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Abstract.  The influence of torsional rigidity of hinged flexible appendage on the linear dynamics of flexible 

spacecrafts with liquid on board was analyzed by considering the spacecraft’s main body as a rigid tank, its 

flexible appendages as two elastically supported elastic beams, and the onboard liquid as an ideal liquid. The 

meniscus of the liquid free surface due to surface tension was considered. Using the Lagrangian of the 

spacecraft’s main body (rigid tank), onboard liquid, and two beams (flexible appendages) in addition to 

assuming the system moved symmetrically, the coupled system frequency equations were obtained by 

applying the Rayleigh-Ritz method. The influence of the torsional rigidity of the flexible appendages on the 

spacecraft’s coupled vibration characteristics was primary focus of investigation. It was found that coupled 

vibration modes especially that of appendage considerably changed with torsion spring parameter κt of the 

flexible appendage. In addition, variation of the main body displacement with system parameters was 

investigated. 
 

Keywords:  hydroelastic vibration; space structure; coupled system; liquid sloshing; zero-gravity; 

elastic supported; torsional spring 

 
1. Introduction 
 

Because large space structures need to be lightweight, they have low structural rigidity, which 

causes them to vibrate easily at low frequencies. Thus, thruster injection for attitude control or 

orbit modification may cause vibrations in flexible appendages, such as antennas and solar arrays, 

as well as onboard liquids such as wastewater and fuel. This leads to the development of strong 

coupled vibrations that affect the dynamic behavior of the structure’s main body, which pose a 

serious problem for high-attitude satellites requiring accurate positioning, such as those used for 

precise astronomical photography. Therefore, clarifying the dynamic interaction behavior of 

flexible space structures with liquid onboard is crucial for improving space structure stability and 

reliability.  

Several researchers have theoretically examined how liquids slosh in containers in low-gravity 

environments. For example, Abramson (1996) reviewed studies conducted to that point. Bauer et 

al. (1990a, b) conducted two free vibration analyses of liquids in a cylindrical or rectangular vessel 
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accounting for liquid meniscus due to surface tension. Agrawal (1993) used a boundary layer 

model to analyze the dynamic behavior of liquid in a rotating space vehicle. Komatsu (1999) 

theoretically investigated a space vehicle’s tank sloshing frequency by using a mechanical model 

and obtained natural frequencies via a semi-empirical formula using potential flow models. Chiba 

et al. (2002) investigated coupled natural vibrations of a liquid, and the elastic membrane bottom 

of a rigid-walled cylindrical container. Utsumi (2004) proposed mechanical models for the 

sloshing of liquids in a tear-shaped axisymmetric tank. Yuanjun et al. (2007) conducted a 

nonlinear analysis of sloshing liquid in a cylindrical container. This analysis considered the shape 

of the static meniscus shape in low-gravity environments with an energy method that used pitching 

excitation around the cylinder’s center of gravity. Berglund et al. (2007) used a pulse-suppression 

approach to control liquid propellant sloshing in a Delta IV rocket. Li et al. (2011) proposed an 

equivalent mechanical model for liquid sloshing during draining which represented time varying 

property of liquid sloshing. Recently, Yong and Baozeng (2017) presented a simulation of large-

amplitude three-dimensional liquid sloshing in a spherical tank. 

McIntyre et al. (1982) studied how sloshing affects spacecraft motion by investigating the 

stability of an oblate spinning body with liquid fuel aboard. Santini et al. (1978, 1983) derived 

equations of motion for an orbiting spacecraft containing a sloshing liquid in a plane rigid tank and 

discussed the spacecraft’s stability. Lü et al. (2005) studied pitching motion under gravity of a 

two-dimensional rectangular tank with elastic appendages. From the numerical simulations, they 

found that the coupling of elastic appendages with rigid tanks are effective in high gravity 

conditions, while the coupling of liquid fuel and rigid tanks are effective in low gravity conditions. 

