temperature 𝑇0. 
The heat flux and chemical potential sources of unit magnitude are prescribed along with 

vanishing of stress components on the upper and lower boundary surfaces along with traction free 

boundary 𝑧 = ±𝑑. We take a cylindrical polar co-ordinate system (𝑟, 𝜃, 𝑧) with symmetry about 𝑧 

–axis. As the problem considered is plane axisymmetric, the field component 𝑢𝜃 = 0 , and 

𝑢𝑟, 𝑢𝑧, 𝑇 and C are independent of 𝜃 . The components of displacement vector 𝑢⃗  for the two-

dimensional axisymmetric problem take the form    

 𝑢⃗⃗⃗   = (𝑢𝑟, 0, 𝑢𝑧), (9) 
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Eqs. (1)-(6) with the aid of (9) take the form 

(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑟
+ 𝜇 (∇2 −

1

𝑟2) 𝑢𝑟 − 𝛽1
𝜕𝑇

𝜕𝑟
− 𝛽2

𝜕𝐶

𝜕𝑟
= 𝜌

𝜕2𝑢𝑟

𝜕𝑡2  , (10) 

(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑧
+ 𝜇∇2𝑢𝑧 − 𝛽1

𝜕𝑇

𝜕𝑧
− 𝛽2

𝜕𝐶

𝜕𝑧
= 𝜌

𝜕2𝑢𝑧

𝜕𝑡2  , (11) 

K∇2𝑇 = (1 +
(𝜏0)

𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼) [𝜌𝐶𝐸𝑇̇ + 𝛽1𝑇0
𝜕

𝜕𝑡
𝑑𝑖𝑣 𝑢 + 𝑎𝑇0

𝜕𝐶

𝜕𝑡
] , (12) 

(𝐷𝛽2∇
2𝑑𝑖𝑣 𝑢 + 𝐷𝑎∇2𝑇 − 𝐷𝑏∇2𝐶) +

𝜕

𝜕𝑡
(1 +

(𝜏)𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼)𝐶 = 0 . (13) 

We define the dimensionless quantities 

𝑟′ =
𝜔1

𝑐1
𝑟 , 𝑧′ =

𝜔1

𝑐1
𝑧 , (𝑢𝑟

′ , 𝑢𝑧
′ ) =

𝜔1

𝑐1
(𝑢𝑟, 𝑢𝑧), 𝑡′ = 𝜔1𝑡 , (𝜎𝑟𝑟

′ , 𝜎𝜃𝜃
′ , 𝜎𝑧𝑧

′ , 𝜎𝑟𝑧
′ ) =

1

𝛽1𝑇0
(𝜎𝑟𝑟, 𝜎𝜃𝜃, 𝜎𝑧𝑧, 𝜎𝑟𝑧),  𝑇′ =

𝛽1

𝜌𝑐1
2 𝑇,  𝐶′ =

𝛽2

𝜌𝑐1
2 𝐶,  𝜏0

′ = 𝜔1𝜏0 , 𝜏′=𝜔1𝜏 , 𝑃′ =
𝑃

𝛽2
. 

(14) 

where  

𝜔1  =
𝜌𝐶𝐸𝑐1

2

𝐾
 , 𝑐1

2 =
𝜆+2𝜇

𝜌
 . 

Using the dimensionless quantities defined by (14) in the Eqs. (10)-(13) and suppressing the 

primes for convenience yield 

(𝜆 + 𝜇)

𝜌𝑐1
2

𝜕𝑒

𝜕𝑟
+

𝜇

𝜌𝑐1
2 (𝛻2 −

1

𝑟2
)𝑢𝑟 −

𝜕𝑇

𝜕𝑟
−

𝜕𝐶

𝜕𝑟
=

𝜕2𝑢𝑟

𝜕𝑡2
, (15) 

