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2Sorbonne Universités / Université de Technologie Compiègne, Laboratoire Roberval de Mécanique 

Centre de Recherche Royallieu, 60200 Compiègne, France 

 
 (Received June 7, 2017, Revised June 22, 2017, Accepted June 23, 2017) 

 
Abstract.  This work presents a novel model for analysis of the loading rate influence onto structure 

response. The model is based on the principles of nonlinear system dynamics, i.e., consists of a system of 

nonlinear differential equations. In contrast to classical linearized models, this one comprises mass and 

loading as integral parts of the model. Application of the Kelvin and the Maxwell material models relates the 

novel formulation to the existing material formulations. All the analysis is performed on a proprietary 

computer program based on Wolfram Mathematica. This work can be considered as an extended proof of 

concept for the application of the nonlinear solid model in material response to dynamic loading. 
 

Keywords:  lattice material model; nonlinear dynamical system; dynamic loading; Kelvin material 
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1. Introduction 
 

In this work, the structure is modeled as a nonlinear dynamical system. Typically, structures are 

modeled using the finite element method (FEM) and the material model is included into the 

continuum model, while discrete material models need some additional transformation to be 

included into FEM (e.g., see Marenić and Ibrahimbegovic (2015) or Do et al. (2015a)). The 

approach adopted here formulates the structure model as a system of nonlinear differential 

algebraic equations with the material model integrated into it. As a result, the material model is 

directly coupled with the structure and there is a direct link between structure behavior and its 

parameters. Also, loading is a part of the structure description i.e. it is incorporated into differential 

equations describing the system, and one can determine the sensitivity to various material or 

loading parameters. This particular aspect is missing from the FEM model describing the nonlinear 

dynamical system. Advantages of solution of engineering problems by directly solving differential 

equations have also been recognized in Keivani et al. (2014). 

Since loading is an integral part of the model, it is important to choose relevant representatives 

of the realistic loading. In our analysis, we are dealing with two types of loading: impact loading 
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characterized with the rate of application, and periodic loading characterized with the frequency. 

The following section describes the impact and the periodic loading in detail, together with 

their derivatives and frequency characteristics, since it influences the model response. The third 

section describes the material model whose primary distinction from the classical approach is the 

introduction of the mass into the model. Damage based model with localization property in 

dynamic loading is also described in Do et al. (2015b). Differences in material behavior without 

and with the mass are also presented. Description of the material model ‘per se’ is meaningless in 

the model based on differential equations, so a two-cell structure is introduced as the simplest 

material model suitable for analysis. Two basic material types are analyzed: the nonlinear Kelvin 

and the nonlinear Maxwell material models, and some relevant material model properties are 

observed. The fourth section presents procedures and changes needed for investigation of larger 

structures. This is a basis for the development of a proprietary Mathematica program for the 

generation of the necessary nonlinear differential equations. An example of dynamic analysis of 

square lattice based on different approach can be found e.g., in Liu and Tang (2016). Finally, in the 

following section, some numerical examples are given, comparing the behavior of the Kelvin 

material and the Maxwell material-based models under the two types of loading. 

 

 

2. Loading model 
 

The Impulse loading alone would be used for determination of properties of a linear time 

invariant system, but since this is not our case, different loadings have to be applied. Sudden 

loading is simulated with the impact loading, but the periodic loading of different frequencies is 

also needed for the material response analysis. The amplitudes of the two types of loading are kept 

equal. 

 

2.1 Impact loading 
 

Impact loading is modeled with the logistic function for symmetric increase and decrease of the 

loading or the Gompertz cumulative distribution function for non-symmetry between increasing 

and decreasing loading parts. Displacement loading described as the logistic function and its 

derivative read 

𝜀𝑎(𝑡) =
𝜀0

1 + exp(−𝑐(𝑏 + 𝑡))
  ;    𝜀𝑎′(𝑡) =

𝑐(𝜀0 − 𝜀𝑎(𝑡))𝜀𝑎(𝑡)

𝜀0
 (1) 

Parameter 𝜀0  determines the amplitude, and parameter 𝑐  determines the “steepness” of the 

curve, which corresponds to the load rate. In Fig. 1, there is loading and its derivative for constant 

b (𝑏 = −2) and c varying from 1 to 9, together with the phase plot of the loading. 

One should notice that both the loading function and its derivative enter the system equations 

and that with the increase of the load rate (“steepness”) the derivative magnitude becomes larger. 