Gasbarri et al. (2016) presented a dynamic model of spacecraft with a solar panel and considered 

fuel sloshing using multi-body approach. They employed a pendulum model for the fuel sloshing, 

and clarified the interaction among the control, the attitude dynamics, the flexibility of the solar 

array and the sloshing motion of the spacecraft. For spacecrafts with multiple propellant tanks, 

Baozeng et al. (2015) presented a coupled dynamic model using Lagrange’s equation, and Zhou 

and Huang (2015) presented a constrained surface model in which they clarified the coupling 

dynamics between the spacecraft and the propellant sloshing in tanks. 

A recent study (Chiba et al. 2013) served as the first step toward clarifying fundamental 

vibration characteristics of liquid-containing flexible space structures by proposing a mechanical 

model and analyzing the axisymmetric coupled vibrations of a flexible structure containing liquid. 

The proposed model treated the main body as a rigid mass, its flexible appendages as two elastic 

beams, and the onboard liquid as a “spring-mass” system (mechanical model). The mechanical 

model adopted a single liquid sloshing mode (i.e., fundamental sloshing mode), which helped 

determine the coupled system’s fundamental vibration characteristics, i.e., the main body-flexible 

appendages-liquid system.  

The second step in clarifying fundamental vibration characteristics was taken by Chiba and 

Magata (2017), who studied how liquid sloshing influenced the dynamics of a flexible space 

structure containing a liquid. They accomplished this by considering the spacecraft’s main body a 

rigid tank, its flexible appendages as two elastic beams, and the liquid onboard as an ideal liquid 

with respect to the meniscus of the free surface due to surface tension. 

In the previous studies (2013, 2017), a spacecraft model was considered in which two flexural 

appendages were rigidly connected to the main spacecraft body. Flexible appendages fixed to the 

spacecraft main body must have enough strength against disturbance during orbital or attitude 

control of the spacecraft, and they must be designed to avoid transmitting those disturbances from 

the appendages due to thermal-snap, for example. In this study, we model the flexibility of the root  
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(a) Cylindrical tank with two elastically-supported beams 

 
(b) Liquid in cylindrical tank 

Fig. 1 Flexible spacecraft model with liquid tank 

 

 

of the flexible appendages as a torsional spring, and in the third step in this clarification process, 

we study the spacecraft model that includes the torsional rigidity of the roots of two flexible 

appendages. 

 

 

2. Basic equations and boundary conditions 
 

2.1 Analytical model 
 

Fig. 1 shows small amplitude free vibration of a spacecraft with flexible appendages, such as 

solar arrays, on both sides of the main body, which contains a liquid. In the model, the spacecraft’s 

main body is considered as a rigid cylindrical tank, with two elastically supported elastic beams 

representing flexible appendages, and a liquid on board. The tank’s radius, length, and mass are 

represented by R, b, and mt, respectively, and its displacement is represented by YM in the inertia 

coordinate o .XY− The elastic beams are modeled as uniform Euler-Bernoulli beams, each with a 

length of l, cross-sectional area of A, density of ρb, Young’s modulus of E, second moment of area 

of I, and displacements corresponding to ( )1 1,W x t  and ( )2 2,W x t . The beams are also elastically 

supported with torsional spring constant .tk  The onboard liquid is treated as an inviscid ideal 

liquid with a density of ρf and a mass of 2

f fm R h = , where h denotes the height of the liquid 

when ignoring its meniscus. The liquid’s velocity potential, ( ), , ,r z t , is given in the coordinate 

system, o rz− , which has its origin located on a flat liquid surface. In microgravity, surface 
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tension is the predominant force on a liquid, producing an axisymmetric meniscus ( )0z r  with a 

contact angle with respect to a side wall of 
0  as shown in Fig. 1(b). Therefore, we represent the 

liquid’s free surface as ( ) ( ) ( )0, , , ,fZ r t z r Z r t = + . 

We assume a symmetric arrangement with respect to the rigid tank for the beams and that the 

tank’s center of mass is on the mid-surface of the beams. These assumptions enabled axisymmetric 

in-plane motion, i.e., movement along the upward and downward directions in the plane only 

under a small amplitude vibration. Here, we investigate the effect of the elastic torsional support of 

the two beams. 

