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Abstract.  The moving load causes the occurrence of vibrations in civil engineering structures such as 

bridges, railway lines, bridge cranes and others. A novel engineering method for separation of the variables 

in the differential equation of the elastic line of Bernoulli-Euler beam has been developed. The method can 

be utilized in engineering structures, leading to “a beam under moving load model” with generalized 

boundary conditions. This method has been implemented for analytical study of the dynamic response of the 

metal structure of a single girder bridge crane due to the telpher movement along the bridge girder. The 

modeled system includes: a crane bridge girder; a telpher, moving with a constant horizontal velocity; a load, 

elastically fixed to the telpher. The forced vibrations with their own frequencies and with a forced frequency, 

due to the telpher movement, have been analyzed. The loading resulting from the telpher uniform movement 

along the bridge girder is cyclical, which is a prerequisite for nucleation and propagation of fatigue cracks. 

The concept of “dynamic coefficient” has been introduced, which is defined as a ratio of the dynamic 

deflection of the bridge girder due to forced vibrations, to the static one. This ratio has been compared with 

the known from the literature empirical dynamic coefficient, which is due to the telpher track unevenness. 

The introduced dynamic coefficient shows larger values and has to be taken into account for engineering 

calculations of the bridge crane metal structure. In order to verify the degree of approximation, the obtained 

results have been compared with FEM outcomes. An additional comparison has been made with the exact 

solution, proposed by Timoshenko, for the case of simply supported beam subjected to a moving force. The 

comparisons show a good agreement. 
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1. Introduction 
 

The presence of movable load causes the occurrence of vibrations in civil engineering 

structures such as bridges, railway lines, bridge cranes and others. The computational scheme of 

these objects most commonly leads to a beam model under moving load. The occurrence of this 

engineering problem is connected with the construction and exploitation of railroad installations. 

Three studies mark the beginning of a solution to this problem. The first mathematical model of 

the elastic curve of Bernoulli-Euler beam, subjected to a load, moving with a constant horizontal 
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velocity, is obtained by Willis (1849) for the case of a freely supported beam. The beam mass has 

been neglected and the system “beam-moving load” is modeled to such with one degree of 

freedom, having a constant mass and changeable elasticity. The opposite model of behaviour of 

the elastic curve of a freely supported beam under the influence of a moving load with a constant 

velocity is when its mass is neglected, respectively only the distributed beam mass is taken into 

account. An analytical solution of this problem is obtained by Krilov (1905) for the case of a 

constant force. An analytical solution for the case of a harmonic exciting force is proposed by 

Timoshenko (1922). Afterwards, three fundamental works devoted to this problem have been 

published: by Inglis (1934), Hillerborg (1951) (who proposed an analytical solution through 

Fourier’s method of simple supported beams) and Fryba (1999). 

During the last few decades many solutions have been made for beam models, subjected to a 

moving load, in different engineering applications: beam on elastic foundation-linear-elastic 

foundation (Kien and Ha 2011, Chonan 1978, Amiri and Onyango 2010, Awodola 2007, 

Dimitrovova 2016), viscoelastic foundation (Zehsaz et al. 2009, Sun and Luo 2008, Karami-

Khorramabadi and Nezamabadi 2012, Luo et al. 2016), nonlinear elastic foundation (Ding et al. 

2012, Hryniewicz 2011), elastic foundation, modeled through springs with different stiffness 

(Thambiratnam and Zhuge 1996); bilinear elastic foundation (Casrto Jorge et al. 2015); freely 

supported beam (Yang et al. 1997, Nikkhoo and Amankhani 2012, Michaltos 2002, Michaltos et 

al. 1996); inclined beam (Wu 2005); complex beam (Yau 2004); continuous beam (Prager and 

Save 1963, Zheng et al. 1998, Kerr 1972); beam on elastic supports (Mehri et al. 2009, Piccardo 

and Tubino 2012); beam with generalized boundary conditions (Hilal and Mohsen 2000); 

contilever beam (Lin and Chang 2006); curved beam traversed by off-center moving loads 

