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Abstract.  In this work we present an upscaling technique for multi-scale computations based on a 

stochastic model calibration technique. We consider a coarse-scale continuum material model described in 

the framework of generalized standard materials. The model parameters are considered uncertain, and are 

determined in a Bayesian framework for the given fine scale data in a form of stored energy and dissipation 

potential. The proposed stochastic upscaling approach is independent w.r.t. the choice of models on coarse 

and fine scales. Simple numerical examples are shown to demonstrate the ability of the proposed approach 

to calibrate coarse scale elastic and inelastic material parameters. 
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1. Introduction 
 

Many naturally existing or man-made materials such as rock/soils, bones and concrete are 

known to be heterogeneous on the spatial scales that are orders of magnitudes smaller than the 

respective scales related to response predictions. Additionally, the micro- and macro-scale models 

may be of an entirely different mathematical nature as the former ones can be discrete, and the 

latter ones continuum models. In such a case the classical “homogenization” approaches are 

known to be insufficient for upscaling purposes as refereed in Ibrahimbegović and Matthies 

(2012), Matthies and Ibrahimbegović (2014). To bridge the two scales in a more unified manner 

independent of the class of the mathematical model or the type of heterogeneity, in this paper the 

stochastic upscaling procedure is considered (Arsigny et al. 2006, Clément et al. 2013, Ghanem 

and Das 2011, Demmie and Ostaja-Starzewski 2015, Gorguluarslan and Choi 2014, Brady et al. 

2006, Starzewski 2008, Stefanou et al. 2015, Steven et al. 2011).  

Many researchers have contributed in this field. The common goal is to somehow capture fine 
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scale features in a stochastic setting. Stefanou et al. (2015) employed computational 

homogenization and XFEM to study the effect of uncertainty in material properties and 

geometrical features on macro-scale. Clément et al. (2013) have proposed a strategy to construct 

stochastic energy functional from realizations of random micro-structure. Brady et al. (2006) have 

utilized a “Moving Window” approach to characterize micro-scale randomness, a similar idea is 

used to infer meso-scale random fields of material stiffness tensor from bi-phased micro scale by 

Demmie and Ostaja-Starzewski (2015). Another way to achieve the coupling between scales with 

possibly completely different descriptions is to use concepts of machine learning as in 

Koutsourelakis (2007), the theory of which is often, at least conceptually, grounded in Bayesian 

ideas. 

In this paper a Bayesian approach (Kaipio and Somersalo 2004, Kennedy and O H́agan 2001, 

Hawkins-Daarud et al. 2013) is taken directly in its computationally cheaper Gauss-Markov-

Kalman filter form, a generalisation of classical Kalman filtering that allows direct estimation of 

non-Gaussian distributions without sampling (Pajonk et al. 2012, Rosić et al. 2012, Rosić et al. 

2016). The general set-up we propose here is as follows: on the macro scale a continuum material 

model is derived which not only covers the mean (i.e., homogenised) behavior, but also the 

possible deviations from it. As the micro-scale mechanical behavior, we have in mind involves 

both reversible (i.e., elastic) as well as irreversible (i.e., inelastic) behavior, this has to be reflected 

also in the constitutive models considered on the macro scale. Here the main goal is to show a 

proof-of-concept, so we will limit ourselves to a simple but sufficiently representative case of 

inelastic behavior (Liu et al. 2013). For the sake of simplicity, we limit ourselves to isothermal 

conditions and we shall exclude strain-rate dependent behavior. Thus, for the inelastic or 

irreversible part we only consider ductile non-softening behavior, i.e., strain-rate independent 

plasticity and damage with hardening. However, one can consider choice of more complex 

structural/continuum models for upscaling e.g. (Do and Ibrahimbegović 2015, Do et al. 2015, Ngo 

et al. 2014, Ngo et al. 2014).   

As this is to be a model for possibly more complex behavior, we shall assume that the macro-

scale continuum model can be described as a generalised standard material model (Halpen and 

Nguyen 1974, Halpen and Nguyen 1975, Nguyen, 1977). This has the advantage that these 

materials are completely characterized by the specification of two scalar functions, the stored 

energy resp. Helmholtz free energy, and the dissipation pseudo-potential. In this way the simple 

case chosen here can be generalized to very complex material behavior. In our view this 

description is also a nice and simple illustration for the connection with the micro-scale behavior. 

No matter how the physical and mathematical/computational description on the micro scale has 

been chosen, in all cases where the description is based on physical principles it will be possible to 

define the stored (Helmholtz free) energy and the dissipation (entropy production). These two 

thermodynamic functions will thus be used as measurements in Bayesian inference to identify the 

macro-scale model parameters given micro-scale response energy. 

In some more detail, the identification of the macro-structure generalized standard material 

constitutive model proceeds as follows: the micro-structure is exposed to some external action 

resp. stimulus, here purely mechanical case this is chosen as large scale homogeneous 

deformation. The response is measured in the change of the two thermodynamic functions alluded 

to: the stored resp. Helmholtz free energy and the dissipation resp. entropy production. The main 

goal is to show that this idea is computationally feasible for identifying the macro-model material 

parameters. 

The outline of this paper is as follows: In Section 2 the problem is defined in an abstract sense 
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to motivate the explanation of the proposed strategy for its solution in the following discussion. In 

Section 3 the stochastic upscaling is described employing the Bayesian identification resp. 

calibration ideas (Pajonk et al. 2012, Rosić et al. 2012, 2016). The coarse- and fine-scale models 

used in this paper will be described in Sections 4 and 5, respectively. These theoretical concepts 

are numerically applied to several illustrative examples of non-linear inelastic behavior in Section 

6. Conclusions are stated in Section 7. 

 

 

2. Problem formulation 
 

Let us assume to be given a symbolic mathematical description of the coarse/macro-scale 

computational model  

𝐴𝑐(𝑢𝑐 , 𝒒) = 𝑓𝑐 , (1) 

in which the operator 𝐴𝑐 describes the system under consideration, 𝑢𝑐 ∈ 𝒰𝑐 stands for the system 

state living in a vector space 𝒰𝑐 , 𝒒 = [𝑞1, … . , 𝑞𝑛]
𝑇are parameters to calibrate the model, and 𝑓𝑐 

describes the external influences: the loading, action, initial conditions or experimental set-up. 