 

2.2 Basic equations and boundary conditions 
 

2.2.1 Liquid 
We assume the liquid to be incompressible and inviscid and to exhibit irrotational motion. The 

basic equations and boundary conditions are as follows (see Chiba et al. 2017) 

Laplace equation 

2 2

2 2

1
0

r r r z

    
 = + + =

  
 (1) 

Kinematic condition on the free surface 

( )
( )0

00
z r

at z z r
z t r r

  
− − = =

   
 (2) 

Dynamic condition on the free surface 

( ) ( )

3 2
2

0

0

cos
1f f M

r Z
r Y t z at z z r

t r r R r


 

       − − = − =         

 (3) 

Boundary conditions 

0 at z h
z


= = −


 (4) 

0 at r R
r


= =


 (5) 

Contact angle 

0
Z

at r R
r


= =


 (6) 

Conservation of liquid volume 

( )
2

0 0

, , 0

R

r t rdrd



  =   (7) 
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Meniscus of the free surface (represented by Bauer et al. 1990b) 

( )
( )3 2

0 0

0 3

00

2 1 sin cos
1

cos3cos

R rR
z r

R

 



−  
= − −  

 
 (8) 

 
2.2.2 Beams 
We modeled the beams with torsional supported mass-free boundary conditions. Therefore, the 

beam’s shearing force at the end, with mass attached, is in balance with the inertia force of the 

mass. The beam’s bending moment is in balance with the moment of the torsional spring (torsional 

spring constant kt). In contrast, at the free end, both the shearing force and bending moment are 

zero 

0 :ix =  shearing force: ( )
3

3

1
0

2

i

M

i

W
MY t EI

x


− − =


 (9) 

 bending moment: 

2

2
0i i

t

ii

W W
EI k

xx

 
− =


 (10) 

:ix l=  shearing force: 

3

3
0i

i

W
EI

x


− =


 (11) 

 bending moment: 

2

2
0i

i

W
EI

x


− =


 (12) 

 

2.3 Lagrangian of the system 
 

2.3.1 Lagrangian of the liquid 
The Lagrangian of the liquid, Lf, is defined as (see Chiba et al. 2017) 

( )

( )

3 2
22

2 0

0 0

0

cos1
1

2

R

f f M f f M

r Z
L m Y r Y t z Z rdrd

t r r R r

at z z r

 
  

          = + − − +             
=

   (13) 

 

2.3.2 Lagrangian of the beams and main body  
The kinetic energies of the beams and main body (tank) are defined as follows 

( ) ( )
2 2

2

1 1 2 2

0 0

1 1 1

2 2 2

l l

t M b bT m Y A W dx A W dx = + +   (14) 

The beams and the main body both have potential energy consisting of the stain energy of the 

beams and the two torsional springs. 
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1 2

2 22 2
2 2

1 2 1 2

1 22 2

1 21 20 0 0 0

1 1 1 1

2 2 2 2

l l

t t

x x

W W W W
U EI dx EI dx k k

x xx x
= =

         
   = + + +   
            

   (15) 

Thus, the total Lagrangian, Ltb, is 

( ) ( )

1 2

2 2
2

1 1 2 2

0 0

2 22 2
2 2

1 2 1 2

1 22 2

1 21 20 0 0 0

1 1 1

2 2 2

1 1 1 1

2 2 2 2

l l

tb t M b b

l l

t t

x x

L m Y A W dx A W dx

W W W W
EI dx EI dx k k

x xx x

 

= =

= + +

         
   − − − −   
            

 

 

 (16) 

 

2.4 Non-dimensionalization 
 

Here we introduce non-dimensional parameters and non-dimensionalize the previous equations. 