(Rostam et al. 2015). In view of the model of stressed and strained state, Bernoulli-Euler beams 

prevail (Dimitrovova 2016, Hilal and Mohsen 2000, Xia et al. 2006, Javanmard et al. 2013, Liu et 

al. 2013) over beams of Timoshenko (Luo et al. 2016, Azam et al. 2013, Chonan 1975). The 

analytical approach for solution prevails over the finite element one (Lin and Trethewey 1990, 

1993). Some of the models refer to previously stressed beams through axial compressive load 

(Omorofe 2013, Zibdeh and Rackwitz 1995). 

The models in which the mass of the moving load is not taken into account are prevailing. The 

effect of inertia from the passing load is numerically obtained in (Yang et al. 1997) through 

Newmark-β method, and is afterwards included in the force function of the load. In (Michaltos 

2002) the mass and the moment of inertia of the moving load are taken into account, as well as the 

effect of inertia from the rotation of the beam’s sections. However, the effect of inertia from the 

load mass directly on the beam transverse vibrations is not taken into account, but only through the 

weight force and the force of inertia from the horizontal acceleration of the load. 

In the majority of publications, the case of the load’s constant velocity is examined. A study of 

the influence of the acceleration has been made by Michaltos (2002) and Hilal and Mohsen (2000). 

The models with constant magnitude of the moving load are prevailing. In (Hilal and Mohsen, 

2000) a model with moving force, altering by magnitude by a harmonic law has been made. In 

(Awodola 2007) the moving force changes exponentially and a numerical approach is applied-the 

finite difference method. In some of the models a dynamic absorber moving on the beam’s axis 

has been implemented (Samani and Pellicano 2009, Soares et al. 2010). Models of more 

complicated objects have been made-a bridge system, examined in a resonance state (Xia et al. 

2006) and a vehicle model (Esmailzadeh and Jalili 2003).  

It is noteworthy that the models of two-supported beams mainly refer to a freely supported 

beam, which has a logical explanation: the frequency equation is most simple for this case and  
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Fig. 1 Single girder bridge crane 
 

 

therefore, the general solution in infinite sums can be obtained (Timoshenko 1972). 

In the engineering practice the technical solutions for fixture of the ends of a beam, subjected to 

bending, lead to a model with elastic angular supports. A such model of Bernoulli-Euler beam 

under moving load was developed by Maximov (2014). The elastic angle supports restrict the 

rotations of the end cross-sections for beam bending, depending on the stiffness of the supports. 

For instance, in many constructional solutions the bridge girder (principal beam) of a bridge crane 

is connected in both its ends for the vertical internal faces of the endtrucks (runway beams) 

through plates and coupling flanges with fitted bolt connections (Fig. 1). The elasticity of the 

angular supports in a vertical plane is a function of the endtrucks torsion stiffness. In terms only of 

bending, the bridge girder is double statically indeterminated: hyperstatic quantities are the elastic 

moments in the two additional angular supports.  

The moving on the bridge girder telpher with the elastically suspended load is the moving load. 

This system (bridge girder-telpher-load) departs from the scope of the known modeled tasks, as it 

assumes two generalized coordinates: deflection of the elastic line of the bridge girder (depending 

on the time and the abscissa defining a particular cross-section) and the elastic elongation of the 

“telpher-load” system. In the known methods for calculating the bridge girder of the bridge crane, 

the dynamic effect of movement on the bridge girder of the “hoist-load” system has been taken 

into account with a coefficient of dynamism, which is an empirical function of the telpher nominal 

velocity (Kolarov et al. 1986). This dynamic coefficient takes into account all unevenness (which, 

of course, have a stochastic nature) of the telpher route, which in turn are the reason for dynamic 

loading. In fact, the mobile “telpher-elastic suspended load” system causes forced vibrations of the 

bridge girder, which are superimposed on the free vibrations resulting from the random effects of 

the route unevenness. While the second type of vibrations rapidly subsides due to material 

hysteresis mostly, the forced vibrations exist during the whole telpher movement. 