Note that the description given in Eq. (1) is not necessarily stationary but may also cover time-

evolution problems. Additionally, the set of parameters 𝒒 may depend on the state 𝑢𝑐 or parts of it 

as well as on the initial conditions in case of a time-evolution problem.   

On the other hand, the same physical phenomena can be modelled quite differently when 

considered on the fine-scale (detail) level. In an abstract form the corresponding mathematical 

model reads 

𝐴𝑓(𝑢𝑓) = 𝑓𝑓 , (2) 

in which 𝐴𝑓 stands for the linear or non-linear operator describing discrete or continuum possibly 

time dependent model, 𝑢𝑓 ∈ 𝒰𝑓 is the corresponding state and 𝑓𝑓 is the loading program identical 

to 𝑓𝑐. 
Hence, in order to realistically describe physical phenomena, additional information outlining 

the finer resolution of the problem in Eq. (2) has to be incorporated into Eq. (1). To achieve this, 

one has to evaluate at possibly very high cost the response of the fine-scale model and to infer 

parameters 𝒒 in Eq. (1) in such a way that the predictions of Eq. (1) match those of Eq. (2) as 

accurately as possible. However, as the two scales do not match with each other (𝒰𝑐 ≠ 𝒰𝑓), the 

states 𝑢𝑐 and 𝑢𝑓 cannot be directly compared. Instead, the two models are to be compared by some 

observables or measurements 

𝑧 = 𝑦𝑐 + 𝜖 = 𝑌𝑐(𝒒, 𝑢𝑐(𝒒, 𝑓𝑐)) + 𝜖, (3) 

𝑦𝑓 = 𝑌𝑓 (𝑢𝑓(𝑓𝑓)), (4) 

on the coarse and fine scale, respectively. The goal of calibration is now to estimate 𝒒 such that 𝑦𝑐 
and 𝑦𝑓 , resp. 𝑧  and 𝑦𝑓  deviate as little as possible up to the error 𝜖  depicting the discrepancy 

between the coarse- and fine-scale models. 
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3. Bayesian stochastic upscaling 
 

 The set of parameters is not known, and is to be estimated given observable z and y12 

f. The deterministic fit is not easy as in general the mapping 𝒒 ↦ 𝑌𝑐(𝒒) is not invertible, i.e., 𝑧 

does not contain information to uniquely determine 𝒒, or there are more than one instances of  𝒒 

that give a good fit. Therefore, the corresponding ill-posed problem has to be regularized. In a 

Bayesian view, see e.g., Tarantola (2005), the unknown resp. uncertain parameter of  𝒒 is modelled 

as a random variable (RV) following the so-called prior distribution taking into account the 

modeler’s limited knowledge. The prior information is seen as a regularization term and is to be 

corrected to the posterior one by gathering the measurement data. The Bayes theorem is then 

acting as a decision rule in modelling of 𝒒, i.e., if the measurement data are to be trusted more or 

the prior information.  

Since the parameters of the model to be estimated are uncertain, all relevant information may 

be obtained via their stochastic description. Formally, the set of parameters is defined as mapping 

𝒒 ∶ 𝛺 → ℝ𝑛 RVs on a probability space (𝛺, 𝔄, ℙ) (5) 

in which Ω is the set of elementary events, 𝔄 is a 𝜎-algebra of measurable events, and ℙ is a 

probability measure. The expectation corresponding to ℙ is denoted by 𝔼(), e.g., the expected 

value of 𝒒 is given by:  𝒒̅ ∶= 𝔼(𝒒) ∶= ∫ 𝒒(𝜔)ℙ(𝑑𝜔)
Ω

. With 𝒒 formally RVs, the state 𝑢𝑐, and also 

the prediction of the “true” measurement 𝑦𝑐 in Eq. (3) are also RVs. Finally, by assuming that the 

error 𝜖(𝜔) is a RV, then the total prediction of the observation or measurement in Eq. (3) 𝑧(𝜔) =
𝑦𝑐(𝜔) + 𝜖(𝜔) also becomes a RV. In other words, one deals with the probabilistic model of the 

observation, i.e., prediction or forecast of the measurement. 

  

3.1 The theorem of Bayes and conditional expectation 
 

Once the fine-scale measurement data are available, the prior information can be updated via 

Bayes’ theorem as formulated by Laplace, commonly accepted as a consistent way to incorporate 

new knowledge into a probabilistic description (Tarantola 2005). The elementary textbook 

statement of the theorem is 

ℙ(ℐ𝒒|ℳ𝑧) =
ℙ(ℳ𝑧|ℐ𝒒)

ℙ(ℳ𝑧)
ℙ(ℐ𝒒),   if  ℙ(ℳ𝑧) > 0 (6) 

in which ℐ𝒒 is some subset of possible 𝒒 on which one would like to gain some information, and 

ℳ𝑧 is the new information of non-vanishing measure provided by the measurement. The term 

depicts ℙ(ℐ𝒒) prior, i.e. the expert's knowledge before the observation ℳ𝑧 is made, whereas the 

quantity ℙ(ℳ𝑧|ℐ𝒒) stands for likelihood, the conditional probability of ℙ(ℳ𝑧|ℐ𝒒) assuming that 

ℐ𝒒 is given. Finally, the term ℙ(ℳ𝑧) is the so-called evidence, the probability of observing ℳ𝑧 in 

the first place. 