Fourier analysis of the impact loading gives frequency content in a load applied on the structure 

and enables comparison of impact and periodic loading. Figs. 2-3 show the result of Fourier 

analysis of the loading and its derivative. It is important to notice that for certain parameter values 

there is a rich frequency content in the loading that is invisible without Fourier analysis. 
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Material model for load rate sensitivity 

 
Fig. 1 Impact loading and its derivative, and phase plot for different load rates 

 

 
Fig. 2 Fourier analysis of impact loading for different load rates 

 

 
Fig. 3 Fourier analysis of the derivative of impact loading for different load rates 

 

 

2.2 Periodic loading 
 

Periodic loading is represented with harmonic functions of different frequencies and the same 

amplitude (𝜀0) as the impact loading. In this case, we are using “chirp” function that has variable 

frequency 

𝜀𝑎(𝑡) = 𝜀0 sin(2𝜋𝑡 ∙ 𝑓(𝑡)) 

𝜀𝑎′(𝑡) = 𝜀0 ∙ 2𝜋(𝑓(𝑡) + 𝑡 ∙ 𝑓′(𝑡)) cos(2𝜋𝑡 ∙ 𝑓(𝑡)) 
(2) 
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Function 𝑓(𝑡) = 0.05𝑡 + 𝑓0 with parameter 𝑓0 determines the frequency of the loading. Note 

that the frequency is not constant. The amplitude of the loading is constant, but the amplitude of 

the derivative increases with time (time t enters the expression for amplitude). In addition, unlike 

with force loading, amplitude has to start from zero. Fig. 4 presents the periodic loading and its 

derivative for several frequency parameters 𝑓0 . Fourier analysis of the periodic loading gives 

frequency content in a load applied on the structure. Figs. 5-6 show the result of Fourier analysis 

of the loading and its derivative. 

 

 

 
Fig. 4 Periodic loading and its derivative for different load frequencies 

 

 

Fig. 5 Fourier analysis of periodic loading for different load frequencies 

 

 
Fig. 6 Fourier analysis of the derivative of periodic loading for different load frequencies 

 

 

3. Material model 
 

Direct consequence of the loading type is the choice of the tool for structure response analysis, 

e.g., see Kantz and Schreiber (2003). In this work, the structure response is assessed using phase 

plots, spectrograms and PSD (power spectral density) plots. PSD is calculated as 
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Material model for load rate sensitivity 

𝐸 = ∫ |𝑥(𝑓)|2 𝑑𝑓
+∞

−∞

  ;   𝑥(𝑓) = ∫ exp(−2𝜋𝑖𝑓𝑡) 𝑑𝑡
+∞

−∞

 (3) 

In practical calculations, integrals are replaced with finite sums over frequencies f. 

 

3.1 Nonlinear standard solid model 
 

A material model is a nonlinear version of the standard solid model (see Simo and Hughes 

1998, Ibrahimbegovic 2009) that is a combination of basic Maxwell and Kelvin material models in 

a way that with a suitable choice of material parameters it is possible to obtain either one of the 

basic models, or some combination of them. One could say that the basic models are the two limits 

and the model behavior lays somewhere between those two extremes. 

Equations of the non-linear standard solid model 

e(t) =eKalman(t) =eelastic(t)+eviscous(t)

s (t) =s elastic(t)+sMaxwell (t)

s elastic(t) =eKalman(t)×E eKalman(t)( )

sMaxwell (t) =eelastic(t) ×E eelastic(t)( ) = m
¶eviscous(t)

¶t

 (4) 

where either 𝜀𝑒𝑙𝑎𝑠𝑡𝑖𝑐  or 𝜀𝑣𝑖𝑠𝑐𝑜𝑢𝑠 could be chosen as internal model variables. Limits of Kalman 

modulus of elasticity (EKalman=E(εKalman)=0) or Maxwell modulus of elasticity (EMaxwell=E(εelastic)=0) 

in the standard solid model restore the Maxwell or the Kelvin material model. 

The behavior of the internal variable is very important for the material model; some 

comparison could be driven from the viscoelastic model. The evolution equation of the internal 

variable for linear viscoelasticity model is 

𝜎 = 𝐸1(𝜃)𝜁 + 𝜀𝑣(𝜃)𝜁̇    →   𝜁̇ = −
𝐸1(𝜃)

𝜀𝑣(𝜃)
𝜁 +

1

𝜀𝑣(𝜃)
𝜎 =: 𝑓(𝜎, 𝜃, 𝜁) (5) 

Analytic solution of this differential equation is taken from Ibrahimbegovic (2009)  

𝜁(𝑡) = 𝜁(0) exp(−𝑡/𝜏) + ∫
1

𝜀𝑣(𝜃)

𝑡

0

exp[−(𝑡 − 𝑠)/𝜏] 𝜎(𝑠)𝑑𝑠 ;   𝜏 =
𝜀𝑣

𝐸1
 (6) 

The parameter 𝜏 =
𝜀𝑣(𝜃)

𝐸1(𝜃)⁄  is called the characteristic time of the standard viscoelasticity 

model, capturing the rate of evolution of internal variables with respect to a variation of the stress 

imposed by a particular loading. This shows that the scale of evolution of internal variable 𝜀𝑣𝑖𝑠𝑐𝑜𝑢𝑠 

should be much faster than the time scale of other state variables. If, however, the viscosity 

component of the model is combined with the mass effect, the inertia 'component' of the model 

interferes with the difference between higher vs. lower rate of loading. 