𝜇

𝜌𝑐1
2

𝜕𝑒

𝜕𝑧
+

𝜇

𝜌𝑐1
2 𝛻2𝑢𝑧 −

𝜕𝑇

𝜕𝑧
−

𝜕𝐶

𝜕𝑧
=

𝜕2𝑢𝑧

𝜕𝑡2  , (16) 

K𝛻2𝑇 = (1 + 𝜏0
𝜕

𝜕𝑡
)

1

𝜔1 
[𝜌𝐶𝐸𝑐1

2𝑇̇ +
𝛽1

2𝑇0

𝜌

𝜕

𝜕𝑡
𝑑𝑖𝑣 𝑢 +

𝑎𝑇0𝛽1𝑐1
2

𝛽2

𝜕𝐶

𝜕𝑡
], (17) 

(𝐷𝛽2𝛻
2𝑑𝑖𝑣 𝑢 + 𝐷𝑎𝛻2𝑇

𝜌𝑐1
2

𝛽1
− 𝐷𝑏𝛻2𝐶

𝜌𝑐1
2

𝛽1
) +

𝜕

𝜕𝑡
(1 + 𝜏

𝜕

𝜕𝑡
)

𝜌𝑐1
4

𝛽1𝜔1 
𝐶 = 0 . (18) 

Using (4), (6) and (14), the stress components and Chemical potential source in dimensionless 

form are  

𝜎𝑟𝑟 = 𝜇1
𝜕𝑢𝑟

𝜕𝑟
+ 𝜆1𝑒 −

𝜌𝑐1
2

𝛽1
2𝑇0

𝑇 −
𝛽2𝜌𝑐1

2

𝛽1𝑇0
𝐶, (19) 

𝜎𝜃𝜃 = 𝜇1 𝑢𝑟

𝑟
+ 𝜆1𝑒 −

𝜌𝑐1
2

𝛽1
2𝑇0

𝑇 −
𝛽2𝜌𝑐1

2

𝛽1𝑇0
𝐶 , (20) 

𝜎𝑧𝑧 = 𝜇1
𝜕𝑢𝑧

𝜕𝑧
+ 𝜆1𝑒 −

𝜌𝑐1
2

𝛽1
2𝑇0

𝑇 −
𝛽2𝜌𝑐1

2

𝛽1𝑇0
𝐶, (21) 
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𝜎𝑟𝑧 =
𝜇1

4
(
𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
), (22) 

𝜎𝑟𝜃 = 0 = 𝜎𝑧𝜃 , (23) 

𝑃 = −𝑒 −
𝑎𝜌𝑐1

2

𝛽2𝛽1
𝑇 −

𝑏𝜌𝑐1
2

𝛽2
2 𝐶, (24) 

where  

𝜇1 =
2𝜇

𝛽1𝑇0
, 𝜆1 = 

𝜆

𝛽1𝑇0
 . 

Assuming the harmonic behaviour as  

(𝑢𝑟, 𝑢𝑧, 𝜑, 𝑇, 𝑒)(𝑟, 𝑧, 𝑡) = (𝑢𝑟, 𝑢𝑧, 𝜑, 𝑇, 𝑒)(𝑟, 𝑧)𝑒𝑖𝜔𝑡. (25) 

where 𝜔 is the angular frequency  

Following Debnath (1995), the Hankel transform of order n of 𝑓̅ (𝑟, 𝑧, 𝜔) with respect to the 

variable r is defined by  

𝐻(𝑓̅(𝑟, 𝑧, 𝜔)) = 𝑓̅∗ (ξ, 𝑧, 𝑠) = ∫ 𝑓̅(𝑟, 𝑧, 𝜔)𝑟𝐽𝑛(𝑟ξ) 𝑑𝑟
∞

0
, (26) 

Using (25)-(26) with application on the Eqs. (15)-(18) and eliminating 𝑇̅∗ , 𝐶̅∗ and 𝑒̅∗, we obtain  