( )

4 2

2

0

0 0

2 2

0

3 2 3 2

, , , , , , , ,

, , 1, 2 , , , , ,
2

, , , ,
2 2

i tM

b b i M t

bb b

fi

i

b

f f ft

t f t f f tb

b b b b b b

x k lYEI r z
t y

l R R l EIAl R

z WZ R l h Al
w i h

R R l A R R EI

m L Lm h
m m M m m L L

Al Al Al Al


       

 

 
     



 

      


= =  = = = = = = =

= = = = = = = = =

= = = = + = =

 
(17) 

The most significant parameters of these are the tank mass ratio ,M  the cross-sectional area 

ratio   of the beams and rigid tank, the aspect ratio λ of beam length and tank radius, the surface 

tension parameter γ, the liquid height ratio h0, the density ratio  , and the torsional spring 

parameter κt. The dot represents derivatives with respect to t and the dash represents derivatives 

with respect to τ as 

( )/
b b

b

dk dk dk
k k

dt d d
 

  
= = = =  (18) 

 
2.4.1 Non-dimensionalized equations for liquid 

0 =  (1)’ 

( )
( )0

00 at
   

  
   

  
− − = =

   
 (2)’ 

( ) 
3 3 2

2

0 0

1
1 cos My

   
    

    

   
− − = − 

   
 (3)’ 
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00 at h






= = −


 (4)’ 

0 1at






= =


 (5)’ 

0 1at






= =


 (6)’ 

( )
2 1

0 0

, , 0d d



       =   (7)’ 

( )
( )

( )
3

0 2

0 03

00

2 1 sin 1
1 cos

cos3cos


   



−
= − −  (8)’ 

 
2.4.2 Non-dimensionalized boundary conditions for beams 

0 :i =    
3 2

3 2
0 , 0i i i

M t

ii i

w w w
M y 

 

  
 + = − =

 
 (9)’, (10)’ 

1:i =    
3 2

3 2
0, 0i i

i i

w w

 

 
= =

 
 (11)’, (12)’ 

 

2.4.3 Non-dimensionalized Lagrangian 
Liquid: 

( ) 
1 2 3 3 2

22 2

0 0

0 0

0

2 1
1 cos

( )

f f M ML m y y d d

at


    

        
     

  

    
 = + − − +  

    
=

   (13)’ 

Rigid tank and beams: 

1 2

1 1

2 2 2

1 1 2 2

0 0
2

2 22 21 12 2

1 2 1 2

1 22 2

1 21 20 0 0 0

1 1

2 2

1 1

2 2 2 2

t M

tb

t t

m y w d w d

L
w w w w

d d

 

 


 

 
  

= =

 
  + + 

  
=  

          
   − − − −                 

 

 

 (16)’ 
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3. Method of solutions 
 

We assume that the system exhibits small amplitude vibrations with a non-dimensional circular 

frequency, Ω, as follows 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

0 cos

, , , sin

, cos

, cos 1, 2

M

i i i i

y w

w w i

 

       

     

   

= 

= − 

= 

=  =

 (19) 

where the rigid tank’s displacement equals that of the beam root at 0i = . 

 

3.1 Lagrangian of the system 
 

By substituting Eq. (19) into the Lagrangians in Eqs. (13)’ and (16)’ and integrating for a 

period of vibration, τ=0−2π/Ω, we obtain,  

Liquid: 

( ) 
( )

2 2 2

1 2 3 3 2
22 2

0 0

0 0

0

(0)

2 1
1 cos (0)

f fL m w

w d d

at





   
         

    

  

= 

    
−  + − +   

    
=

 
 

(20) 

where 

2 /

0

f fL L d









=   (21) 

and 

2 / 2 /

2 2

0 0

sin cosd d

 


   

 

 =  =
   (22) 

were used. 

Rigid tank and beams: 

( ) ( )

1 2

1 1
2 22 2 2 2

1 1 2 2

0 0
2

2 22 21 12 2

1 2 1 2

1 22 2

1 21 20 0 0 0

1 1
(0)

2 2

1 1

2 2 2 2

t

tb

t t

m w w d w d

L
w w w w

d d

 

 


 

 
  

= =

 
 +  +  

  
=  

          
   − − − −                 

 

 

 (23) 

where 
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2 /

0

tb tbL L d









=   (24) 

 

3.2 Liquid velocity potential and liquid surface displacement 
 

The liquid velocity potential, ( , )   , which satisfies Eq. (1)’ and boundary condition Eqs. 