Nonlinear behavior of the elastic modulus 𝐸(𝜀(𝑡)) = 𝑤(𝜀(𝑡))𝐸0 = 𝜀(𝑡) exp(−𝜀(𝑡) 𝑎⁄ ) is 

taken from the microplane material model (see Kožar and Ožbolt 2010); 𝐸0 is the initial modulus 

of elasticity. The exponential softening behavior of the modulus of elasticity can be obtained from 

homogenization of the fiber bundle model (e.g. see Kun et al. 2007). The nonlinear characteristic 
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of the elastic modulus has a great influence on the system behavior. 

In structure models based on differential algebraic equations, it does not make sense to analyze 

a material model as a single cell, instead two cell models are used for determination of the 

influence of various parameters, see Fig. 7. 

  

 

 
Fig. 7 Kelvin and Maxwell material models as an assembly of two cells 

 

 

Material models in Fig. 7 are connected without any mass in nodes; however, there could be 

mass in nodes resulting in different systems of differential equations (e.g., a system of differential 

algebraic equations (DAE) turns into a system of ordinary differential equations (ODE)). 

Detailed description of the two cells Maxwell model under impact loading can be found in 

Kožar and Ožbolt (2010) and of the two cells Kelvin model in Kožar et al. (2012). Here we add 

spectral analysis and parameter sensitivity. 

 

3.2 Massless solid model 
 

The system of DAE for the massless model consisting of two connected cells takes different 

forms for Kelvin and Maxwell model types: 

• Differential equation for the Kelvin model 

𝑑

𝑑𝑡
𝜀1(𝑡) =

1

𝜇1 + 𝜇2
[𝐸2 ∙ 𝑤(𝜀𝑎(𝑡) − 𝜀1(𝑡)) − 𝐸1 ∙ 𝑤(𝜀1(𝑡)) + 𝜇2

𝑑

𝑑𝑡
𝜀𝑎(𝑡)] (7) 

where function 𝜀𝑎(𝑡) is the loading. 

• System of three differential-algebraic equations for the Maxwell model 

d

dt
ev1(t) = f1 x1(t),ev1(t)( )

d

dt
ev2(t) = f2 x1(t),ev2(t),ea(t)( )

m01 × f1 x1(t),ev1(t)( )-m02 × f2 x1(t),ev2(t),ea(t)( ) = 0

 (8) 

where functions 𝑓1 and 𝑓2 are  

𝑓1(𝑥1(𝑡), 𝜀𝑣1(𝑡)) = (
𝑥1(𝑡)

𝐿1
− 𝜀𝑣1(𝑡))

𝐸01

𝜇01
exp (

𝜀𝑣1(𝑡)

𝑎
−

𝑥1(𝑡)

𝑎𝐿1
) 

𝑓1(𝑥1(𝑡), 𝜀𝑣1(𝑡)) = (
𝑥1(𝑡)

𝐿1
− 𝜀𝑣1(𝑡))

𝐸01

𝜇01
exp (

𝜀𝑣1(𝑡)

𝑎
−

𝑥1(𝑡)

𝑎𝐿1
) 

(9) 

and 𝑎 is the loading parameter. 
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Material model for load rate sensitivity 

In the Maxwell equilibrium equation 𝑥1 is the displacement of the midpoint between the two 

material cells. 

In the previous work, Kožar and Ožbolt (2010), the third of Eq. (8) was different because 

algebraic condition had to be manually included into the system of differential equations and 

Radau integration procedure was needed to obtain localization. Now, owing to the use of Wolfram 

Mathematica (2017), the integration algorithm applies automatic switching and this simpler 

algebraic condition can be used. Moreover, the previous formulation of Eq. (8) did not allow for 

the generalization of the equation assembly procedure; now, Eqs. (4), (7) and (8) could be 

successfully generalized into the system of differential equations described later. 

Equilibrium equations describe stress equilibrium inside the model; for the Kelvin model it is 

incorporated into Eq. (7), and for the Maxwell model it is the third equation in Eq. (8). 