(𝑀
𝑑6

𝑑𝑧6 + 𝑄
𝑑4

𝑑𝑧4 + 𝑅
𝑑2

𝑑𝑧2 + 𝑆)( 𝑇̅ , 𝐶̅, 𝑒̅) = 0 , (27) 

where  

𝑀 =
𝐷𝑏𝜌𝑐1

2

𝛽1
− 𝐷𝛽2 , 

𝑄 = 𝑄′ − 3𝜉2 , 𝑄′ = 𝜏0
1 ( 

𝐾𝑎𝑇0𝐷𝛽2

𝜌𝐶𝐸𝛽1
+

𝐾𝑏𝑇0𝐷𝛽1

𝜌𝐶𝐸
+ 𝐾𝑖𝜔𝐷𝛽2 −

𝐷𝑏𝜌𝑐1
2

𝛽1
) −

𝑖𝜔𝐾𝜏

𝐶𝐸
  , 

𝑅 = 3𝑃𝜉4 − 2𝑄′𝜉2 + 𝑅′ ,𝑅′ = 𝐾𝜏0
1 ( 

−𝐾𝛽1
2𝑇0𝜏

𝜌2𝐶𝐸
2 +

𝐷𝑏𝜌𝑐1
2(𝑖𝜔)3

𝛽1
−

𝐷𝛽2𝑎𝑇0𝑐1
2𝜔2

𝐶𝐸𝛽1
2 ) −

𝐾𝜏𝑐1
2𝜔2(𝐾+𝑖𝜔)

𝐶𝐸
 , 

𝑆 = −𝑃𝜉6
+ 𝑄′𝜉4

− 𝑅′𝜉2
− 𝑆′ , 𝑆′ =

−𝑖𝜔 𝐾 𝜏1𝑐1
4𝐷𝛽2𝑎𝜌

𝐶𝐸𝛽1
, 

𝜏0
1 = 1 + (𝑖𝜔)𝛼𝜏0 ,𝜏1 = 1 + (𝑖𝜔)𝛼𝜏. 

The solution of Eq. (27) is assumed of the form 

𝑇̅∗ = ∑𝐴𝑖cosh (𝑞𝑖𝑧)

3

𝑖=1

, (28) 

𝐶̅∗  = ∑𝑑𝑖𝐴𝑖 cosh(𝑞𝑖𝑧) ,

3

𝑖=1

 (29) 

𝑒̅∗ = ∑ 𝑓𝑖𝐴𝑖cosh (𝑞𝑖𝑧)
3
𝑖=1 , (30) 

where 𝑞𝑖 (i=1,2,3) are the roots of (27) 

and the coupling constants 𝑑𝑖 and 𝑓𝑖 are given by  
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𝑑𝑖 =
𝜁10𝑞𝑖

4+𝑞𝑖
2𝜁10(−2𝜉2−𝜁14+𝜁13)+𝜁10(𝜉

4+𝜁14𝑖𝜔𝜉2−𝜁15)

(−𝑞𝑖
2+𝜉2)(𝜁11+𝜁12)+𝜁12 

 , 

𝑓𝑖 =
𝜁16𝑞𝑖

4+(𝑞𝑖
2−𝜉2)(−𝜁16𝜁14+𝜁13𝜁17+𝜁18)−𝜁14𝜁18

(−𝑞𝑖
2+𝜉2)(𝜁11+𝜁12)+𝜁12  

 , 

where 

𝜁11 =
𝐾𝑎𝑇0𝜏0

1 𝐷𝛽2

𝜌𝐶𝐸𝛽1 
, 𝜁12 =

𝐾𝛽1
2𝑇0

𝜌2𝑐𝐸 
2

𝜏0
1𝑖𝜔𝐾𝜏1

 
𝑠 ,  𝜁13 =

𝐾𝑇0𝜏0
1𝑎𝜌

𝜌2𝐶𝐸
 ,𝜁14 = 𝜏0

1𝐾𝑖𝜔 , 

𝜁15 =
𝐾𝛽1𝑇0𝜏0

1𝜉2

𝜌𝐶𝐸
 𝜁16 =

−𝐷𝑏𝜌𝑐1
2

𝛽1 
  , 𝜁17 =

𝐷𝛽2𝑐1
2

𝛽1
2 

, 𝜁18 =
𝑖𝜔𝜏1 𝑘𝑐1

2

𝛽1𝐶𝐸
 , 𝜁10 = 𝐷𝛽2 . 