(1)’ to (8)’, and the liquid surface displacement, ( )  , are defined in the following (see Chiba et 

al. 2017) 

( ) ( )
( )

( )
0 0

0 0 0

0 0

cosh
,

cosh

d

d d

d d

h
A J

h

 
    



 + 
=  (25) 

( ) ( )0 0 0e e

e

a J   =  
(26) 

where ε0d satisfies the following equations 

( ) ( )( )0 0 1 0' 0d dJ J = − =  (27) 

Substituting Eqs. (25) and (26) into Eq. (20), we calculate the Lagrangian of the liquid as 

( )
( )

3
2

0 1 0 4 5 22 2 2
0 0 4 5

2
3

4 d di d de de ei

d ef f M j j ji ji

i j

M i

A C C C C
L m y A C C

y C

 


 




   
 + −  

=  − −    
 

+  

 


 
(28) 

where 

( )( )
( )

( ) ( )
1

0 0 01

1 0 0 0 0

0 0 00

cosh

cosh

ddi

di d i

i d

hC
C J J d

h

  
     

 

 + 
= =   (29) 

( )  ( ) ( )
1 3 2

22

2 0 0 0 0 0 0 0

0 0

1 cosei

ei i e e i

i

C
C J J d         
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where 

( )
0 2

0 0

2
i

iJ



=  

 

3.3 Displacement of beams 
 

If we assume that the two beams are identical and have symmetric displacement, the 

displacement of the beams can be determined as 

( ) ( ) , 1,2i i m m i

m

w C w i = =  
(34) 

where ( )m iw   is an eigenfunction of a beam with a torsional supported mass-free boundary 

condition. 

( ) ( )

( ) ( )

( ) ( )

1 cos 1 cosh 2 sin
( ) cosh sinh

2 cosh 1 sinh 1 sin
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+

 
(35) 

where 

( ) ( )2 cos 1 sinh 1 sinm t m t m m t m mD M M       = + − − +  (36) 

and αm satisfies the following frequency equation 

( ) ( ) ( )
( )

2 2
1
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cosh cos

t m
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m m
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M M M

 
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 

−
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4

2 b

m

Al

EI


 = =   (38) 

which is a function of tank mass ratio M  and torsional spring parameter t . 

By substituting Eq. (34) into Eq. (23) we obtain 

2 2 00 22

1 1
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 (39) 

where 
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In Eqs. (39) through (41), the dash represents the derivative with respect to ξ. 

 

3.4 Lagrangian of the total system 
 

Finally, we defined the Lagrangian for the entire system as 
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(42) 
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 (43) 

 
3.5 Rayleigh-Ritz method 

 

We then applied the Rayleigh-Ritz method to obtain the following minimalized condition for 

:L  

0

0, 0
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 (44) 
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The equation in a matrix form is described as 
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 (48) 

We obtained the coupled natural circular frequency as eigenvalues and the vibration modes as 

eigenvectors using these equations. 
 

 

4. Numerical results 
 

4.1 Coupled system without liquid 
 

We first considered a coupled spacecraft system with an empty tank, corresponding to a 

spacecraft running out of fuel. The relevant system parameters in this case are 
tm  (= M ) and κt. 
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Fig. 2 Natural circular frequency with torsional spring parameter κt (without liquid: 1, 10M = ) 

 

3rd 

 
   

 

2nd 

  

 

 
 

1st 
 

 
 

 

 

 (a) 0.01t =  (b) 0.1t =  (c) 1t =  (d) 10t =  (e) 100t =  

Fig. 3 Vibration mode with torsional spring parameter κt (without liquid: 1M = ); (a) κt=0.01; (b) κt=0.1; (c) 

κt=1; (d) κt=10; (e) κt=100 
 

 

4.1.1 Influence of κt on natural circular frequency 
Fig. 2 shows the natural circular frequency variations of the lowest five modes with κt. Because 

κt is defined as κt=ktl/EI, an increase in κt corresponds to an increase in the torsional spring 

constant (keeping the beam’s length, l, constant), or an increase in beam length, l, (keeping κt 

constant). In the figure, solid and single-dotted lines correspond to results for 10M =  and 1, 

respectively. We found that as κt increases, the natural circular frequencies also increase and tend 

to the values when the beam is clamped ( 3.52, 22.03, 61.70=  when M → ) (see, Chiba et 

al. 2017).  
 