Equilibrium equations for the presented models exhibit the bifurcation possibility, without any 

artificial enforcing of the localization. Bifurcation is interesting phenomena observed in many 

materials as is seen e.g., in Toh et al. (2016). The numerical integration algorithm and time step 

size are important for localization; for some parameter values solutions are close and switching 

between solution paths is possible. Fig. 8(a) shows solutions of differential Eq. (7) (Kelvin model) 

and Eq. (8) (Maxwell model). Actually, solutions of Eq. (8) are midpoint displacement 𝑥1(𝑡) and 

viscous deformations 𝜀𝑣1(𝑡) and 𝜀𝑣2(𝑡). In order to obtain compatibility of solutions, Fig. 8(a) 

shows the elastic part of the deformation 

;
 (10) 

 

 

 

Fig. 8(a) Kelvin and Maxwell model solutions in time 

 

 

The influence of material parameters can be assessed using sensitivity analysis but it is loading 

dependent and has to be performed separately for the impact and for the periodic loading. It is 

possible to observe the behavior of the equilibrium equation in Fig. 8 as one changes the elasticity 

parameter E and viscosity parameter μ. Even more interesting is to observe changes in the 

solutions of differential equations as parameter change. Two approaches are possible: i) one could 

parameterize the numerical solutions or ii) one could calculate the partial derivative of the solution 

with respect to the desired parameter. On should note that i) is a prerequisite for ii). The parametric 

numerical solution could be obtained with careful data manipulation of the so-called “unresolved 

parameters”. The idea is to keep parameters as symbols during numerical manipulations and 

determine their numeric value later; in Wolfram Mathematica (2017) that is done automatically. 

Note that parameters get into the solution of the differential equation (or the solution of the system 

of differential and algebraic equations). 

ee1(t) = x1(t)-ev1(t) ee2(t) =ea(t)- x1(t)-ev1(t)
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Fig. 8(b) Kelvin and Maxwell model solutions in parametric space (𝜀𝑒1vs. 𝜀𝑒2) 

 

 

3.2.1 Impact loading 
It is important to note that the impact-loading derivative is included into the solution of the 

differential equation (that it is the reason for presenting it in Figs. 1-3). 
 

 

 
Fig. 9(a) Kelvin and Maxwell, viscosity parameter sensitivity in time 

 

 
Fig. 9(b) Kelvin and Maxwell, viscosity parameter sensitivity in parametric space (𝜀𝑒1vs. 𝜀𝑒2) 

 

 
Fig. 9(c) Kelvin, rate of deformation sensitivity in time 
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Material model for load rate sensitivity 

Results of the sensitivity analysis in the time domain and in the parameter space are presented 

in Figs. 9(a)-(b). We can see the domain the solution is spanned as viscosity parameters change; 

also, the viscosity parameter value influences the starting time of bifurcation. 

The rate of deformation is directly proportional to the stress so that sensitivity is of importance 

and is depicted in Fig. 9(c) as a function of the two viscosity parameters (𝜇1,𝜇2). 

There is no strain rate evaluation for the Maxwell model since stress is a sum of elastic and 

viscous parts. Instead, there is stress evaluation in the model with added mass. 

Fig. 10 presents a phase plot of the Kelvin model for one large and one small viscosity 

parameter, and with localization clearly visible. 

 

 

 
Fig. 10 Kelvin, phase plot for one large and one small viscosity parameter 

 

 

3.2.2 Periodic loading 
For periodic loading, it is possible to obtain a spectrogram and see the material behavior 

dependent on the loading frequency. Numerical experiments have been performed for periodic 

loading described above and typical results are presented in the following figures. 

Results of the sensitivity analysis in the time domain and in the parameter space are presented 

in Fig. 11(a)-(b). We can see the domain the solution is spanned as viscosity parameters change; 

also, the viscosity parameter value influences the starting time of bifurcation. 

The rate of deformation is directly proportional to the stress so that sensitivity is of importance 

and is depicted in Fig. 11(d) as a function of the two viscosity parameters (𝜇1,𝜇2). 

Fig. 12 presents a phase plot of the Kelvin model for one large and one small viscosity 

parameter; for periodic loading, localization is periodic, too. 

 

 

 
Fig. 11(a) Kelvin and Maxwell, viscosity parameter sensitivity in time 
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Fig. 11(b) Kelvin and Maxwell, viscosity parameter sensitivity in parametric space (𝜀𝑒1vs. 𝜀𝑒2) 

 

 
Fig. 11(c) Kelvin, Maxwell, rate of deformation sensitivity in time 

 

 
Fig. 11(d) Kelvin, rate of deformation sensitivity in time 

 

 
Fig. 12 Kelvin, phase plot for one large and one small viscosity parameter 

-0.001 0.001 0.002 0.003
def.1

-0.001
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Material model for load rate sensitivity 

3.3 Solid model with mass 
 

In standard FEM models, mass is a structural property and is not part of the material model. 

Inspection of basic properties of massless models shows that they are capable of localization and 

fracture modeling within a material. Consequently, it is tempting to formulate the material model 

without a mass that can be added later at the structural level. However, comparison of massless 

models versus those with a mass show that mass is important in material parameter determination 

and in realistic modeling of loading rate dependency. 