  

 

4. Boundary conditions 
 

We consider a thermal source and chemical potential source along with vanishing of stress 

components at the stress free surface at 𝑧 = ±𝑑 . Mathematically, these can be written as  

𝜕𝑇

𝜕𝑧
= ±𝑔0𝐹(𝑟, 𝑧), (31) 

𝜎𝑧𝑧 = 0, (32) 

𝜎𝑟𝑧 = 0, (33) 

𝑃 = 𝑓(𝑟, 𝑡), (34) 

Using the dimensionless quantities defined by (12) in the boundary conditions (31)-(34), and 

using (25)-(26) on the resulting quantities, and substituting the values of 𝑇̅, 𝜎𝑧𝑧̅̅ ̅̅ , 𝜎𝑟𝑧̅̅ ̅̅  and 𝑃̅ , yields 

∑ 𝐴𝑖cosh (𝑞𝑖𝑧)
3
𝑖=1 = 𝑔0𝐹̅(𝜉, 𝑑), (35) 

𝜇1𝐴𝑞𝑠𝑖𝑛ℎ(𝑞𝑧) + ∑ 𝛾𝑖𝐴𝑖 cosh(𝑞𝑖𝑧)
3
𝑖=1 = 0, (36) 

𝜇1

2
𝐴𝑠𝑖𝑛ℎ(𝑞𝑧) + ∑ 𝛼𝑖𝐴𝑖 sinh(𝑞𝑖𝑧) = 03

𝑖=1 , (37) 

∑ 𝜈𝑖𝐴𝑖 cosh(𝑞𝑖𝑧)
3
𝑖=1 = 𝑓̅(𝜉), (38) 

Solving the system of Eqs. (35)-(38) to obtain the values of A, 𝐴𝑖, 𝑖=1,2,3 with the help of (31)-

(34) and substituting the values A, 𝐴𝑖, 𝑖=1,2,3 in (28)-(30) and upon simplification of (15)-(18)  

yield the components of displacement, stress components, chemical potential function, temperature 

change, mass concentration and cubic dilatation as 

𝑢̅𝑟
∗ =

𝑔0𝐹̅(𝜉 , 𝑑)

∆
(
𝜂1

𝑚1
Λ1ϑ1 −

𝜂2

𝑚2
Λ2ϑ2 +

𝜂3

𝑚3
Λ3ϑ3 − Λ4ϑ)

− 
𝑓̅(𝜉)

Δ
(
𝜂1

𝑚1
Λ1ϑ1 −

𝜂2

𝑚2
Λ2ϑ2 +

𝜂3

𝑚3
Λ3ϑ3 − Λ4ϑ), 

(39) 
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𝑢̅𝑧
∗ =

𝑔0𝐹̅(𝜉 , 𝑑)

∆
(
𝑞1𝜇1

𝑚1
Λ1θ1 −

𝑞2𝜇2

𝑚2
Λ2θ2 +

𝑞3𝜇3

𝑚3
Λ3θ3 − Λ4θ)

− 
𝑓̅(𝜉, 𝜔)

Δ
(
𝑞1𝜇1

𝑚1
Λ1θ1 −

𝑞2𝜇2

𝑚2
Λ2θ2 +

𝑞3𝜇3

𝑚3
Λ3θ3 − Λ4θ), 

(40) 

𝜎̅𝑧𝑧
∗ =

𝑔0𝐹̅(𝜉 , 𝑑)

∆
(𝛾1Λ1ϑ1 − 𝛾2Λ2ϑ2 + 𝛾3Λ3ϑ3 − 2μqΛ4θ)

−
𝑓̅(𝜉, 𝜔)