The main objective of this study is to evaluate those forced vibrations of the “bridge girder-

telpher-load” system due to telpher movement along the bridge girder, respectively, to assess the 

dynamic effect on the bridge girder. 

In this study, the bridge girder is modeled as Bernoulli-Euler beam with angular elastic 

supports and with constant cross-section, respectively, with constant mass per unit length. The 

“telpher-load” system is moved with constant horizontal velocity along the bridge girder. The 

connection between the telpher and the load is linear elastic. All masses (bridge girder, telpher, 

load) are taken into account. 
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Fig. 2 Mechanical model of the “bridge girder-telpher-load” system: (a) general view; (b) after “release from 

connections”; 1-bridge girder, 2-telpher, 3-elastic rope, 4-load 
 

 

In order to solve this problem, a method for a separation of the variables (time, abscissa) in the 

differential equation of the elastic line of Bernoulli-Euler beam has been developed. Unlike the 

Fourier’s method, the proposed method divides the variables before drawing up the differential 

equation. For this purpose, the elastic line of the beam is modeled in advance depending on the 

boundary conditions through the infinite trigonometric series method. 

The developed method can be utilized in many engineering structures, leading to “a beam 

under moving load model”.  

 

 

2. Mathematical model of the “bridge girder-telpher-load” system dynamic response 
 

The mechanical model is depicted in Fig. 2(а). The “bridge girder-telpher-load” system has two 

degrees of freedom: the w(t, x) dynamic deflection of the beam elastic line; the z(t) elastic 

elongation of the “telpher-load” connection (elastic rope). The principle “release from the 

connections” has been applied. The behavior of the bridge girder-telfer system is described first, 

followed by the load behavior (Fig. 2(b)). The system equations in closed form are as follows 
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where EJ is the beam bending stiffness; ρ is the beam density; F is the beam cross-section area; mh 
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is the telpher mass; H is heaviside function; ς is damping coefficient of distributed linear damping; 

Nr is the elastic force in the rope; 
M  is the load mass; g is gravity acceleration; z(t) is the rope 

elongation; v is the telpher horizontal velocity; cr is the rope stiffness ( constin

r = );
in

r  is the initial 

rope length. 

The initial and boundary conditions are 
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The system (1) describing the “bridge girder-telpher-load” system dynamic response, cannot be 

integrated analytically. Two approaches are possible: numerical solution; development and 

implementation of appropriate engineering approach. The numerical solution requires a particular 

geometry and configuration of the mechanical system and does not always allow a thorough 

analysis to be conducted. In this study, the second approach has been adopted.  

 

 

3. Essence of the proposed approach 
 

In this section, an engineering approach for modeling the elastic line of Bernoulli-Euler beam 

with elastic angular supports is proposed. The method is based on the application of the infinite 

trigonometric series. A straight beam with elastic angular supports with stiffness equal to cφ, 

limiting the bending rotations of the end cross-sections (Fig. 2), is considered. The beam elastic 

line lies in the xw plane. The w(t, x) dynamic deflection is presented as 

( ) ( ) ( )xytx,tw =  (4) 

where φ(t) is normal coordinate and y(x) is normal function. 

In order to define the y(x) normal function, the w(t, x) dynamic deflection is considered in a 

static regime, i.e.,: w=w(x). 

The deflection w(x) must satisfy the condition ( ) ( ) 00 == ww , but ( ) 00 w ,  ( ) 0 w , 
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correlation exists: for a particular angle of rotation of the end cross-section, there is a specific 

elastic moment. The expression for deflection w(x) of the beam elastic line is offered in the form 
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Each of the functions in the sums apparently satisfies the first group of boundary conditions 

( ) ( ) 0w0w ==   

 The derivatives up to second order of (5) are 
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 The dependence between the coefficients An on the one hand and the coefficients Bn on the 

other hand, is determined by the second group of boundary conditions 
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The turns of the end cross-sections, Eq. (6), cause elastic moments 
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The elastic moments are defined as 
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In view of (10), the deflection w(x) obtains the following form 
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The unknown coefficients An can be determined, for example through the principle of possible 

displacements for equilibrium position depending on the particular load. 

