
 

 

 

 

 

 

 

Coupled Systems Mechanics, Vol. 7, No. 4 (2018) 441-453 

DOI: https://doi.org/10.12989/csm.2018.7.4.441                                                                                            441 

Copyright ©  2018 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=csm&subpage=8               ISSN: 2234-2184 (Print), 2234-2192 (Online) 
 
 
 

 
 
 
 

Non-linear longitudinal fracture in a functionally graded beam  
 

Victor I. Rizov* 
 

Department of Technical Mechanics, University of Architecture, Civil Engineering and Geodesy,  
1 Chr. Smirnensky blvd., 1046 - Sofia, Bulgaria 

 
 (Received August 21, 2017, Revised December 11, 2017, Accepted February 5, 2018) 

 
Abstract.  Longitudinal fracture in a functionally graded beam configuration was studied analytically with 

taking into account the non-linear behavior of the material. A cantilever beam with two longitudinal cracks 

located symmetrically with respect to the centroid was analyzed. The material was functionally graded along 

the beam width as well as along the beam length. The fracture was studied in terms of the strain energy 

release rate. The influence of material gradient, crack location along the beam width, crack length and 

material non-linearity on the fracture behavior was investigated. It was shown that the analytical solution 

derived is very useful for parametric analyses of the non-linear longitudinal fracture behavior. It was found 

that by using appropriate material gradients in width and length directions of the beam, the strain energy 

release rate can be reduced significantly. Thus, the results obtained in the present paper may be applied for 

optimization of functionally graded beam structure with respect to the longitudinal fracture performance. 
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1. Introduction 
 

The application of functionally graded materials has increased considerably for the last two 

decades in aerospace, electronics, optics, nuclear energy, engineering, etc. (Bohidar et al. 2014, 

Farzad Ebrahimi et al. 2016, Gasik 2010, Hadji et al. 2015, Hirai and Chen 1999, Koizumi 1993, 

Lu et al. 2009, Markworth, Ramesh and Parks 1995, Mortensen and Suresh 1995, Naser and 

Alahmad 2017, Nemat-Allal et al. 2011, Neubrand and Rödel 1997). This is due mainly to the fact 

that by gradual changing the material property distribution in one or more spatial directions during 

manufacturing process, one can meet requirements for various material properties in different parts 

of a structural member, which is the basic advantage of functionally graded materials over the 

traditional structural materials. Recently, interesting thermo-mechanical dynamic and buckling 

analyses of various functionally graded beam configurations (sandwich beams with functionally 

graded composite face sheets, functionally graded beams with porosities, nansize beams and 

others) have been developed (Ebrahimi and Salari 2015, Ebrahimi and Farzamandnia 2016, 

Ebrahimi and Jafari 2016, Ebrahimi and Barati 2016a, b, c, d, e, f, g, Ebrahimi and Shafiei 2016). 

The concept of neutral axis has been discussed and applied by Ebrahimi and Salari (2015) for the 

case when the material is functionally graded along the beam height (along z-axis). In recent years, 
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important contributions in mechanics of functionally graded beams and plates have been done by 

Ait Amar Meziane et al. (2014), Ait Atmane et al. (2015), Bellifa et al. (2016), Bourada et al. 

(2015), Hadji (2017), Hadji et al. (2017). In structural applications of functionally graded 

materials, fracture is very often a critical failure mode that leads to lose of structural capacity and 

functionality. Therefore, fracture mechanics of these novel materials continues to attract the 

attention of researchers around the world (Brajesh Panigrahi and Goutam Pohit 2016, Carpinteri 

and Pugno 2006, Erdogan 1995, Lia-Liang et al. 2009, Paulino 2002, Rizov 2017a, b, c, Tilbrook 

et al. 2005, Upadhyay and Simha, 2007, Zhang et al. 2013).  

Cracked functionally graded beams have been analyzed by Brajesh Panigrahi and Goutam 

Pohit (2016). The material has been functionally graded along the beam height. Clamped-clamped 

and clamped-free beam configurations have been considered. Dynamic analysis has been 

performed by modeling of cracked beams as two sub-beams connected by a mass-less rotational 

spring. Continuity has been assumed in longitudinal and transverse displacements at the cracked 

section of the beam. The effects of crack depth and crack location have been evaluated.  

The post-buckling response of functionally graded beams containing an open edge crack has 

been investigated by Lia-Liang et al. (2009). It has been assumed that the material is functionally 

graded in the thickness direction. A detailed parametric study of the influence of the crack depth, 

crack location and material properties on the post-bucking behavior of the cracked beam has been 

carried-out.  