Δ
(𝛾1Λ

1ϑ1 − 𝛾2Λ
2ϑ2 + 𝛾3Λ

3ϑ3 − 2μqΛ4ϑ), 
(41) 

𝜎̅𝑟𝑧
∗ =  

𝑔0𝐹̅(𝜉 , 𝑑)

∆
(𝛼1Λ1θ1 − 𝛼2Λ2θ2 + 𝛼3Λ3θ3 − 𝜇(𝑞 𝜉) Λ4

θ

2
)

− 
𝑓̅(𝜉, 𝜔)

Δ
(𝛼1Λ

1θ1 − 𝛼2Λ
2θ2 + 𝛼3Λ

3θ3 − 𝜇(𝑞 + 𝜉)Λ4
θ

2   
), 

(42) 

𝜎̅𝜃𝜃
∗  =

𝑔0𝐹̅(𝜉 , 𝑑)

∆
(𝜁1Λ1ϑ1 − 𝜁2Λ2ϑ2 + 𝜁3Λ3ϑ3 − 2μξΛ4ϑ)

−
𝑓̅(𝜉, 𝜔)

Δ
(𝜁1Λ

1ϑ1 − 𝜁2Λ
2ϑ2 + 𝜁3Λ

3ϑ3 − 2μξΛ4ϑ), 
(43) 

𝑃̅∗ =
𝑔0𝐹̅(𝜉 , 𝑑)

∆
(𝜈1Λ1ϑ1 − 𝜈2Λ2ϑ2 + 𝜈3Λ3ϑ3) −

𝑓̅(𝜉, 𝜔)

Δ
(𝜈1Λ

1ϑ1 − 𝜈2Λ
2ϑ1 + 𝜈3Λ

3ϑ3), (44) 

𝑇̅∗ =
𝑔0𝐹̅(𝜉 , 𝑑)

∆
(Λ1ϑ1 − Λ2ϑ2 + Λ3ϑ3) −

𝑓̅(𝜉, 𝜔)

Δ
(Λ1ϑ1 −  Λ2ϑ2 + Λ3ϑ3), (45) 

𝐶̅∗ = 
𝑔0𝐹̅(𝜉 , 𝑑)

∆
(𝑑1Λ1ϑ1  − 𝑑2Λ2ϑ2 + 𝑑3Λ3ϑ3) − 

𝑓̅(𝜉, 𝜔)

Δ
(𝑑1Λ

1ϑ1 − 𝑑2Λ
2ϑ2 + 𝑑3Λ

3ϑ3), (46) 

𝑒̅∗ =  
𝑔0𝐹̅(𝜉 , 𝑑)

∆
(𝑓1Λ1ϑ1 − 𝑓2Λ2ϑ2 + 𝑓3Λ3ϑ3) −

𝑓̅(𝜉, 𝜔)

Δ
(𝑓1Λ

1ϑ1 −  𝑓2Λ
2ϑ2 + 𝑓3Λ

3ϑ3), (47) 

where  

Δ = Δ24Δ11(Δ43Δ32 − Δ33Δ42) + Δ24Δ12(Δ43Δ31 − Δ41Δ33) − Δ13Δ24(Δ31Δ42 −    Δ32Δ41) +
Δ11Δ34(Δ22Δ43 − Δ23Δ42) − Δ34Δ12(Δ43Δ21 − Δ41Δ23) +    Δ34Δ13(Δ21Δ42 − Δ22Δ41), 

Λ1 = Δ43(Δ24Δ32 − Δ34Δ22) + Δ42(Δ23Δ34 − Δ24Δ33) , 
Λ1 = Δ12(Δ23Δ34 − Δ24Δ33) − Δ13(Δ22Δ34 − Δ24Δ32), 
Λ2 = Δ24(Δ31Δ43 − Δ23Δ41) − Δ34(Δ21Δ43 − Δ23Δ41), 
Λ2 = −Δ24(Δ11Δ33 − Δ13Δ31) + Δ34(Δ11Δ23 − Δ13Δ21), 
Λ3 = Δ24(Δ31Δ43 − Δ32Δ41) − Δ34(Δ21Δ43 − Δ22Δ41), 
Λ3 = Δ24(Δ11Δ32 − Δ12Δ31) − Δ34(Δ11Δ22 − Δ12Δ21), 