Instead of dealing with the conditional probabilities as in Eq. (6), one may look at the more 

fundamental notion of Kolmogorov's conditional expectation from which conditional probabilities 

may easily be recovered. The conditional expectation is defined w.r.t sub-𝜎-algebras 𝔅 ⊂ 𝔄 of the 

underlying 𝜎-algebra  𝔄. The 𝜎-algebra may be seen as the collection of subsets of Ω on which one 

can make statements about their probability, or in simpler words, as the collection of subsets on 

which one can learn something through the observation (Bobrowski 2005). By considering RVs 
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with finite variance, i.e., restricted to the Hilbert-space 

𝒮 ∶= 𝐿2 (𝛺, 𝔄, ℙ) ∶= {𝑟 ∶ Ω ⟶ ℝ ∶ 𝑟 measurable w.r.t. 𝔄,𝔼(|𝑟|2) < ∞}. 

 one may define  𝔅 ⊂ 𝔄 as sub-𝜎-algebra such that 

𝒮𝔅 ∶=  𝐿2space (𝛺,𝔅, ℙ) ∶= {𝑟: ∈ 𝒮: 𝑟 measurable w.r.t 𝔅} 

holds. With 𝒮𝔅  being a closed subspace, there exists a well-defined continuous orthogonal 

projection  𝑃𝔅 ∶ 𝒮 → 𝒮𝔅 such that the conditional expectation of a RV 𝑟 ∈ 𝒮 w.r.t. a 

sub-𝜎-algebra 𝔅 reads 

𝔼(𝑟|𝔅) ∶= 𝑃𝔅(𝑟) ∈ 𝒮𝔅 (7) 

Being an orthogonal projection, the conditional expectation can be obtained by minimizing the 

square of error 

𝔼(|𝑟 − 𝔼(𝑟|𝔅)|2) = min {𝔼(|𝑟 − 𝑟̃|2) ∶  𝑟̃  ∈  𝒮𝔅}, (8) 

leading to the variational equation or orthogonality relation 

∀𝑟̃  ∈  𝒮𝔅 ∶      𝔼 (𝑟̃(𝑟 − 𝔼(𝑟|𝔅))) = 0 . (9) 

In our case of an observation of a RV 𝑧 , the sub-𝜎-algebra 𝔅  is the one generated by the 

observation 𝑧, i.e. 𝔅 = 𝜎(𝑧), and the corresponding conditional expectation is simply denoted as 

𝔼(𝑟|𝑧) ∶=  𝔼(𝑟|𝜎(𝑧)). According to the Doob-Dynkin lemma (Bobrowski 2005), 𝒮𝜎(𝑧) is given by 

functions of the observation 

𝒮𝜎(𝑧) ∶= {𝑟 ∈  𝒮 ∶ 𝑟(𝜔) = 𝜙(𝑧(𝜔)), 𝜙 measurable} (10) 

This means intuitively that anything we learn from an observation is a function of the observation, 

and the subspace 𝒮𝜎(𝑧) ⊂ 𝒮  is where the information from the measurement lies. Therefore, 

following Eq. (7) a RV 𝑟 may be decomposed into its orthogonal components w.r.t. 𝒮𝜎(𝑧) by using 

 

(11) 

in which (𝐼𝒮 − 𝑃𝜎(𝑧))(𝑟) ∈ 𝒮𝜎(𝑧)
⊥ , the orthogonal complement of  𝒮𝜎(𝑧). Obviously, 𝑃𝜎(𝑧)(𝑟) is the 

best estimator for 𝑟 measured in the error norm squared ‖𝑟 − 𝑃𝜎(𝑧)(𝑟)‖𝒮
2
 from the subspace 𝒮𝜎(𝑧).  

The orthogonal decomposition in Eq. (11) allows the construction of an identification filter by 

knowing that from a measurement 𝑧 one learns something about the component 𝑃𝜎(𝑧)(𝑟) in  𝒮𝜎(𝑧). 

Hence, one simple approach is the least-square approximation, which also underlies the Gauss-

Markov theorem and its extensions (Luenberger 1969). If 𝒒𝑝 is our prior knowledge before the 

measurement, or the forecast, one thus defines the filtered, analyzed, or assimilated RV 𝒒𝑎 having 

the observation 𝑦̌ from Eq. (11) as 

𝒒𝑎 = 𝔼(𝒒𝑝|𝑦̌) + (𝒒𝑝 − 𝔼(𝒒𝑝|𝑧))

                          = 𝒒𝑝 + (𝔼(𝒒𝑝|𝑦̌) − 𝔼(𝒒𝑝|𝑧)) = 𝒒𝑝 + 𝒒𝑖
 (12) 
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in which 𝒒𝑖 =  𝔼(𝒒𝑝|𝑦̌) − 𝔼(𝒒𝑝|𝑧) is called the innovation, and as 𝔼(𝒒𝑎|𝑦̌) = 𝔼(𝒒𝑝|𝑦̌) , it 

follows, that 𝔼(𝒒𝑖|𝑦̌) = 0. Eq. (12) is the nonlinear conditional expectation-filter (Matthies et al. 

2016), but as 𝔼(𝒒𝑝|𝑧) can be a complicated function of 𝑧, it may be difficult to compute. A 

simpler version results if in Eq. (10) one takes only the affine functions, i.e., a smaller subspace 

𝒮𝜎(𝑧),1 ∶= {𝑟 ∈  𝒮 ∶ 𝑟(𝜔) = 𝐻(𝑧(𝜔)) + 𝑏, 𝐻 linear} ⊂ 𝒮 (13) 

and the minimization Eq. (8) is performed over this smaller subspace, resulting in an optimal linear 

map 𝑲𝒒  (the so-called Kalman-gain) (Matthies et al. 2016, Luenberger 1969). With this 

simplification in Eq. (12) one arrives at the Gauss-Markov-Kalman-filter (GMKF) 

 

(14) 

given in terms of RVs 𝒒𝑝(𝜔) and 𝑧(𝜔), which for computational purposes have to be discretized. 