In our model based on DAE, mass has to be included into the material model. Consequently, 

the system of DAE for Maxwell model transforms into a system of ODE and Eq. (8) has to be 

rewritten. 

The Kelvin Eq. (7) becomes a system of ODE  

𝑑

𝑑𝑡
𝜁1(𝑡) =

1

𝑚
[𝐸2𝑤(𝜀𝑎(𝑡) − 𝜀1(𝑡)) − 𝐸1𝑤(𝜀1(𝑡)) + 𝜇2

𝑑

𝑑𝑡
𝜀𝑎(𝑡) − (𝜇1 + 𝜇2)𝜁1(𝑡)] (11) 

From Eq. (11) sensitivity equations could be derived as derivatives over parameters but only 

after all functions are modified so that the corresponding parameters get exposed, e.g., εq(t) 

becomes εq(t,m) for assessing mass sensitivity, etc.  

𝑆𝑒𝑛𝑠𝑚 =
𝜕𝜀1(𝑡)

𝜕𝑚
, 𝑆𝑒𝑛𝑠𝜇1

=
𝜕𝜀1(𝑡)

𝜕𝜇1
, 𝑆𝑒𝑛𝑠𝜇2

=
𝜕𝜀1(𝑡)

𝜕𝜇2
, 𝑆𝑒𝑛𝑠𝛿 =

𝜕𝜀1(𝑡)

𝜕𝛿
 (12) 

The Maxwell model DAE equations turn into a system of ODE  

d

dt
ev1(t) = f1 x1(t),ev1(t)( )

d

dt
ev2(t) = f2 x1(t),ev2(t),ea(t)( )

m1

d2x1(t)

dt2
= m01 × f1 x1(t),ev1(t)( ) -m02 × f2 x1(t),ev2(t),ea(t)( )

 (13) 

Parameter sensitivity equations for Maxwell model are (derivatives are over parameters) 

𝑆𝑒𝑛𝑠𝑚 =
𝜕𝜀𝑣1(𝑡)

𝜕𝑚
, 𝑆𝑒𝑛𝑠𝜇1

=
𝜕𝜀𝑣1(𝑡)

𝜕𝜇1
, 𝑆𝑒𝑛𝑠𝜇2

=
𝜕𝜀𝑣1(𝑡)

𝜕𝜇2
, 𝑆𝑒𝑛𝑠𝛿 =

𝜕𝜀𝑣1(𝑡)

𝜕𝛿
 

𝑆𝑒𝑛𝑠𝑚 =
𝜕𝜀𝑣2(𝑡)

𝜕𝑚
, 𝑆𝑒𝑛𝑠𝜇1

=
𝜕𝜀𝑣2(𝑡)

𝜕𝜇1
, 𝑆𝑒𝑛𝑠𝜇2

=
𝜕𝜀𝑣2(𝑡)

𝜕𝜇2
, 𝑆𝑒𝑛𝑠𝛿 =

𝜕𝜀𝑣2(𝑡)

𝜕𝛿
 

𝑆𝑒𝑛𝑠𝑚 =
𝜕𝑥1(𝑡)

𝜕𝑚
, 𝑆𝑒𝑛𝑠𝜇1

=
𝜕𝑥1(𝑡)

𝜕𝜇1
, 𝑆𝑒𝑛𝑠𝜇2

=
𝜕𝑥1(𝑡)

𝜕𝜇2
, 𝑆𝑒𝑛𝑠𝛿 =

𝜕𝑥1(𝑡)

𝜕𝛿
 

(14) 

Functions in Maxwell model need to simultaneously expose much more parameters in order to 

enable sensitivity analysis, e.g., 𝑓1(𝑥1(𝑡), 𝜀𝑣1(𝑡)) turns into 𝑓1(𝑥1(𝑡), 𝜀𝑣1(𝑡), 𝑚, 𝜇1, 𝜇2, 𝛿). Besides 

calculating sensitivity equations that are difficult in more complicated realistic cases, it is possible 

to perform parametric analysis, i.e., solve a resulting system of differential equations for different 

parameter values, which is often done. 
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3.3.1 Impact loading 
Solution for impact loading for the mass model is similar to the massless model for a small 

mass. However, there is an interesting solution when a hidden dynamic component in impact 

loading excites the model; vibrations are visible from the very beginning of the loading and they 

are even more visible in the rate of deformation. Fig. 13(a) depicts the vibrating solution; Fig. 

13(b) is the same in parametric (𝜀1 vs. 𝜀2) and phase space. Fig. 13(c) presents stresses 𝜎1, 𝜎2 in 

time and in parametric space (𝜎 vs. 𝜀). Stresses in parametric space are multiplied with a small 

value that changes in time in order to make the stress path visible; normally, stresses change along 

the same path and then change is not visible. 