Λ4 = Δ21(Δ43Δ32 − Δ33Δ42) − Δ22(Δ43Δ31 − Δ41Δ33) + Δ23(Δ31Δ42 − Δ32Δ41), 
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Λ4 = Δ11(Δ22Δ33 − Δ23Δ32) − Δ12(Δ21Δ33 − Δ23Δ31) + Δ13(Δ21Δ32 − Δ31Δ22), 
Δ1𝑖 = 𝑞𝑖 sinh(𝑞𝑖𝑑), i=1,2,3, Δ14 = 0, Δ2𝑖 = 𝛾𝑖 cosh(𝑞𝑖𝑑) , i=1,2,3, 

Δ24 = 2𝜇𝑞sinh(qd), Δ3𝑖 = 𝛼𝑖 sinh(𝑞𝑖𝑑) , i=1,2,3, 

Δ34 = 𝜇(𝑞 + 𝜉)sinh(qd)/2, Δ4𝑖 = 𝜈𝑖 cosh(𝑞𝑖𝑑), i=1,2,3, Δ44 = 0. 

𝜂𝑖 = 𝜉(−
𝜆+𝜇

𝜌𝑐1
2 𝑓𝑖 + 1 + 𝑑𝑖), 

𝜇𝑖 = 1 + 𝑑𝑖 + 𝜇𝑓𝑖/𝜌𝑐1
2, 

𝑚𝑖 =
𝜇

𝜌𝑐1
2 (𝑞𝑖

2 − 𝜉2)  − 𝜔2, 

𝛾𝑖 =
𝑞𝑖

2𝜇𝑖

𝑚𝑖𝛽1𝑇0
+

𝜆

𝛽1𝑇0
𝑓𝑖 −

𝜌𝑐1
2

𝛽1𝑇0
−

𝜌𝑐1
2

𝛽1𝑇0
𝑑𝑖, 

𝛼𝑖 =
𝜂𝑖𝑞𝑖

𝑚𝑖
+

𝑞𝑖𝜇𝑖𝜉

𝑚𝑖
, 𝜈𝑖 = −𝑓𝑖 − 𝑎

𝜌𝑐1
2

𝛽2𝛽1
+

𝑏𝜌𝑐1
2

𝛽2
2 𝑑𝑖, 

𝜁𝑖 =
2𝜇𝜉𝜂𝑖

𝛽1𝑇0𝑚𝑖
+

𝜆𝑓𝑖

𝛽1𝑇0
− 𝜌𝑐1

2 −
𝜌𝑐1

2

𝛽1𝑇0
𝑑𝑖, 𝑞 = 𝑠𝑞𝑟𝑡(𝜉2 −

𝜔2𝜌𝑐1
2

𝜇
). 

 

 

 

5. Applications  
 

As an application of the problem, we take the source functions as 

𝐹(𝑟, 𝑧) = 𝑧2𝑒−𝜔𝑟 , (48) 

𝑓(𝑟, 𝑡) = 𝐻(∝ −𝑟)𝑒𝑖𝜔𝑡, (49) 

where 𝐻(∝ −𝑟) is the Dirac delta function.  

Applying Hankel Transform on the Eqs. (48)-(49), gives 

𝑓̅(𝜉, 𝜔)= 
∝𝐽1(𝜉∝)

𝜉
𝑒𝑖𝜔𝑡, (50) 

𝐹̅∗(𝜉, 𝑧) =
𝑧2𝜔

(𝜉2+𝜔2)3/2 , (51) 

Here 𝐽1  is the Bessel’s function of first kind of order 1, the expressions of components of 

displacement, stress components, chemical potential function, temperature change, mass 

concentration and cubic dilatation can be obtained from the Eqs. (39)-(47), by substituting the 

value of 𝐹̅(𝜉 , 𝑑) and  𝑓̅(𝜉, 𝜔) from (50)-(51). 