The normal φ(t) coordinate in Eq. (4) is actually the An coefficient in Eq. (12), when n=1 and 

the deflection depends on the time, i.e.,: w=w(x, t). Two arguments exist in favor of this 

assumption (n=1): 

• In the engineering structures the elastic curve of a two-supported beam usually corresponds to 

its basic eigentone under free vibrations; 

• The practice shows that the bending stresses in a two-supported beam are biggest when the 

load is equally distant from both supports. 

The normal y(x) function is obtained from (12) after substitution of An=1 and n=1 
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When k=0 (beam with both ends fixed), the second addend in (13) is removed: 
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4. Forced vibrations of the “bridge girder-telpher- load” system 
 

The developed approach has been used in order to study the dynamic response of the “bridge 

girder-telpher-load” system due to telpher motion. The equations of motions of this system can be 

presented as 
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is the system kinetic energy: 
b

kЕ , 
h

kЕ  and 

kЕ  are respectively kinetic energies of the beam, 

telpher and load (the kinetic energy of the rope is neglected ); Ep is the system potential energy; Qφ  

and Qz are generalized forces; v


 is the telpher horizontal velocity, v=const. 

The kinetic energy of the bridge girder is 
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is the beam reduced mass, where the k coefficient is determined by Eq. (11). 

The kinetic energies of the telpher and the load are obtained only from their vertical velocities. 

Their horizontal velocities are ( ) vt = .  

The telpher kinetic energy is 
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After substitution of (21) in (20) 
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Function (19) converts Eq. (14) in a system nonlinear differential equations. In the present 

study, F(t) has been replaced by its average integral value 
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Thus, the nonlinear Eq. (14) are approximated by a system of linear differential equations of 

the second order, which has an analytical solution. Simultaneously a certain error is introduced: 

when the telpher is in the beam middle, the computed natural frequencies are higher than the actual 

ones and vice versa: the computed frequencies will be smaller when the telpher is positioned at the 

beam ends. 

The system potential energy is 
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The elastic rope potential energy is 
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The external potential forces of the “bridge girder-telpher-load” system are: 
Q  - the load 

weight; q=ρFg - the distributed load of the beam weight, where g


- the gravitational acceleration; 

Gh - the telpher weight. An increase of the w deflection, equal to δw, is assigned which leads to a 

distortion of the beam elastic line (the z coordinate remains constant) 
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Q  forces, and the distributed load q, are respectively 
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The virtual work of the generalized force Qφ is 
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Q , and the distributed load q 
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follows for Qφ, in accordance with the principle of virtual displacements. 

А virtual δz increase of the z coordinate is assigned (the φ coordinate remains constant). The 

virtual work of the 
Q  force is 
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is obtained for the differential equations of the “bridge girder-telpher-load” system, where 
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After transformations, the system (36) obtains the form 
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where 
r

l

c

M
d =  is the reciprocal value of the square of the natural frequency of the “rope-load” 

system. 

After summing the two Eqs. (37) 
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(38) 

Both sides of the second of the Eq. (37) is differentiated twice and the obtained equation is 

solved with respect to z  
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(39) 

After substitution of (39) in (38), the differential equation of the φ(t) normal coordinate is 

obtained 
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where 
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The roots of the characteristic equation are 
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For physically acceptable values of the parameters of the “bridge girder-telpher-load” 

mechanical system the condition 

0cab2 −  

should always be fulfilled.  
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is set. 