 

 

 
Fig. 13(a) Kelvin, deformation and its derivative in time 

 

 
Fig. 13(b) Kelvin, deformations in parametric space (𝜀𝑒1vs. 𝜀𝑒2) 

 

 
Fig. 13(c) Kelvin, stress in time and in parametric space (𝜎 vs. 𝜀) 
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Material model for load rate sensitivity 

Introduction of a mass into the Maxwell model enforces localization even in completely 

symmetric cases. In Figs. 14 the behavior of the Maxwell model is depicted under impact loading. 

As in the Kelvin model, stresses in parametric space are multiplied with a small value. Comparing 

the stresses with the Kelvin model, we see that there is initial stress oscillation around the opposite 

sides of the stress peak, and after that both stresses recover and approach the peak value; if a 

different unloading path would be introduced, that would not be possible. 

From sensitivity analysis in Fig. 15 we see that the Maxwell model is not particularly sensitive 

neither to load rate nor to mass changes. In addition, sensitivity on mass change is much greater 

than sensitivity on load rate change. 
 

 

 
Fig. 14(a) Maxwell, elastic and viscous deformations (and derivatives) in time 

 

 
Fig. 14(b) Maxwell, deformations in parametric space (𝜀𝑒1vs. 𝜀𝑒2) 

 

 
Fig. 14(c) Maxwell, stress in time and in parametric space (𝜎 vs. 𝜀) 

 

 
Fig. 15 Maxwell, sensitivity on load rate and mass 
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3.3.2 Periodic loading 
For models with mass, periodic loading has been somewhat changed from the one presented in 

Fig. 4. The loading is now tension only, as presented in Fig. 16. 

 

 

 
Fig. 16 Periodic loading whole in tension, and its first and second derivatives 

 

 

Fig. 16 shows that although the loading is in tension only, its derivatives change sign and grow 

constantly. 

The behavior of the Kelvin model with small mass (𝑚 = 0.01) under periodic all tension 

loading (as depicted in Fig. 16) is presented in Fig. 17.  

 

 

 
Fig. 17(a) Kelvin, deformations and its derivative in time 

 

 
Fig. 17(b) Kelvin, deformations in parametric space (𝜀𝑒1vs. 𝜀𝑒2) 
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Figs. 18 present the stress change in the model instead of the mass sensitivity analysis. From 

comparison of stresses in models without and with the mass, it is evident that the model with the 

mass loaded entirely in tension, is compression dominated (in this case when the model does not 

break in tension). 

 

 

 
Fig. 18(a) Kelvin, 𝑚 = 0.01 stress in time and in parametric space (𝜎 vs. 𝜀) 

 

 
Fig. 18(b) Kelvin, 𝑚 = 0.05 stress in time and 𝑚 = 0.1 stress in time 

 

 

With the increasing mass, the domination of the compressive stresses grows; also, large mass 

delays the appearance of large compressive stresses, i.e., for a larger mass, tension periodic 

loading must last longer in order for compressive stresses to appear. 
 

 

4. Structure models 
 

Structure models comprise a greater number of material cells limited only by computer 

capacity. Accordingly, one has to devise methods for automatic generation of DAE. Matrix 

formulation is adopted in this work, taking into account different properties of Maxwell and 

Kelvin models. The formulation resembles classical formulation in structure analysis to ease 

comparison of results although the presented model retains the form of a system of nonlinear 

differential (algebraic) equations. It is done to preserve generality of the model since, although the 

present material model with nonlinear exponential spring and constant viscosity could be 

transformed into a system of nonlinear algebraic equations, it will not be the case in the future, 

where we plan to combine different material models and cyclic material behavior. 

The structure is analyzed as an assembly of elementary lattices (bars) where the assembly 

process is the same as in the finite element method so the final matrix equations resemble the finite 

element method formulation (note that the resulting matrix equations are nonlinear and the only 
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constant matrix is the mass matrix). Equations for Kelvin and Maxwell are, respectively (time 

dependency of all the variables is assumed and is not written explicitly)  

𝐌𝐱̈ + 𝐂K(𝐱, 𝐱̇) + 𝐊K(𝐱) = 𝐅(𝑡) 

𝐱 = 𝛆𝑒 = 𝛆𝑣 
(15) 

𝐌𝐱̈ + 𝐊M(𝐱) = 𝐅(𝑡) 

𝐂M(𝛆̇𝑣) = 𝐊M(𝛆𝑒) 

𝐱 = 𝛆𝑒 + 𝛆𝑣 

(16) 

𝐌, 𝐂K, 𝐊K are mass, damping and stiffness matrices for Kelvin (K) or Maxwell (M) model, 

respectively. 𝜺𝑒, 𝜺𝑣 are elastic and viscous components of displacement (or their time derivatives 

when with ‘dot’). 