 

3.2 Spectral or functional approximation 
 

Having that Eq. (14) is a relation between RVs, it certainly also holds for samples of the RVs, 

and this is the basis of the ensemble Kalman filter, the EnKF (Evensen 2009). The sampling points 

are sometimes also denoted as particles, and the EnKF is a simple version of a particle filter. 

However, here we want to pursue the more promising functional or spectral approximation 

(Matthies et al. 2016, Matthies 2007) for all the RVs in Eq. (14). This means that all RVs, say 

𝒒(𝜔), are described as functions of known RVs{𝜃1(𝜔),… , 𝜃𝑙(𝜔),… . }. Often, when for example 

stochastic processes or random fields are involved, one has to deal here with infinitely many RVs, 

which for an actual computation have to be truncated to a finite number of significant RVs stored 

in a vector 𝜽(𝜔) = [𝜃1(𝜔),… , 𝜃𝑛(𝜔)]. We shall assume that these have been chosen as Gaussian 

and uncorrelated, thus they can be considered as independent. This allows a choice of a finite set 

of linearly independent functions {Ψ𝛼}𝛼∈𝒥𝑀  of the variables 𝜽(𝜔), where the index 𝛼 is a multi-

index, and the set 𝒥𝑀 is a finite set of multi-indices with cardinality (size) 𝑀. Among different 

systems of functions that can be used, here the classical choice of multivariate polynomials is 

made - leading to the polynomial chaos expansion (PCE) (Matthies 2007). Thus, a RV 𝒒(𝜔) is 

replaced by a functional approximation 

𝒒̂(𝜔) = ∑ 𝒒𝛼Ψ𝛼(𝜽(𝜔)) = ∑ 𝒒𝛼Ψ𝛼(𝜽) = 𝒒̂(𝜽)

𝛼∈ℐ𝑀𝛼∈ℐ𝑀

 (15) 

The argument 𝜔 will be omitted from here on, as the probability measure ℙ on Ω is transported 

to 𝚯 = Θ1 × …× Θ𝑛, the range of 𝜃, giving ℙ𝜃 = ℙ1 × …× ℙ𝑛 as a product measure, in which 

ℙ𝑙 = (θ𝑙) ∗ ℙ is the distribution measure of the RV 𝜃𝑙 , as the RVs 𝜃𝑙  are independent. All 

computations following this stage are performed on 𝚯, typically some subset of ℝ𝑛. Hence, 𝑛 is 

the dimension of the problem, and if 𝑛 is large, one faces a high-dimensional problem. The filter 

Eq. (14) then reads (see Matthies et al. (2016) for more details) 

𝒒̂𝑎(𝜽)    = 𝒒̂𝑝(𝜽) + 𝑪𝒒̂𝑝𝑧̂𝑪𝑧̂
−1(𝑦̌ − 𝑧̂(𝜽)) = 𝒒̂𝑝(𝜽) + 𝑲𝒒̂(𝑦̌ − 𝑧̂(𝜽)) (16) 

If the approximating functions are polynomials, the last expression is known as a spectral 
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Kalman filter (SPKF). Inserting the functional approximations into Eq. (16), one obtains an 

explicit and easy to evaluate expression for the assimilated or updated variable in terms of the 

input. 

 

 

4. The coarse-scale model 
 

For simplicity reasons the continuum model on the coarse scale in Eq. (1) in Section 2 is 

assumed to be of standard generalized type (Halpen and Nguyen 1974, Halpen and Nguyen 1975, 

Nguyen 1977) characterized by infinitesimal displacements/strains and spatially constant material 

properties. In particular here are considered the pressure sensitive materials such as concrete and 

rocks described in a simplified manner using the Drucker-Prager yield criterion for plastic and 

damage criterion based on a spherial part of the stress tensor in compression as proposed in 

Ibrahimbegović (2009). The behavior of such materials is completely characterized by two 

functions: the stored resp. Helmholtz free energy density 𝜓𝑐(𝜀,𝒘, 𝒒) for the reversible part, and 

the dissipation pseudo-potential density 𝜑𝑐(𝜀̇, 𝜀, 𝒘, 𝒘̇, 𝒒)  for the irreversible part, and the 

assumption of maximal dissipation. Here, 𝜀 is the strain, 𝒘 is a collection of internal 

phenomenological variables (the memory of the material), and 𝒒 is a collection of parameters 

specifying the detailed character of the functions 𝜓𝑐 and 𝜑𝑐. 
 

4.1 Constitutive equations 
 

The constitutive description of the coarse-scale material is assumed to follow an associated 

rate-independent law with linear hardening described by the Helmholtz free energy 

𝜓𝑐(𝑥, 𝜀, 𝒘, 𝒒) =
1

2
𝜀𝑒𝐶𝜀𝑒⏟    

  