Delaminaton fracture in multilayered functionally graded beams which exhibit non-linear 

behavior of the material has been studied by Rizov (2017a). The strain energy release rate has been 

analyzed assuming that the material is functionally graded in the thickness direction of each layer. 

The solution derived is valid for beams made of an arbitrary number of adhesively bonded layers. 

The delamination crack is located arbitrary between layers. Besides, the layers may have different 

thicknesses and material properties.  

Fracture in functionally graded beams has been analyzed with taking into account the non-

linear behavior of the material by Rizov (2017c). A solution to the strain energy has been derived 

for beams which are functionally graded in the thickness direction. Results of parametric 

investigations of non-linear fracture behavior have been presented.   

Although many researchers have investigated fracture in functionally graded materials, there 

are still issues that have not been studied sufficiently. Such an issue is longitudinal fracture in 

beams made of non-linear elastic materials which is functionally graded along the width as well as 

along the length of the beam. Thus, the main purpose of the present paper was to perform a 

theoretical study of longitudinal fracture in such a functionally graded beam configuration.  

It should be specified that the present fracture analysis is based on the small strains assumption 

(this assumption is frequently used in fracture analyses of functionally graded materials (Carpinteri 

and Pugno 2006, Upadhyay and Simha 2007)). Besides, the fracture analysis developed in the 

present study is valid for non-linear elastic behavior of the material. However, the analysis holds 

also for elastic-plastic behavior, if the external load increases only, i.e. if the beam considered 

undergoes active deformation (Chakrabarty 2006, Lubliner 2006).     

 

 

2. Non-linear analysis of longitudinal fracture behavior   
 

The functionally graded beam configuration shown schematically in Fig. 1 is under 

consideration in the present paper. The beam is clamped in section B. It was assumed that two 
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delamination cracks of length, a, are located symmetrically with respect to the centrod (it should 

be noted that the present study was motivated also by the fact that functionally graded materials 

can be built up layer by layer (Bohidar et al. 2014) which is a premise for appearance of 

longitudinal cracks between layers). The cross-section of the internal crack arm is a rectangle of 

width, b1, and height, h. The two external crack arms have rectangular cross-sections of width, b2 

and height, h. The loading consists of one bending moment, My, applied at the free end of the 

internal crack arm. Thus, the two external crack arms are free of stresses. The beam has a 

rectangular cross-section of width, b, and height, h. The beam length is denoted by l.  

 

 

 

Fig. 1 Geometry and loading of a functionally graded cantilever beam configuration with two symmetric 

longitudinal cracks 

 

 

The beam mechanical behaviour was described by the following power-law stress-strain 

relation (Petrov 2014) 

1

1

nL =  (1) 

where σ is the stress, ε is the strain, L1 and n1 are material properties (the non-linear stress-strain 

curve is shown schematically in Fig. 2).  

It was assumed that the material is functionally graded along the beam width as well as along 

the beam length (i.e., the material is two-dimensional functionally graded). Along the beam width, 

the material is functionally graded symmetrically with respect to the xOz-plane. Therefore, only 

half of the beam, y>0, was considered in the analysis (xOz is plane of symmetry). The material 

property, L1, varies continuously along the beam width from L1C at the xOz-plane to pL1C at the 

beam lateral surface according to the following bi-quadratic law 
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where the non-dimensional parameter p governs the material gradient along the beam width. 

Besides, L1C varies linearly along the beam length from L1CF in the beam free end to L1CB in cross-

section B (Fig. 1) 
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In other words, the material is functionally graded along x and y axes (Fig. 1).  

 

 

 
Fig. 2 Non-linear stress-strain curve (the strain energy density and the complementary strain energy density 

are denoted by 0u  and 
*

0u , respectively) 

 

 

The non-linear fracture behaviour was studied analytically in terms of the strain energy release 

rate, G. The following formula for G was used (Rizov 2017a) 

hda

dU
G

*

= , (4) 

where dU* is the increase of the complementary strain energy of the beam, da  is an elementary 

increase of the crack length.                 

The complementary strain energy is zero in the two external crack arms, since they are free of 

stresses. Therefore, the beam complementary strain energy, U*, was found by integration of the 

complementary strain energy density in the internal crack arm and in the un-cracked beam portion, 

a≤x≤l (Fig. 1) 
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It should be specified that in (5) the integration along the y-axis was carried-out for y>0, 

because only the right-hand half of the beam cross-section was considered in the analysis due to 

the fact that xOz  is plane of symmetry (Fig. 1). In (5), 
*

0iu  and 
*

0uu  are the complementary strain 

energy densities in the internal crack arm and in the un-cracked beam portion, respectively.   