The total integral of the non-homogeneous differential Eq. (40) is 
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The particular φ1(t) integral has been found in the form 
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where 
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For determination of the Ci integration constants in the total integral (39), the second of the 

Eqs. (37) is solved with respect to z 
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and its first integral of motion 
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is obtained, 

where 
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zM
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It is assumed that in the t=0 moment the telpher is on the left support. Therefore, the initial 

conditions are 
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From (42) and (44)-(46)  
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follows for the Ci integration constants. 

The constants C1 and C3 are presented as 
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The constants 3,1, =iC free

i , define the amplitudes of free vibrations of the mechanical system. 

These vibrations are caused by the initial conditions-the third condition from (46). These 

vibrations subside quickly, mainly due to the material hysteresis. The constants 3,1, =iC forced

i , 

define the amplitudes of free vibrations caused by the horizontal velocity v


 of the moving telpher 

with a load. 

From (4), (13), (42), (43), (48), (50), (53) and (54) 
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(55) 

follows for the bridge girder bending forced vibrations, caused by the moving telpher with 

elastically mounted load. 

The forced vibrations (55) are superposition of vibrations with own frequencies ω1 and ω2, and 

forced frequency Ω=πv/l.     

 

 

5. Dynamic coefficient 
 

The static w(x) deflection is obtained from the analogous to (4) dependence 

 
( ) ( )xy.xw st=

 (56) 

where φst is obtained from the first Eq. of (26) after substitution of 0== z , replacement of F(t) 

with y(x) and solving and in regard to φ 
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(57) 

In order to assess the dynamic effect from the telpher movement, a dynamic coefficient kd is 

introduced. The latter is defined as a ratio of the dynamic deflection (55) and the static one (56). 

Taking into account the normal function (13) of the bridge girder elastic line, the dynamic 

coefficient kd has largest relevance for the girder middle cross-section 
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(58) 

The dynamic coefficient kd shows how many times the static loading is increased due to the 

“telpher-load” system horizontal velocity. The definition of this ratio by means of (58) has the 

following advantage. The approximation that is imported into the decision by means of the 

proposed method of separation of the variables, slightly affects the dynamic effect of the moving 

“telpher-load” system, since the error introduced by defining the normal function is the same for 

the numerator and the denominator of dependence (58). 

 

 

6. Numerical results and discussions 
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The numerical results are shown for a single girder bridge crane with bridge girder length 

m20= , maximum lifting capacity Q=50 kN and coefficient k=11.33 (see Eq. (11)), respectively 

stiffness of the angular supports cφ=24489156.8 Nm/rad. The sizes of the bridge girder cross-

section (Fig. 3) are: u=0.015 m; v=0.02 m; a=0.06 m; b=0.395 m; h=0.595 m; F=0.0324 m2; 

Jy=0.001734 m4. The telpher mass is mh=1000 kg. The bridge girder density and the rope stiffness 

are respectively ρ=7850 kg/m3 and cr=107 N/m. 
 

 

 

Fig. 3 Cross-section of the bridge girder 
   
 

Fig. 4 visualizes the components of the function of forced vibrations (55) caused by the 

horizontal telpher velocity v=0.5 m/s as well as free vibrations and static deflection of the bridge 

girder middle cross-section. The time interval corresponds to the telpher location in vicinity of the 

middle section: in the interval ±2 m from the middle cross-section. Apparently, the contribution of 

the forced vibrations with own frequencies for obtaining the maximum dynamic deflection is 

greatest (Fig. 4).  
 

 

 

Fig. 4 Forced vibrations, free vibration and static deflection: 1 - forced vibrations with forced frequency Ω; 2 

- forced vibrations with natural frequencies ωi; 3 - free vibrations; 4 - static deflection 
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The resulting forced vibrations of the same cross-section are illustrated in Fig. 5. It is 

noteworthy that the maximum dynamic deflection of the bridge girder middle cross-section 

corresponds to the telpher position, which does not coincide exactly with this cross-section 

(respectively, for a moment of time t=20 s). The maximum deflection occurs when the telpher has 

already passed the beam middle. As it can be seen from Fig. 5, the bending stress at a critical point 

from the bridge girder middle cross-section will change at an asymmetric cycle, similar to the 

dynamic deflection. 