𝜓𝑒

+
1

2
𝜎𝐷𝜎
⏟  
𝜓𝑑

+
1

2
𝐾𝑝𝜐𝑝

2 +
1

2
𝐾𝑑𝜐𝑑

2 
(17) 

in which the vector 𝒘 contains the plastic {𝜀𝑝, 𝜈𝑝} and damage {𝜀𝑑 , 𝜈𝑑} internal variables, whereas 

the parameter 𝒒 consists of the isotropic and homogeneous elastic constitutive tensor 𝐶 given as a 

function of bulk 𝜅 and shear 𝐺  moduli, the plastic 𝐾𝑝  and damage 𝐾𝑑  isotropic hardening 

coefficients, and the damage compliance tensor 𝐷 relating damage strain 𝜀𝑑 and 𝜎. Moreover, the 

dissipation functional is given by  

𝜑𝑐(𝑥, 𝜀̇, 𝜀, 𝒘, 𝒘̇, 𝒒) = (𝜎 ⋅ 𝜀𝑝̇ + 𝜒𝑝𝜈̇𝑝)⏟          
𝜑𝑐
𝑝

  +   (
1

2
𝜎 ⋅ 𝐷𝜎 + 𝜒𝑑𝜈̇𝑑)⏟            

𝜑𝑐
𝑑

 
(18) 

in which 𝜒𝑝 and 𝜒𝑑 are the plastic and damage hardening forces related to the respective strain- 

like hardening variables 𝜈𝑝 and 𝜈𝑑. Finally, the evolution is driven by the prescribed admissible 

stress domain represented by plastic and damage yield functions 

𝑓𝑝(𝜎, 𝜒𝑝) = √dev(𝜎):dev(𝜎) −
1

3
tr(𝜎)tan(𝛼) − √

2

3
(𝑐 − 𝜒𝑝) , (19) 
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𝑓𝑑(𝜎, 𝜒𝑑) =< −tr(σ) > −(𝜎𝑓 − 𝜒𝑑), (20) 

respectively. Here, Eq. (19) describes the Drucker-Prager yield function for plasticity, in which 𝑐 

denotes the cohesion and 𝛼  is the friction angle here modelled via the parameter 𝑐𝛼 =
𝑐

tan (𝛼)
. 

Similarly, Eq. (20) represents the damage yield function in which 𝜎𝑓 signifies the failure stress. By 

gathering all model parameters into one vector we have 

𝒒 = [log 𝜅, log𝐺, log 𝑐, log𝐾𝑝, log 𝑐𝛼 , log 𝜎𝑓 log𝐾𝑑 ,] (21) 

The goal is to infer 𝒒 given the fine scale measurement data and their coarse-scale prediction as 

described in Eq. (3). The latter one is formulated in a more concrete form 

𝑌𝑐(𝒒) = [∫𝜓𝑐(𝑥, 𝜀, 𝒘, 𝒒) 𝑑𝑉,∫𝜑𝑐(𝑥, 𝜀, 𝜀̇, 𝒘, 𝒘̇, 𝒒)𝑑𝑉] (22) 

as the spatial averages of the stored and dissipated energies in the domain - one quadrilateral 

element of the coarse-scale model. 

 

4.2 Variational formulation 
  

For the sake of completeness with regards to the material description, in this section we briefly 

dwell on the details of the numerical implementation of the constitutive model under consideration 

following Markovic and Ibrahimbegović (2006). By taking the displacement and stress variables 

as unknown state, the mixed weak formulation of the problem is obtained from the Hellinger-

Reissner principle given below. 

Π𝑐𝑜𝑚𝑝(𝑢, 𝜎) = ∫ (−𝜙𝑐
𝑒(𝜎) − 𝜙𝑐

𝑑(𝜎, 𝐷) + 𝜎(∇u − 𝜀𝑝))𝑑𝑉 −∫ 𝑢 ⋅ 𝑡𝑑𝐴
Γ𝜎  𝒢

 (23) 

where 𝜙𝑐
𝑒(𝜎) and 𝜙𝑐

𝑑(𝜎, 𝐷) are the complementary energy densities. By enforcing the stationary 

condition on Eq. (23) with respect to the variation of the states 𝜎 and 𝑢 we get 

𝛿Π𝑐𝑜𝑚𝑝 =
𝜕Π𝑐𝑜𝑚𝑝
𝜕𝑢

𝛿𝑢 +
𝜕Π𝑐𝑜𝑚𝑝
𝜕𝑢

𝛿𝜎 = 0, ∀𝛿𝑢, 𝛿𝜎. (24) 

from which the equilibrium equation and the additive decomposition of the strain read 

∫ ∇𝑠𝛿𝑢𝑑𝑉
𝒢

−∫ 𝛿𝑢 ⋅ 𝑡𝑑𝐴 = 0, ∀𝛿𝑢,
Γ𝜎

 (25) 

∫ [∇𝑠 − 𝜀𝑝 −𝒟𝜎 − 𝒞−1𝜎]𝑑𝑉 = 0, ∀𝛿𝜎.
𝒢

 (26) 

Note that this formulation directly leads to the hypothesis of the additive decomposition of 

strain, which is usually assumed a priori in the strain-based approach (Ibrahimbegović et al. 

(2003). Regarding the spatial discretisation of Eq. (25) to Eq. (26), both displacement and stress 

fields are discretised in the finite element setting as proposed in Pian and Sumihara (1984).  

In the deterministic setting the last two equations would represent the full discretisation of the 

problem given in Eqs. (25) to (26). The estimation of the state in time sequence {𝑡𝑛} follows the 
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computational algorithm consisting of three stages: global, elemental and the local (integration 

point) one. On the global or node level, the discretised equilibrium in Eq. (25) (i.e., the non-linear 

residual equation) is solved by a Newton-like procedure for the increment of displacement Δ𝑢𝑛. 

On the element level, the stress interpolation parameters are determined by solving the discrete 

form of Eq. (26). The internal variables associated with damage/plasticity are evaluated using the 

closest point projection scheme at the Gauss integration points. 

Finally, we would like to remark that the stress-based approach is computationally more 

efficient than the strain-based counterpart, because it does not need an additional iterative loop to 

enforce equivalence of computed stress, required in the latter approach (Ibrahimbegović et al. 

2003). 

 

4.3 Stochastic formulation- forecast 
 

The constitutive model as described in the previous section is deterministic, and is to be 

extended into its probabilistic counterpart in order to take into account the prior uncertainty of the 

material properties describing the expert's knowledge as depicted in Section 3. As all the model 

parameters are positive, one actually models their logarithms, see Eq. (21), which are 

unconstrained and at the same time producing the proper metric. This allows 𝒒 to be a priori 

modelled as a vector of independent normally distributed random variables according to the 

maximum entropy principle such that the original parameters follow a log-normal distribution as 

prior. 