4.1.2 Influence of κt on vibration mode 

Fig. 3 shows the lowest three vibration modes for κt=0.01, 0.1, 1, 10, 100 when 1M = . In Fig. 

3, a square indicates the spacecraft’s main body (cylindrical tank), the red curve indicates the 

right-hand side beam’s vibration mode, the crossing point of the two small arrows indicates the 

inertia frame origin, and the distance of the crossing point from the tank’s center indicates the 

tank’s displacement. In addition, the displacements of tank yM and beam w  are normalized such 

that their maximum of which is unity. 
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When κt=0.01 (Fig. 3(a)), the beam’s boundary condition is almost “simply supported,” which 

is a condition where the beam has relatively rigid body motion without bending, as well as a large 

deflection angle, which renders an extremely low natural frequency as shown in Fig. 2. As κt 

increases, boundary conditions tend toward a clamped condition and the deflection angle becomes 

zero accordingly natural frequency increases. 

 The movement of tank yM is large in the first mode and decreases with higher vibration modes. 

In addition, the tank’s displacement differs when vibration modes are of odd or even order. 

Although Fig. 3 shows the case when 1M = , results of the cases where 10, 100M =  had similar 

tendencies for the effect of κt. 
 

4.1.3 Influence of κt on tank displacement 

Variations in yM for a wider value of κt when 1M =  are shown in Fig. 4(a). As mentioned, yM 

values of the first and the third modes are in a negative direction, whereas that of the second mode 

is in a positive direction. On the left-hand and the right-hand sides of Fig. 4(a), we show the 

vibration modes when κt=10−4 in Fig. 4(b) and those when κt=104 in Fig. 4(c). 

The magnitudes of yM differ with vibration mode, i.e., as κt increases, the displacement of yM 

for the first mode decreases, whereas those of the second and third modes slightly increase. 
 

4.2 Coupled system 
 

Next, we considered the coupled spacecraft system with liquid onboard. The system parameters 

in this case are contact angle θ0, liquid height ratio h0, density ratio  , surface tension parameter γ, 

aspect ratio λ, area ratio  , mass ratio 
tm , and torsional spring parameter κt. 

 

4.2.1 Influence of κt on coupled natural circular frequency 
Fig. 5 shows coupled natural circular frequency variations with κt. The coupled natural circular 

frequency curves that have predominant liquid motion are constant with κt, whereas those with 

predominant beam motions increase with κt (see Fig. 2). The intersection of these curves occurs at 

some values of κt, exhibiting the exchange of vibration modes, i.e., marked regions.  
 

4.2.2 Influence of κt on coupled vibration mode 
Fig. 6 identifies coupled system vibration modes in the κt range shown in a red circle in Fig. 5. 

In this case, vibration amplitudes of liquid surface   , tank displacement yM, and beam 

deflection w are normalized such that the maximum of which is unity. In Fig. 6 we see the 

intersection of two natural frequency curves occurring at 1.65 1.70t  (Figs. 6(b), 6(c)), and 

an exchange of the vibration modes occurs. These results are for the θ0=90° case, in which one 

cannot see coupling between liquid and beam motions near the cross region (see, Chiba et al. 

2017). 

 

4.2.3 Influence of κt on displacement of tank 
Fig. 7 shows yM variation for the first and second modes when θ0=90°. Vibration mode 

exchange occurs at κt, which is indicated by a single-dotted line in the figure. The natural 

frequency curve, in which beam vibration is predominant, is shown as a red thick line, whereas 

that in which free surface vibration is predominant is shown as a thin blue line, and is nearly zero 

along the whole κt range. We see that the tank does not move in a coupled vibration where liquid  
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2nd 

 

 

 

3rd 

  

1st 

 

 

 (b) κt=10−4 (a) Displacement of tank (c) κt=104 

Fig. 4 Variation of displacement of tank yM and vibration mode with torsional spring parameter κt (without 

liquid 1M = ) 

 

 

motion is predominant, whereas the tank moves in a coupled vibration in which beam vibration is 

predominant. 
 