Maxwell model is much more demanding since it comprises internal variable vector 𝜺𝑣(𝑡). The 

consequence is an additional system of equations describing the internal variable behavior. 

Loading can be expressed with time dependent force 𝐹𝑖(𝑡) or with time dependent displacement 

𝑥𝑖(𝑡) or time dependent boundary conditions or a combination of both; for a more elaborate 

description of the difference see Kožar and Ožbolt (2010). 

Solution of the systems of nonlinear differential Eqs. (15)-(16) has been performed in Wolfram 

Mathematica (2017) but some other solver could be used as well (e.g., XPPAUT 8.0 from 2016, 

for instructions the only available written source is Ermentrout 2002). Some solvers cannot deal 

with derivatives higher than one, in which case each second order equilibrium equation (with 𝑥̈) is 

easily transformed into two first order differential equations (which brings additional ‘n’ equations 

into the system). This procedure is not necessary in Mathematica and it is increasingly used in 

engineering calculations (e.g., see Ziaolhagh et al. 2016). 

Note: there are 'n' (n = number of nodes) kinematic equations and ‘n’ equilibrium equations (or 

2n for a system expressed in normal form) but ‘m’ (m = number of lattices) compatibility 

equations. 

Stiffness and damping expanded matrix formulation with included functions describing the 

Kelvin lattice reads 

𝑘𝑒𝐾[𝑥] = (
𝑓𝑖(𝑥𝑖, 𝑥𝑗)

𝑓𝑗(𝑥𝑖 , 𝑥𝑗)
) = 𝐸𝐴𝑒 ∙ (

1
−1

) ∙ 𝑤 (𝐁 ∙ (
𝑥𝑖

𝑥𝑗
)) 

𝑐𝑒𝐾[𝑥] = (
𝜇𝑖(𝑥𝑖, 𝑥𝑗)

𝜇𝑗(𝑥𝑖, 𝑥𝑗)
) = 𝜇𝑒 ∙ (𝐁 ∙ (

𝑥̇𝑖

𝑥̇𝑗
)) 

(17) 

Stiffness and damping expanded matrix formulation with included functions describing the 

Maxwell lattice reads 

𝑘𝑒𝑀[𝑥 − 𝜀𝑣] = (
𝑓𝑖(𝑥𝑖, 𝑥𝑗, 𝜀𝑣)

𝑓𝑗(𝑥𝑖, 𝑥𝑗, 𝜀𝑣)
) = 𝐸𝐴𝑒 ∙ (

1
−1

) ∙ 𝑤 (𝐁 ∙ (
𝑥𝑖

𝑥𝑗
) − 𝜀𝑣

𝑒) 

𝑐𝑒𝑀[𝜀𝑣] = (
𝜇𝑖(𝑥𝑖 , 𝑥𝑗, 𝜀𝑣)

𝜇𝑗(𝑥𝑖 , 𝑥𝑗, 𝜀𝑣)
) = 𝜇𝑒 ∙ (𝐁 ∙ (

𝑥̇𝑖

𝑥̇𝑗
) − 𝜀𝑣) 

(18) 

In both equations, w(...) is a function of spring behavior and matrix 𝐁 is displacement-strain 

transformation, so 𝛆 = 𝐁𝐱 . Programming the automatic assembly of the above formulation is 

performed in Wolfram Mathematica (2017). Structures based on the standard model are a 
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combination of these two types of cells. 

 

 

5. Numerical examples 
 

The discretization of the structure model is based on Hrennikoff as presented in van Mier 

(2013). Hrennikoff model discretizes a rectangle with six bars (two vertical, two horizontal, two 

diagonal) whose area is determined from 𝐴ℎ𝑜𝑟 = 𝑑𝑏
2⁄

(9 − 3𝛼2)
8

⁄ , 𝐴𝑣𝑒𝑟 = 𝑑𝑎
2⁄

(9 − 3𝛽2)
8

⁄ , 

𝐴𝑑𝑖𝑎𝑔 = 𝑑𝑙
2⁄ 3

8⁄ (𝛼 + 𝛽); 𝑎, 𝑏, 𝑑 are rectangle length, height and thickness respectively and 𝛼 =
𝑎

𝑏⁄ , 𝛽 = 𝑏
𝑎⁄ , 𝑙 = √𝑎2 + 𝑏2 . The presented bar dimensions ensure the same behavior in the 

elastic regime as in the theory of elasticity. Rectangle dimensions are 10 by 10 units with thickness 

0.1 units. The structure is simply supported in the bottom and the top line of nodes and 

displacement loading is applied in node 23. 