In the Bayesian identification the uncertain material parameters are random variables, and 

hence the coarse scale material is a stochastic one. In other words, the stored energy 𝜓𝑐 and the 

dissipation 𝜑𝑐  densities in Eqs. (17) and (18) become random variables. Additionally, to their 

spatial dependence on the location 𝑥, both densities are also formally functions of the variable 𝜔 ∈
Ω, i.e., elementary probability events as described in Section 3. The simulation of the coarse- scale 

model hence corresponds to the process of solving a stochastic problem which has a similar form 

to the deterministic one (Ibrahimbegović and Matthies 2012, Matthies and Ibrahimbegović 2014). 

Computationally, the striking difference upon full discretization lies in the problem dimension. 

Namely, the state variable lives in a space obtained as the tensor product of the corresponding 

deterministic space and the space of random variables 𝒮. Thus, the stochastic problem requires a 

temporal, spatial, and stochastic discretization, largely increasing the problem dimension and thus 

the computational effort. For a full discussion of such computations, see (Rosić and Matthies 

2014).  

In this paper the stochastic discretization is done in a functional approximation setting as 

already described in Section 3.2, i.e., for both the displacement and stress variables as ansatz are 

taken the polynomial chaos expansions, the coefficients of which are found by pseudo-spectral 

projection resp. regression (Rosić and Matthies 2014). Once the solution response is approximated, 

the prior predictive, i.e., the prediction of the measurement, is evaluated by obtaining the spatial 

averages of the energy densities 

𝑌𝑐(𝒒̂) = [∫𝜓𝑐(𝑥, 𝜔, 𝜀̂, 𝒘̂, 𝒒̂) 𝑑𝑉,∫𝜑𝑐(𝑥, 𝜔, 𝜀̂, 𝜀̂,̇ 𝒘̇̂, 𝒘̂, 𝒒̂)𝑑𝑉] (27) 

In contrast to Eq. (22) here the measurements are random variables, which also can be 

approximated by the polynomial chaos expansions. 
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5. The fine-scale model 
 

To sketch the upscaling procedure, for simplicity reasons the fine-scale or “micro-scale model” 

is taken to be the fine-discretised version of the coarse-scale continuum model based on the 

standard generalized theory, see Section 4. However, any other kind of model which allows a 

“measurement” resp. computation of stored and dissipated energies could be also used.  

The discretisation is refined such that the only one quadrilateral element on the coarse scale is 

split into 2500 finer quadrilateral elements. Additionally, the material parameters 𝒒 are assumed to 

be isotropic and heterogeneous, the spatial dependence of which is modelled by one realization of 

normally distributed random fields described by isotropic stationary Gaussian correlation 

functions. Even though described by random fields, the spatially varying 𝒒 is in the bottom line 

deterministic and unknown to the coarse-scale model in the identification procedure. The 

information about the parameter value can be only indirectly observed via spatially averaged the 

fine-scale stored resp. Helmholtz free energy density 𝜓𝑓(𝑥, 𝜀𝑓 , 𝒘𝑓) and the fine-scale dissipation 

pseudo-potential density 𝜑𝑓(𝑥, 𝜀𝑓 , 𝜀𝑓̇ , 𝒘𝑓 , 𝒘̇𝒇), i.e., 

𝑌𝑓 = [∫𝜓𝑓(𝑥, 𝜀𝑓 , 𝒘𝑓) 𝑑𝑉,∫𝜑𝑓(𝑥, 𝜀𝑓 , 𝜀𝑓̇ , 𝒘𝑓 , 𝒘̇𝒇)𝑑𝑉]. (28) 

Here, the variables 𝜀𝑓 and 𝒘𝑓 as well as their evolution rates have the same physical meaning 

as in the coarse-scale model given in Section 4.   

 

 

6. Numerical results 
 

To illustrate the proposed strategy, the upscaling is tested on several numerical examples in 

which the fine-scale configurations are taken in both homogeneous (one realisation of a random 

variable) and heterogeneous (one realisation of a random field) forms. The former one is of 

particular importance for the validation purposes, whereas the latter one explores more practical 

examples with spatially varying material properties. Additionally, different loading cases necessary 

to trigger the identification of all the relevant material parameters are used. These correspond to 

the boundary displacements enforced by specifying the respective displacement gradient given as 

𝒖𝑏 = 𝑯𝒙𝑏 , (29) 

in which 𝒖𝑏  and 𝒙𝑏  stand for the boundary displacements and nodal coordinates, respectively. 

Here, only two modes of the deformation gradient 𝑯 are taken as specified in Table 1. However, 

these are further linearly combined in various manners such that each combination defines one 

experiment. Moreover, the update of the coarse-scale parameters is performed in a sequential way 

such that the energy measurements from the first experiment are used to obtain the intermediate 

posterior which further serves as a prior for the second experiment, etc. 

 

 
Table 1 Deformation matrix for different loading cases 

𝐻𝐼  𝐻𝐼𝐼  

[
0.0 1.0
1.0 0.0

] [
1.0 0.0
0.0 1.0

] 
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6.1 The homogeneous case 
 

In order to validate the identification procedure for the non-linear type of measurements such as 

the energy integrals in this paper, both the fine- and coarse-scale descriptions are taken as 

homogeneous ones, and the corresponding variational formulations are discretised by same 

quadrilateral element. The coarse-scale parameters follow the log-normal distributions, a priori 

characterized by the second order characteristics, whose mean values have a 10% off-set from 

their deterministic fine scale counterpart (shown in Table 2) and have 10% coefficient of variation. 