4.2.4 Variation of natural frequency with liquid height 
Fig. 8 shows natural circular frequency variations with liquid height h0 when θ0=60°, 90°, 100° 

4( 1, 10 , 10, 10, 1, 1 ).t tm    −= = = = = =  The frequency curve with a dashed line 

corresponds to the coupled frequency where beam motion is predominant, whereas curves with 

solid lines correspond to coupled frequencies in which the liquid mode is predominant. As h0 

decreases, these two frequency curves cross. 
 

4.2.5 Influence of liquid height on the displacement of tank 
Fig. 9 shows tank displacement yM variations with liquid height h0 for three contact angles, 

θ0=60°, 90°, 100°, which correspond to the first and second modes when 1t = . Single-dotted 

vertical lines correspond to the h0 value in which two natural frequency curves cross. We found 

that displacement yM drastically changes near the crossing region when θ0=60° and 100° in the 

vibration mode in which liquid sloshing is predominant. When the κt value is small, i.e., κt=1, the 

liquid fuel is consumed throughout the spacecraft’s mission. Additionally, the two types of 

coupled frequencies, especially those with the lowest sloshing modes, approach each other, 

producing movement of the main body (tank). 
 

 

5. Conclusions 
 

The influence of the torsional rigidity of the hinged flexible appendage on the dynamics of 

liquid-containing flexible space structures was analyzed by considering a spacecraft’s main body 

as a rigid tank, its flexible appendages as two elastically supported elastic beams, and the liquid on 

board as an ideal liquid, considering the meniscus of the liquid free surface. The obtained results 

are summarized as follows: 
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Fig. 5 Natural circular frequency with torsional spring parameter κt:

4
0 090 , 1, 1, 10 ,h   −= = = =

10, 10, 1tm = = =  

 

3rd 

   

 

 

2nd 

 
 

 
  

1st 

 

 

 
 

 

 (a) 1.6t =  (b) 1.65t =  (c) 1.7t =  (d) 1.75t =  (e) 1.8t =  

Fig. 6 Vibration mode with torsional spring parameter κt: 4
0 090 , 1, 1, 10 , 10, 10, 1th m    −= = = = = = =  

 

 

ⅰ) System without liquid 

• Natural frequency and vibration mode 

As M  increased, natural frequency decreased. When κt is small, the natural vibration mode 

trends toward that of a simple support-free beam and has rigid body motion, and has very low 

frequency. With an increase in κt, the boundary condition of the beam tends toward that of a 

“clamp-free” beam and the natural frequency increases. 

• Displacement of spacecraft main body 

For each vibration mode, tank displacement decreases as M  increases, and the amplitude 

becomes small for higher vibration modes. The tank displacement change of direction opposes that 

of the beam tip direction for odd order modes and is the same direction as that for even vibration 

modes. The effect of κt on tank displacement depends on the vibration mode, i.e., it decreases with 

κt for the first mode, but slightly increases with κt for the second and third modes. 
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Fig. 7 Displacement of tank yM with torsional spring parameter κt: 
4

0 090 , 1, 1, 10 ,h   −= = = =

10, 10, 1tm = = =  
 

 

 
 

 

(a) θ0=60° (b) θ0=90° (c) θ0=100° 

Fig. 8 Natural circular frequency with liquid height h0: 
41, 10 , 10, 10, 1, 1t tm    −= = = = = =  

 

   

(a) θ0=60° (b) θ0=90° (c) θ0=100° 

Fig. 9 Displacement of tank yM with liquid height h0: 
41, 10 , 10, 10, 1, 1t tm    −= = = = = =  
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ⅱ) Coupled system 

• Coupled natural frequency 

Depending on κt, two types of coupled natural frequencies approach each other, which produce 

the coupling of liquid sloshing and beam vibration. 