 

 

6. Particular cases 
 

(i). If we neglect the diffusion effect (i.e., 𝛽2, 𝑎, 𝑏 = 0) in the Eqs. (39)-(47), we obtain the 

expressions for components of displacement, stress, chemical potential functions, temperature 

change, mass concentration and cubic dilatation for thermoelastic isotropic half space. 

(ii) If 𝛼 = 0  in the fractional heat equation and putting in Eqs. (39)-(47), the resulting 

expressions reduce for thermoelastic interactions in a thick circular plate frequency domain with 

diffusion  
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7. Inversion of double transform 
 

To obtain the solution of the problem in physical domain, we must invert the transforms in Eqs. 

(39)-(47) These expressions are functions of  ξ 𝑎𝑛𝑑 𝑧 ,and hence are of the form 𝑓(𝜉, 𝑧, 𝜔). To get 

the function 𝑓(𝑟, 𝑧, 𝜔) in the physical domain, we invert the Hankel transform using 

𝑓(𝑟, 𝑧, 𝜔) = ∫ 𝜉
∞

0
𝑓̅𝜉, 𝑧, 𝜔)𝐽𝑛(𝜉𝑟)𝑑𝜉 , (52) 

The last step is to calculate the integral in Eq. (52). The method for evaluating this integral is 

described in Press et al. (1986). It involves the use of Romberg’s integration with adaptive step 

size. This also uses the results from successive refinements of the extended trapezoidal rule 

followed by extrapolation of the results to the limit when the step size tends to zero. 

 

 

8. Numerical results and discussion 
 

The mathematical model is prepared using Matlab 8.4.0 with copper material for purposes of 

numerical computation. The material constants for the problem are taken from Youssef (2006) and 

are given by 

λ = 7.76 × 1010𝑁𝑚−2,  𝜇 = 3.86 × 1010𝑁𝑚−2, 𝐾 = 386𝐽𝐾−1𝑚−1𝑠−1, 𝜌 = 8954 𝐾𝑔𝑚−3, 

𝛽1 = 5.518 × 106 𝑁𝑚−2𝑑𝑒𝑔−1, 𝛽2 = 61.38 × 107 𝑁𝑚−2𝑑𝑒𝑔−1, 𝑎 = 1.2 × 104𝑚2/𝑠2𝑘, 𝑏 =
0.9 × 106𝑚5/𝑘𝑔𝑠2,𝐷 = 0.88 × 10−8𝑘𝑔𝑠/𝑚3,  , 𝑇0 = 293K, 𝐶𝐸 = 383.1 𝐽𝑘𝑔−1𝐾−1 . 

 

An investigation has been conducted to compare the effect of frequency and the graphs have 

been plotted in the range 0 ≤ 𝑟 ≤ 3,  frequency values are taken as 

𝜔 = .25 , 𝜔 = .5 and 𝜔 = .75 

• Solid line with centre symbol circle corresponds to 𝜔 = .25  

• Small dashed line corresponds to 𝜔 = .5  

• Small dashed line with centre symbol diamond corresponds to 𝜔 = .75 . 

Fig. 1 represents the variations of axial displacement uz with respect to distance r. Here, in the 

range 0≤ r ≤ 1, the values are decreasing whereas increase in the rest corresponding to three 

values of 𝜔 with change of amplitude.  

Fig. 2 exhibits the variations of temperature change T with distance r. Here corresponding to 

𝜔 = .5 , the variations increase in the whole range whereas for 𝜔 = .25  and 𝜔 = .75  , the 

variations increase in the range 0≤ r ≤ 2 and decrease in the rest.  

Fig. 3 exhibits the variations of chemical potential P with distance r. Here, we notice a 

continuous decrease in the whole range corresponding to 𝜔 = .5 whereas the pattern is oscillatory 

for 𝜔 = .25 and 𝜔 = .75 with change of amplitude.  