 

 
Table 2 Fine scale truth and coarse scale prior statistics (in MPa) 

Property 𝜅 𝐺 𝑐 𝐾𝑝 𝑐𝛼 𝜎𝑓 𝐾𝑑 

Fine truth 204000 92000 300 450 500 300 450 

 

 

Fig. 1 Load evolution on coarse scale to update material parameter using homogeneous fine-scale                

measurements 

 

 

The upscaling is considered for elastic, plastic or damage parameters separately, i.e., for the 

given loading case, the parameters other than those being identified, are kept known and 

deterministic. To trigger different dissipation mechanisms under consideration, several loading 

histories are constructed as shown in Fig. 1. As results we show the percentile estimates of the 

updated parameters. 

We first consider the update of elastic parameters for which the first two steps of Load I 

followed by the first two steps of Load III (see Fig. 1) are used. As apparent from Fig. 2(a)-(b), the 

coarse-scale elastic parameters are updated quite well with the posterior distribution pivoted about 

the fine-scale truth and the prior uncertainty significantly reduced. Having that the first two 

loading steps characterize shear deformation, one may note that in the beginning only 𝐺  is 

updated, whereas the information on 𝜅 is contained in the energy measurements from the third step 

onwards. From this fine-scale measurement the posterior mean value shifts in the proximity of true 

one and the variance reduces. This is expected as the third and fourth load steps of Load III impart 

predominantly volumetric deformation characterizing 𝜅. In order to illustrate the effect of loading 

on the identification, the same numerical setup as before is considered only with loading sequence 

being reversed i.e. the first two steps of Load III followed by the first two steps of Load I are 

applied. In this case, as expected, 𝜅 is identified before 𝐺, see Fig. 3. 
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For the plastic parameters shown in Fig. 4(a)-(c) with Load I considered for the identification 

process, the prior distributions describing 𝑐  and 𝐾𝑝  are updated significantly around step 4-6, 

indicating that the plastic deformation has kicked in, and the posterior converges uniformly to the 

true value in the subsequent steps. One thing to note is that it takes fewer steps for 𝑐 to update 

than 𝐾𝑝. On the other hand, the update of 𝑐𝛼 seems less satisfactory as the mean converges to the 

true value around the sixth loading step.  

Finally, the update of the damage parameters is shown in Fig. 5(a)-(b) with the compression 

Load II used for the identification procedure. The mean of posteriors describing 𝜎𝑓  and 𝐾𝑑 

converges to the true value around points 4 and 10, respectively. Moreover, the mean of 𝜎𝑓 shifts 

in fewer steps to the true value as compared to 𝐾𝑑 which is akin to the trend observed in the update 

of plastic parameters. This is understandable behaviour as the update of cohesion or fracture stress 

(for plastic and damage case respectively) requires just the inception of plastic and damage 

phenomena as information. However, the hardening parameters need significant changes in 

material hardening in order to have sufficient information for update. 
 

 

  

(a) (b) 

Fig. 2 Updated elastic material parameters using homogeneous fine-scale measurements 
 

  
(a) (b) 

Fig. 3 Updated elastic material parameters using homogeneous fine-scale measurements with loading 

sequence reversed 
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(a) (b) 

 
(c) 

Fig. 4 Updated plastic material parameters using homogeneous fine-scale measurements 
 

 

  

(a) (b) 

Fig. 5 Updated damage material parameters using homogeneous fine-scale measurements 
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6.2 The heterogeneous case 
 

We now turn our attention to the more realistic case in which the material properties on the fine 

scale are assumed to be spatially varying. In this scenario, the fine scale is discretised using 2500 

elements, the spatial variability of elastic {𝜅, 𝐺}, plastic{𝑐, 𝐾𝑝, 𝑐𝛼}and damage {𝜎𝑓 , 𝐾𝑑} parameters 

is realized by taking them as a realization of a log - normal random field with second order 

characteristics. To generate the realizations, the mean value of parameters are taken same as the 

“Fine truth” for the homogeneous case (shown in Table. 1). The coefficient of variation is taken as 

5% and the correlation length is 10 times the characteristic length of the fine-scale element with a 

Gaussian covariance function. The upscaling is performed for each phenomenon separately 

meaning that on the coarse scale the parameters other than those being updated are kept 

deterministic. Moreover, two updating approaches are considered:  

• Sequential: The parameters are updated sequentially i.e., the information from fine scale is 

added at each load step and the current posterior is taken as a new prior for the next update. 

• Smoothing: The whole history of measurements is used in one go to update the coarse- scale 

parameters. 

As results, we show the percentiles and updated distributions for the coarse-scale material 

parameters using the sequential and smoothing approach respectively. In addition, we also  
 

 

 

Fig. 6 load evolution on coarse scale to update material parameters using heterogeneous fine-scale 

measurements 

 

 

 

compare the percentiles of different energy measures (used for upscaling) computed from the prior 

and updated distribution of the coarse-scale values with the corresponding fine-scale ones. In this 

case, we denote the prior and posterior percentile estimates as 𝑝𝑟 and 𝑝𝑓 respectively. 

 

6.2.1 Update of elastic parameters 
For the update of the elastic parameters, the loading consists of three steps from Load I (bi-

axial tension, notice that there will be some shear component in this case as we consider plain 

strain case) followed by three steps from Load II (pure shear). The loading is graphically 

illustrated in Fig. 6. The loading cases are executed independently i.e., each loading programme  
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(a) (b) 

  
(c) (d) 

Fig. 7 Updated elastic material parameters using heterogeneous fine-scale measurements from sequential (a), 

(c) and smoothing (b), (d) approaches 

 

  
(a) (b) 

Fig. 8 Comparison of the percentile estimates of energy measures computed from the prior 

(𝑝𝑟5, 𝑝𝑟50 and 𝑝𝑟95) and the updated (𝑝𝑓5, 𝑝𝑓50 and 𝑝𝑓95) elastic parameters with the fine-scale values using 

sequential (a) and smoothing (b) approaches 

 

 

starts with an undeformed configuration. 