• Tank displacement 

When θ=90° tank displacement is zero in the coupled sloshing mode and not zero in the 

coupled beam mode. When θ0=60° and 100°, tank displacement is close to zero even in the 

coupled sloshing mode. 

When κt is small, i.e., κt=1, the volume of liquid fuel in the spacecraft decreases over the 

duration of the mission, and the two types of coupled frequencies, especially during the lowest 

sloshing mode, approach each other, producing the movement of the main body (tank). 

The authors believe that the above results will assist to qualitatively understand the effect of 

rigidity of appendage roots on the coupled natural vibration characteristics of a flexural spacecraft 

with a liquid on board. This data may prove important in the future spacecraft design. 
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Lü, J., Li, L.J. and Wang, T. (2005), “Dynamic response of liquid filled rectangular tank with elastic 

appendages under pitching excitation”, Appl. Math. Mech., 28(3), 351-359. 

36



 

 

 

 

 

 

Influence of torsional rigidity of flexible appendages on the dynamics of spacecrafts 

Li, Q., Ma, X. and Wang, T. (2011), “Equivalent mechanical model for liquid sloshing during draining”, 

Acta Astronaut., 68(1-2), 91-100. 

McIntyre, J.E. and McIntyre, J.M. (1982), “Some effects of propellant motion on the performance of 

spinning satellites”, Acta Astronaut., 9(12), 645-661. 

Santini, P. and Barboni, R. (1978), “Motion of orbiting spacecrafts with a sloshing fluid”, Acta Astronaut., 

5(7-8), 467-490. 

Santini, P. and Barboni, R. (1983), “A minicomputer finite elements program for microgravity hydroelastic 

analysis”, Acta Astronaut., 10(2), 81-90. 

Utsumi, M. (2004), “A mechanical model for low-gravity sloshing in an axisymmetric tank”, Trans. ASME, 

J. Appl. Mech., 71(5), 724-730. 

Young, T. and Baozeng, Y. (2017), “Simulation of large-amplitude three dimensional liquid sloshing in 

spherical tanks”, AIAA J., 55(6), 2052-2059. 

Yuanjun, H., Xingrui, M., Pigping, W. and Benli, W. (2007), “Low-gravity liquid nonlinear sloshing 

analysis in a tank under pitching excitation”, J. Sound Vibr., 299(1-2), 164-177. 

Zhou, Z. and Huang, H. (2015), “Constraint surface model for large amplitude sloshing of the spacecraft 

with multiple tanks”, Acta Astronaut., 111, 222-229. 
 

 

CC 

 

 

Nomenclature (Non-dimensional) 
 

A Beam cross-sectional area 

b Tank length 

E Young’s modulus of beam 

h Equivalent liquid height ( )0: /h h R=  

I Beam second moment of area 

kt Torsional spring constant ( )t tk l EI =  

l Beam length ( )l R =  

mf Liquid mass :( / 2 )f f bm m Al=  

mt Rigid tank mass : ( / 2 )t t bm m Al=  

M Total of fm  and tm :( )f tM m m= +  

O XY−  Spacecraft coordinate system 

o r z−  Tank coordinate system : (o )−  
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R Tank radius 

t Time : ( )bt =  

YM Rigid tank displacement : ( / )M My Y l=  

( , )i iW x t  Beam displacements : ( / )i iw W l=  

( ), ,Z r t  Liquid surface displacement ( ): /Z R =  

0 ( )z r  Static liquid free surface ( )0 0: /z R =  

( ), ,fZ r t  Liquid free surface displacement 

( ), , ,r z t  Liquid velocity potential 2: ( / )b R =  

  Beam and tank area ratio 2( 2 )R A=  

0  Static contact angle of liquid 

f  Liquid density 

b  Beam density 

  Coefficient of free surface tension 2: ( )R l EI =  

  Density ratio ( )f b =  

i  Non-dimensional coordinate : ( / )ix l=  

  Coupled natural circular frequency ( )b  =  

b  Natural circular frequency parameter 
4( )bEI Al=  
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