 

 

 

Fig. 5 Resultant forced vibrations: 1 - forced vibrations; 2 - static deflection 
 

 

Figs. 6 and 7 show the effect of the coefficient k, defining the angular supports stiffness of the 

bridge girder, on the forced vibrations. k=0 and k=∞ define respectively a fixed beam and a freely 

supported beam. With the increase of k, the dynamic deflection of the bridge girder middle cross-

section from forced vibration with worked Ω frequency increases (Fig. 6), while the amplitude 

swing decreases. For a freely supported beam this component has an emphasized static character. 

The forced vibrations with natural frequencies (Fig. 7) are symmetrical for each value of k, as the 

amplitude is smallest for k=0. 

 

 

 

Fig. 6 Effect of the coefficient k on the forced vibrations with forced frequency Ω 
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Fig. 7 Effect of the coefficient k on the forced vibrations with natural frequencies ωi 
 

 

Fig. 8 shows the effect of the coefficient k on the dynamic coefficient kd, defined for the beam 

middle cross-section. The coefficient kd is largest for fixed beam, k=0 (Fig. 8(c)), and significantly 

exceeds the dynamic coefficient kd=1.04+0.06v due to the telpher motion, shown in (Kolarov et al. 

1986). With the increase of k, the dynamic coefficient kd sharply decreases. Of course, the cases 

where k=∞ (Fig. 8(a)) and k=0 (Fig. 8(c)) have a theoretical significance only. For practical real 

values of k (see Fig. 8(b)), the dynamic coefficient kd calculated in   

  
 

 

Fig. 8 Effect of the coefficient k on the dynamic coefficient kd: 1 - dynamic coefficient according to (58); 2 - 

dynamic coefficient according to [47]; (a) k=∞; (b) k=11.33; (c) k=0 
 

 

Fig. 9 Comparison of the forced vibrations for the middle beam section: (a) ( ) FtF = ; (b) for the actual 

value of the F(t) function 
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accordance with (58) shows higher values compared to these in (Kolarov et al. 1986) and it 

actually reveals the mechanism of the bridge girder loading: the loading resulting from the telpher 

uniform movement along the bridge girder is cyclical. It is therefore a prerequisite for nucleation 

and propagation of fatigue cracks. It is noteworthy that the maximum value of the dynamic 

coefficient is not obtained in a position of the telpher in the beam middle, and when the telpher is 

located shortly before or after the beam middle cross-section. 

In order to evaluate the error from linearization of the Eq. (14) by means of the substitution 

( ) FtF = , the forced vibration for the middle beam section is shown in Fig. 9, where the telpher 

is poisoned in the beam middle, for two cases: 1). ( ) FtF = ; 2). for the actual value of the 

function ( )tF , namely ( )
42

k
tF

v
t

=
=

 . The maximum dynamic deflections for both cases are 

respectively 0.034 m and 0.036 m. The approximation (the second case) leads to a larger 

deflection, as the error is approximately 5%. 
 

 

7. Verification of the proposed method 
 

The proposed method is an approximation of the exact solution of the Eq. (1). The degree of 

approximation can be evaluated through a comparison between the proposed method solution and 

the exact solution, if the latter exists. However, in this case the exact solution is unknown. For this 

reason the developed method was compared with another approximate method, for instance FEM. 

Implicit dynamic analysis was carried out using ABAQUS v. 6.12.1. An iterative approach was 

developed using “restart options” and reading the outcomes from the (i-1)-th analysis as initial 

conditions in the i-th analysis. Thus, the mass and load motion were simulated, using appropriate 

time curves. The FEM model for the i-th analysis is depicted in Fig. 10. 