The complementary strain energy density is equal to the area OQR that supplements the area 

OPQ enclosed by the stress-strain curve to a rectangle (Fig. 2). The complementary strain energy 

density for the power-law stress-strain relation (1) was calculated as (Rizov 2017c) 

11

1

1
1

*

0

1

+
=

+

n

n
Lu

n
. (6) 

The strain energy density, 0u , is equal to the area OPQ (Fig. 2). For the power-law stress-strain 

relation (1), the strain energy density was written as (Rizov 2017c) 

11

1

10

1

+
=

+

n
Lu

n . (7) 

The strain, ε, was analyzed by using the Bernoulli’s hypothesis for plane sections (it was 

assumed that this hypothesis is applicable, since the span to height ratio of the beam considered is 

large). Therefore, the distribution of the strains in the cross-section of the internal crack arm were 

written as 

z1 = , (8) 

where κ1 is the curvature of internal crack arm (the z-axis is shown in Fig. 1). It should be noted 

that the Bernoulli’s hypothesis for plane sections has been widely used when analyzing fracture in 

functionally graded beams (Carpinteri and Pugno 2006, Upadhyay and Simha 2007). Concerning 

the application of Bernoulli’s hypothesis in the present analysis, it should also be mentioned that 

due to the fact that the beam under consideration is loaded in pure bending in vertical plane (Fig. 

1), the only non-zero strain is the longitudinal strain, ε. Therefore, it follows from the small strain 

compatibility equations that ε is distributed linearly along the beam height.    

The following equilibrium equation of internal crack arm was used in order to determine κ1 

dzzdyM
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where 

yMM
2

1
= . (10) 
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It should be specified that the factor of ½  in formula (14) accounts for the fact that only half of 

the beam was analyzed due to the symmetry (Fig. 1). The following equation with unknown κ1 was 

obtained after substitution of (1), (2) and (8) in (9) 
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Eq. (11) was solved with respect to κ1. It was obtained  
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where CL1  and M are determined by (3) and (10), respectively.  

Clearly, at n1=1 the non-linear stress-strain relation (1) transforms into the Hooke’s law. This 

means that at n1=1 Eq. (12) should transform in the formula for curvature of linear-elastic beam. 

Indeed, by substitution of n1=1, p=1 and L1C=E (here E is the modulus of elasticity) in (12), we 

derived 

3
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1

24

hEb

M
= , (13) 

which coincides with the formula for curvature of linear-elastic homogeneous beam of width, b1/2, 

and height, h.  

Eq. (12) was used also to calculate the curvature, κ, of the un-cracked beam portion. For this 

purpose, b1 was replaced with b.  

Formulae (1), (2), (8) and (12) were substituted in (6) to calculate the complementary strain 

energy density in the internal crack arm. It was obtained 
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Likewise, the complementary strain energy density in the un-cracked beam portion, 
*

0uu , was 

found by substitution of (1), (2) and in (6). 

                  z =  (15) 
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In this way, the following formula was obtained 
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The expression derived by substituting of (5), (14) and (16) in (4) was doubled, because there 

are two symmetric longitudinal cracks in the beam under consideration (Fig. 1). In this way, we 

obtained the following formula for the strain energy release rate 
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(17) 

In order to verify (17), an additional fracture analysis was developed by applying the J-integral 

approach (Broek 1986). The J-integral was solved by using an integration contour, D, shown by 

dashed line in Fig. 1. The J-integral in the external crack arms is zero. Thus, the J-integral solution 

was expressed as 

21 DD JJJ += , (18) 

where 
1DJ  and 

2DJ  are the J-integral values in segments D1 and D2, respectively (D1 and D2 

coincide with the right-hand half of the cross-section of the internal crack arm and the right-hand 

half of the cross-section of the un-cracked beam portion, respectively).  

The J-integral in segments D1 was written as  

ds
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where α is the angle between the outwards normal vector to the contour of integration and the 

crack direction, 
1xp  and 

1yp  are the components of stress vector, u and v are the components of 

displacement vector with respect to the crack tip coordinate system x1y1 (x1 is directed along the 

crack), ds is a differential element along the contour. 

In segment, D1, of the integration contour, the components of the J-integral were found as  
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dyds = , 1cos −= , (21) 

where y varies in the interval [0, b1/2].  

The partial derivative, ∂u/∂x1, in (19) is expressed as  
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By substituting of (1), (2), (7), (8), (20), (21) and (22) in (19), we derived 
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where z varies in the interval [−h/2, h/2]. In (23), L1C is obtained by (3) at x=a.  