The structure model to be analyzed is presented in Fig. 19, with node numbers and some cell 

numbers; each cell is represented as a bar and comprises either the Kelvin or the Maxwell 

nonlinear model, and there is an equal mass in every node. In Wolfram Mathematica, such a 

structure is treated as a network described with the network incidence matrix and the connecting 

cells are represented with arrows or bars. 

 

 

 
Fig. 19 Kelvin and Maxwell structure models for analysis 

 

 

The model is completely symmetric (no localization initiators, they are not necessary for 

models based on nonlinear system dynamics) and data is: a) for the Kelvin model 𝐸0 = 2.5, 𝜇0 =
0.00125, 𝑚0 = 0.1, b) for the Maxwell model 𝐸0 = 1.0, 𝜇0 = 2.0, 𝑚0 = 0.003. 

The Kelvin model comprises of 50 second order nonlinear differential equations and the 

Maxwell model of 122 second order nonlinear differential equations. All the equations and the 

corresponding initial conditions were automatically produced by a proprietary Mathematica 

program and solved afterwards in 5 to 12 seconds. The produced system of nonlinear differential 

equations and the initial conditions can be exported to any solver or program for solution and 

processing. 
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5.1 Impact loading 
 

The loading is the same as presented in Fig. 1 but with opposite sign and different rates, and is 

applied in node 23; the displacement results for the two models are visible in Figs. 20. From the 

Kelvin model in Fig. 20(a) it is visible that impact on one side causes eruption of the material on 

the other. The strain wave for slow loading activates a larger area of the specimen and the wave 

propagation is slower. Faster loading is much more concentrated and strain wave propagation is 

much faster. 

 

 

 
Fig. 20(a) Kelvin structure under slow and fast impact, after t=20 and t=4 time units 

 

 

In the Maxwell model, there is no eruption of the material, it behaves like fluid and impact on 

one side only causes waves on the other; load rate makes no difference. Variation of material 

parameters describes different fluid behavior, from light to sticky. The Maxwell model is depicted 

in Fig. 20(b) for fast loading and three different instances of time. 

 

 

 

Fig. 20(b) Maxwell structure under fast impact, after t=0.8, t=1.8 and t=3.3 time units 

 

 

5.2 Periodic loading 
 

Periodic loading is as presented in Fig. 4 with prolonged analysis time to T=20 time units and 

material parameters are as presented in two cell examples. 
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t=2.8 t=4.8 

t=7.8 t=9.2 

t=14.8 t=16.8 

Fig. 21(a) Kelvin structure models in times t = 2.8, 4.8, 7.8, 9.2, 14.8, 16.8 
 

 t=2.8  t=4.7 

Fig. 21(b) Maxwell structure models in times t = 2.8, 4.7, 10.5, 13, 14.4, 15 
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t=10.5 t=13.0 

t=14.4 t=15.0 

Fig. 21(b) Continued 

 
 

From Fig. 21 (but even more from their animation), it is visible that in the Kelvin model a 

strain wave propagates through the material from one side of the sample to the other, causing 

finally material eruption at the exit; in the Maxwell model, a strain wave is reflecting from sides 

eventually superposing and causing eruption at the exit. 

5.3 Comparison 
 

Comparison of Kelvin based and Maxwell based models under impact and periodic loading 

reveals that for both models it is possible to obtain strain wave propagation and eruption of the 

material on the side opposite to the loading. Strain wave propagation looks realistic and mass and 

shape at the eruption are clearly dependent on the loading rate.  

 

 

6. Conclusions 
 

Some novel tools for the assessment of nonlinear material models are presented. They are 

applicable on models based on DAE and have been used for analysis of DAE based structure 

model with integrated standard nonlinear solid model. This paper can be considered as an extended 
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proof of concept for the application of a nonlinear version of the standard solid model in material 

response to dynamic loading. Numerical experiments have confirmed that:  

•  The model can realistically reproduce phenomena observed in experiments, including 

localization (and bifurcation). 

• Addition of mass into the model is important for obtaining realistic response under dynamic 

loading (strain wave propagation). 

The mass added to the structure model as a structural property is not sufficiently integrated with 

the material model and the response can be obtained only on the structure level, i.e., structural 

properties like eigenfrequencies and eigenvectors could be addressed. 

The mass integrated into the material model can also address material properties like, i.e., strain 

wave propagation and fracture formation under different load rates. In this phase of the research, 

such a model has been based only on DAE; experimentation with some other types of solution 

procedures is planned in a later stage. 

This model is certainly among the smallest models capable of realistic representation of strain 

wave propagation through the material sample. 

In the future, Wolfram Mathematica model will be combined with Modelica programming 

environment, i.e., integrated with System Modeler in the hope of analyzing larger structures. In 

addition, future work will include some measure of nonlinearity based on the paper of Kerschen et 

al. (2006). 
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