Because of the peculiarities of ABAQUS v. 6.12.1 (beam elements cannot be transferred form 

one ABAQUS/Standard analysis to another), the crane bridge girder is modeled by means of plane 

stress elements. The model consists of 1920 linear quadrilateral elements of type CPS4R and 2169 

nodes. The elastic angular supports at each end of the beam are modeled by a pair of parallel axial 

springs. The stiffness ca of each spring is calculated with the formula 

2a
h

c2
c


=

 
where cφ is the angular stiffness of the support and h is the distance between the two axial springs. 

The rope is modeled by two axial springs having stiffness equal to the rope stiffness. 
 

 

 

Fig. 10 FEM model for the i-th analysis 
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Fig. 11 Deflection of the middle section centre: 1. proposed method; 2. FEM 
 

 

Fig. 12 Deflection of the middle section centre of simply supported beam: 1. proposed method; 2. 

Timoshenko 
 

 

FEM outcomes for the displacement of the middle cross-section centre (point A) of the beam 

are depicted in Fig. 11. The comparison of the obtained FEM results with those from the proposed 

method shows good agreement with respect to the maximum deflection: 0.0354 m versus 0.0360 

m. 

An additional comparison has been made with the exact solution, proposed by Timoshenko, for 

the case of simply supported beam subjected to a moving constant force. Tymoshenko’s solution 

in an infinite series is (Timoshenko 1972) 
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P is the moving constant force. 

For the simply supported beam, subjected to a moving constant force P, the proposed method 

gives the following solution 
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(60) 

where 
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
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The solution (60) is obtained using the methodology proposed in Section 4, referring to a 

simply supported beam. In order to obtain the conditions of Tymoshenko’s task, the mechanical 

model, depicted in Fig. 2 is modified in the following manner: 

• The normal function (see Eq. (13)) is ( )
l

x
xy


sin= , respectively the elastic angular supports 

are removed; 

• The distributed load q of the beam weight is neglected; 

• The masses of the telpher 2 and the load 4 are neglected; 
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• The rope 3 is assumed to be rigid (non-deformable); 

• The moving constant force P has a magnitude: 
QGP h += . 

Using the numeric data from Section 6, the graphs of Eqs. (59) and (60) for 
2


=x  (middle 

cross-section) are shown in Fig. 12. The comparison shows a very good agreement between the 

solutions. 

 

 

8. Conclusions 
 

• A method for separation of the variables (time, abscissa) in the differential equation of the 

elastic line of Bernoulli-Euler beam has been developed. Unlike Fourier’s method, the proposed 

method divides the variables before drawing up the differential equation. For this purpose, the 

elastic line of the beam is modeled in advance depending on the boundary conditions through the 

infinite trigonometric series method. The developed method can be utilized in many engineering 

applications, leading to “a beam under moving load model”. 

• Тhe forced vibrations of the “bridge girder-telpher-load” system of single girder bridge crane, 

due to telpher motion along bridge girder, have been established and analyzed through the 

developed method. A conclusion has been made that the normal stress at a critical point form the 

bridge girder middle cross-section will change at an asymmetric cycle, similar to the dynamic 

deflection. 

• The concept of “dynamic coefficient” has been introduced, which is a ratio of the dynamic 

deflection of the principal beam, due to the forced vibrations, to the static one. This ratio has been 

compared with the known from literature empirical dynamic coefficient during the telpher 

movement, due to the track unevenness. The dynamic coefficient kd, calculated in accordance with 

Eq. (58), shows larger values than that in (Kolarov et al. 1986), and it actually reveals the 

mechanism of the bridge girder loading: the loading resulting from the telpher uniform movement 

along the bridge girder is cyclical. Therefore, the telpher movement along the bridge girder is a 

prerequisite for nucleation and propagation of fatigue cracks. The introduced dynamic coefficient 

has to be taken into account for engineering calculations of the bridge crane metal structure. 

• In order to verify the degree of approximation, the obtained results have been compared with 

FEM outcomes. An additional comparison has been made with the exact solution, proposed by 

Timoshenko, for the case of simply supported beam subjected to a moving force. The comparisons 

show a good agreement. 
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