The solution of the J-integral in segment, D2, of the integration contour was found by (23). For 

this purpose, b1 was replaced with b. Besides, the sign of (23) was set to “minus” because the 

integration contour is directed upwards in segment, 
2D .  

The expression obtained by substituting of 
1DJ  and 

2DJ  in (18) was doubled in view of the 

symmetry (Fig. 1). In this way, we derived 
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(24) 

where L1C is obtained by (3) at x=a. 

Formula (24) expresses the distribution of the J-integral value along the crack front. The 

average value of the J-integral along the crack front was written as 


−

=
2
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J . (25) 
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The fact that the solution of the J-integral obtained by substituting of (24) in (25) matches 

exactly the strain energy release rate (17) is a verification of the non-linear fracture analysis 

developed in the present paper.   

 

 

3. Numerical results 
 

The influence of material gradient, crack location along the beam width, crack length and non-

linear material behavior on the fracture was analyzed. For this purpose, the strain energy release 

rate was calculated by using formula (17). It was assumed that b=0.008 m, h=0.009 m and My=10 

Nm. The strain energy release rate was presented in non-dimensional form by using the formula 

GN=G/(L1CFh). In the calculations, the material property L1CF was kept constant. Thus, the 

parameter p was varied in order to obtain various material gradients along the beam width (refer to 

formula (2)). The crack length and the crack location along the beam width were characterized by 

a/l and b1/b ratios, respectively. The strain energy release rate was plotted in non-dimensional 

form against the parameter p for b1/b=0.3, 0.5 and 0.7 at L1CB/L1CF=1 and a/l=0.3 in Fig. 3.  

 

 

 

Fig. 3 The strain energy release rate in non-dimensional form plotted against the parameter p for b1/b=0.3, 

0.5 and 0.7 

 

 

The diagrams in Fig. 3 indicate that the strain energy release rate decreases with increasing the 

parameter p. This finding was explained with the increase of the beam stiffness. It can also be 

observed in Fig. 3 that the strain energy release rate decreases with increasing b1/b ratio. This 

finding was attributed to the increase of the stiffness of the internal crack arm (the two external 

crack arms are free of stresses). 
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The effects of crack length and non-linear material behavior on the fracture were also 

evaluated. For this purpose, calculations of G were performed at various a/l ratios. The strain 

energy release rate obtained from these calculations is shown in non-dimensional form in Fig. 4 as 

a function of a/l ratio for L1CB/L1CF=2, p=0.5 and b1/b=0.5. One can observe in Fig. 4 that the strain 

energy release rate decreases with increasing the crack length (this finding was attributed to the 

fact that at L1CB/L1CF=2 the material property, L1C, in the beam cross-section in which the crack 

front is located increases with increasing the crack length).  

 

 

 

Fig. 4 The strain energy release rate in non-dimensional form plotted against a/l ratio (curve 1-at linear-

elastic behavior of the material, curve 2-at non-linear behavior of the material) 

 

 

In order to evaluate the effect of material non-linearity on the fracture, the strain energy release 

rate calculated assuming linear-elastic behavior of the functionally graded material was plotted 

also as a function of a/l ratio in Fig. 4 for comparison with the non-linear solution (the linear-

elastic solution was derived by substituting of n1=1 in (17)). It can be observed in Fig. 4 that the 

strain energy release rate increases when the non-linear behavior of the material is taken into 

account. This finding indicates that the material non-linearity has to be considered in fracture 

mechanics based safety design of functionally graded structural members.  

 

 

4. Conclusions 
 

An analytical investigation of fracture in a functionally graded cantilever beam with two 

longitudinal cracks located symmetrically with respect to the centriod was performed with taking 

into account the non-linear behavior of the material. It was assumed that the material is 

functionally graded along the beam width as well as along the beam length. The beam mechanical 
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behavior was described by a power-law stress-strain relation. A non-linear analytical solution was 

derived for the strain energy release rate. In order to verify the solution, an additional fracture 

analysis was developed by applying the J-integral approach. The influence of the material 

gradient, crack location along the beam width, crack length and material non-linearity on the 

longitudinal fracture behavior was analyzed. It was found that the material non-linearity leads to 

increase of the strain energy release rate. Therefore, the non-linear behavior of material has to be 

taken into account in fracture mechanics based safety design of functionally graded structural 

members. The solution derived is very useful for parametric studies of longitudinal fracture with 

considering the material non-linearity. The results obtained can be applied for optimization of the 

beam structure with respect to its fracture performance. For instance, the analysis performed 

indicates that the strain energy release rate can be significantly reduced by choosing suitable 

material gradients in both width and length directions of the functionally graded beam.    
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