The update using the sequential approach is shown in Fig. 7(a)-(c). During the first three  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 9 Updated plastic material parameters using heterogeneous fine-scale measurements from sequential 

(a), (c), (e) and smoothing (b), (d), (f) approaches 

 

 

loading steps the mean of 𝜅 starts moving with reduced uncertainty illustrated by 𝑝5 and 𝑝95 

quantiles. For 𝐺, the reduction in uncertainty becomes noticeable only from 4th step onwards as 

the load steps are characterised by shear deformation. On the other hand, the update using the 

whole history is shown in Fig. 7(b)-(d). In this case the whole loading history for the two cases is  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 10 Comparison of the percentile estimates of energy measures computed from the prior 

(𝑝𝑟5, 𝑝𝑟50 and 𝑝𝑟95) and the updated (𝑝𝑓5, 𝑝𝑓50 and 𝑝𝑓95) plastic parameters with the fine-scale values using 

sequential (a), (c), (e) and smoothing (b), (d), (f) approaches 

 

 

added sequentially, meaning that the update is performed by concatenating the two loading 

histories one after the other. Similar to the sequential case 𝜅 is updated during the first step (i.e., by 

using measurements from steps 1-3) whereas 𝐺 remains oblivious to added information. The shear 

modulus only updates in the second step (i.e. by using measurements from step 4-6). 

In order to check the validity of the update, the posterior predictive of elastic energies, obtained 

by propagating the posterior 𝜅 and 𝐺 values through the coarse-scale model under the same  
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(a) (b) 

  

(c) (d) 

Fig. 11 Updated plastic material parameters using heterogeneous fine-scale measurements from sequential 

(a), (c) and smoothing (b), (d) approaches 

 

 

loading program, are compared to the prior predictive energies and the fine-scale counterpart in 

Fig. 8(a)-(b). As the posterior 95% interval shrinks to the fine-scale truth for both sequential and 

smoothing approaches, one may conclude that the upscaling procedure is successful. 

 
6.2.2 Update of plastic parameters 
The loading program for the update of plastic parameters is shown as Load III (combination of 

bi-axial tension and pure shear) in Fig. 6. The load steps are chosen such that one hits the yield 

surface, and thus extracts the information about the plastic phenomenon. The evolution of 

sequential updates is shown in Fig. 9(a), (c) and (e) in which one could immediately observe that 

there is no convergence in the mean for 𝑐 and 𝐾𝑝. On the other hand, the mean of 𝑐𝛼 stabilizes 

after 13 steps. The results for the smoothing update are shown in Fig. 9(a), (d) and (f). To validate 

such an obtained posterior distribution, the posterior predictive energies (the elastic energy, plastic 

dissipation and stored hardening energy) evaluated in a similar manner as in the elastic case are 

depicted in Fig. 10. By comparing the respective 95% regions to the fine-scale measurement, one 

may conclude that the smoothing update performs better than the sequential one in terms of 

mimicking the energy response of the fine scale.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 12 Comparison of the percentile estimates of energy measures computed from the prior 

(𝑝𝑟5, 𝑝𝑟50 and 𝑝𝑟95)  and the updated (𝑝𝑓5, 𝑝𝑓50 and 𝑝𝑓95)  damage parameters with the fine-scale values 

using sequential (a), (c), (e) and smoothing (b), (d), (f) approaches 

 

 

6.2.3 Update of damage parameters 
The upscaling of the damage parameters 𝜎𝑓 and 𝐾𝑑  is shown in Fig. 11. The corresponding 

loading program which triggers the damage phenomenon is depicted by Load IV in Fig. 6. By 
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validating the posterior predictive coarse-scale energies (elastic energy, damage dissipation and 

hardening) with the fine-scale counterpart in Fig. 12, one may conclude that updating performs 

comparatively better than sequential approach in a similar manner as in the plastic case. 
 

 
 

 

7. Conclusions 
 

In this paper, we have proposed a probabilistic approach to estimate unknown coarse-scale 

material parameters using fine-scale information. The material parameters on the coarse scale are 

considered random and are updated using fine-scale measurements in a Bayesian framework. To 

demonstrate the application of the proposed strategy, we considered the calibration of coupled 

damage-plasticity model on coarse scale. We used stored energy and dissipation to update the 

parameters governing the reversible and irreversible behaviour. The numerical examples were 

shown for homogeneous and heterogeneous fine scales. In case of homogeneous fine scale, the 

mean values of the coarse-scale parameters converge to their fine-scale counterpart with vanishing 

variation by performing loading experiments suitable for triggering different elastic and inelastic 

mechanisms. After validating the functioning of our approach and gaining knowledge about the 

loading cases conducive to identify material parameters, we turn to more realistic case of 

heterogeneous fine scale. In this case we performed the upscaling using sequential and smoothing 

approaches. By observing the comparison of different energy measures from the updated 

parameters with the fine-scale values, we can conclude that both approaches perform equally well 

for the elastic case. However, for plasticity and damage cases, in terms of matching stored 

hardening, the sequential approach performs better than the smoothing approach, whereas the 

latter performs better in terms of matching elastic energy and dissipation. The deviation between 

the coarse- and fine-scale energy responses for the inelastic phenomena can be attributed to a 

localized nature of the irreversible behavior on the fine scale which is understandably impossible 

to capture accurately with just one element on the coarse scale. This is substantiated by observing 

the severe jumps in the evolution of the update of inelastic parameters for the smoothing 

approaches. Nevertheless, the proposed approach provides a promising outlook to investigate 

further into the problems encountered in the heterogeneous case and to experiment with different 

fine- and coarse-scale models e.g., (Do and Ibrahimbegović 2015, Do et al. 2015, Ngo et al. 2014). 
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