Fig. 4 shows variations of mass concentration C with distance r. Here corresponding to 𝜔 =
.25 and 𝜔 = .75, the values decrease in the range 0≤ r ≤ 2 and increase in the rest whereas 

continuous decrease is noticed for 𝜔 = .5.  

Fig. 5 expresses the variations of vertical stress component 𝜎𝑧𝑧 with distance r . Here we find 

that corresponding to 𝜔 = .25,𝜔 = .5 and 𝜔 = .75, the values decay in the whole range.  

Fig. 6 shows variations of radial stress component 𝜎𝑟𝑟 with displacement r. Here the pattern of 

variations is same as discussed in Fig. 4. 

47



 

 

 

 

 

 

Parveen Lata 

0 1 2 3
displacement r

-0.08

-0.04

0

0.04

0.08

0.12

 d
is

p
la

c
e

m
e

n
t 
 c

o
m

p
o

n
e

n
t 
u

3

=

=

=

 
Fig. 1 Variations of axial displacement uz with distance r 
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Fig. 2 Variations of temperature change T with distance r 

 

 

9. Conclusions 
 

In this paper, we depicted the effect of time harmonic sources due to axisymmetric heat supply 

in a thick circular plate.  

• We discussed the problem within the context fractional theory of thermoelastic diffusion. The 

upper and lower surfaces of the plate are taken to be traction free.  
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Fig. 3 Variations of chemical potential function P with distance r 
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Fig. 4 Variations of mass concentration C with distance r 

 

 

• We find that change in frequency changes the behaviour of deformations of the various 

components of stresses, displacement, chemical potential function, temperature change and mass 

concentration.  

• Though variations being oscillatory, a big difference in the magnitudes is noticed.  

• The use of fractional theory of thermoelastic diffusion gives a more realistic model of 

thermoelastic media as it allows a delayed response between the relative mass flux vector and the 

potential gradient.  

• The result of the problem is useful in the two-dimensional problem of dynamic response due  
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Fig. 5 Variations of vertical stress component 𝜎𝑧𝑧 with distance r 
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Fig. 6 Variations of radial stress component 𝜎𝑟𝑟 with displacement r 

 

 

to various sources of thermodiffusion which has various Geophysical and industrial applications. 
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Nomenclature  
 

𝛼  is the order of fractional integral, 

𝜆, 𝜇  are Lame’s constants, 

𝜌  is the density assumed to be independent of time, 

D is the diffusivity, 

P is the chemical potential per unit mass, 

C is the concentration, 

𝑢𝑖 are components of displacement vector u, 

K  is the coefficient of thermal conductivity, 

𝐶𝐸 is the specific heat at constant strain,  

𝑇 = 𝜗 − 𝑇0  is small temperature increment, 

𝜗  is the absolute temperature of the medium, 

𝑇0  is the reference temperature of the body such that |
𝑇

𝑇0
| ≪ 1, 
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Time harmonic interactions in fractional thermoelastic diffusive thick circular plate  

a  is the coefficient describing the measure of thermodiffusion effect, 

b  is the coefficients describing the measure of mass diffusion effect, 

𝜎𝑖𝑗  are the components of stress, 

𝑒𝑖𝑗  are the components of strain, 

𝑒𝑘𝑘  is dilatation, 

S  is the entropy per unit mass, 

𝛽1= (3𝜆 + 2𝜇)𝛼𝑡,   

𝛽2= (3𝜆 + 2𝜇)𝛼𝑐 ,   

𝛼𝑐   is the coefficient of linear diffusion expansion, 

𝛼𝑡  is the coefficient of thermal linear expansion, 

𝜏0  is the thermal relaxation time, 

𝜏  is the diffusion relaxation time, 

𝜔  is the angular frequency, 

𝐽1  is the Bessel’s function of first kind of order 1, 

2d  is the thickness of the plate. 
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